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Abstract Purinergic transmission is one of the most
ancient and widespread extracellular signalling systems. In
the brain, purinergic signalling plays a unique role in
integrating neuronal and glial cellular circuits, as virtually
every type of glial cell possesses receptors to purines and
pyrimidines. These receptors, represented by metabotropic
P1 adenosine receptors, metabotropic P2Y purinoceptors
and ionotropic P2X purinoceptors, control numerous
physiological functions of glial cells and are intimately
involved in virtually every form of neuropathology. In this
essay, we provide an in depth overview of purinoceptor
distribution in two types of CNS glia—in astrocytes and
oligodendrocytes—and discuss their physiological and
pathophysiological roles.
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Neuronal–Glial Circuitry

The mammalian brain, evolved through millions of years, is
moulded from two functionally distinct cell populations, the
electrically excitable neurones and electrically non-
excitable glial cells. The neuroglia, the concept of which
was introduced by Rudolf Virchow 150 years ago ([1] for
historic overview, see [2, 3]), provides a three-dimensional
canvas into which the synaptically connected neuronal
networks are embedded [4, 5]. The main type of grey
matter glia, the astroglia, divides, through the process of
“tiling”, the brain parenchyma into relatively independent
structural units, determined by the territories occupied by
individual astrocytes [6–8]. Within these territories, astro-
cytes provide structural and functional support to neurones
[9, 10], create neuronal–glial–vascular units [11] and
enwrap the synaptic contacts making the tripartite synapses
[12, 13], characteristic for the central nervous system
(CNS). Functional importance of these individual domains
acquired experimental attention only very recently, and yet,
these local neuronal–glial units may appear to be the basic
structural elements of the grey matter, which shape
integrative processes in the CNS. Furthermore, the astro-
glia, being the main cellular element of brain homeostasis,
is intimately involved in neuropathology, determining to a
very great extent the progress and outcome of various
diseases of the CNS [14–17].

Purinergic Signalling System

The purinergic signalling system, which utilises purines and
pyrimidines as extracellular messengers [18–20], appeared
very early in evolution and became exceptionally wide-
spread in both the animal and plant kingdoms [21, 22].
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Indeed, purine- and pyrimidine-mediated information trans-
fer can be found in virtually every type of cell and tissue
[23] and throughout every developmental stage [24].
Adenosine 5’-triphosphate (ATP), which is the principal
purinergic signaller, is released from cells by several
mechanisms, which include exocytosis, diffusion through
“maxi” plasmalemmal channels and probably transporters
or even lysosomes [20, 25, 26]. In addition, ATP is released
from damaged cells, being a universal “danger” signal. The
released ATP is rapidly degraded by numerous endonu-
cletidases [20, 27] that produces a trail of derivatives
[adenosine diphosphate (ADP), adenosine monophosphate
(AMP) and adenosine], which in turn also act as signalling
molecules. At the receiving end, purines and pyrimidines
activate several families of purinoceptors’ broadly classi-
fied as metabotropic P1 adenosine receptors, metabotropic
P2Y purinoceptors and ionotropic P2X purinoceptors [18,
28–33]. These receptors alone or in combination are
expressed throughout living cells and tissues and mediate
a remarkable variety of physiological and pathophysiolog-
ical reactions.

Purinergic Signalling in Neuronal–Glial Networks

The purinergic signalling system plays a unique role in
neuronal–glial interactions, as virtually every type of glial
cell, be it the cells of ectodermal/neural origin (astrocytes
and oligodendrocytes) or of mesodermal origin (microglia),
displays sensitivity to ATP and its analogues (Fig. 1). In the
nervous system, ATP is released from neurones, their axons
and terminals as well as from neuroglia. Probably the
predominant mechanism of neuronal ATP release in the
CNS is vesicular [25, 34]. ATP is involved in synaptic
transmission in many brain regions [20, 35], as it can be
stored and released either on its own or together with other
neurotransmitters such as glutamate, γ-aminobutyric acid
(GABA), noradrenaline or acetylcholine (ACh). In addition,
ATP is released from astrocytes and oligodendrocytes by
not yet fully characterised pathways [36–38], which may
include exocytosis, or diffusion through maxi-pore forming
channels (such as hemichannels, pannexins, volume-
sensitive anion channels or P2X7 receptors). Regulated
release of ATP from glial cells may play important roles in

Fig. 1 Omnipresence of puri-
nergic signalling pathways in
neuronal–glial circuits in the
grey matter. The microarchitec-
ture of the grey matter (as
shown in the centre) is defined
by astroglial domains, com-
posed of astrocyte, neighbouring
blood vessel encompassed by
astroglial endfeet and neurones
residing within astroglial terri-
tory. The microglial cells (each
also having its own territory) are
constantly surveying these
domains spying for damage.
ATP and its derivatives act as an
extracellular signalling molecule
at all levels of communications
within neuronal–glial networks.
Within the tripartite synapse (I),
ATP, released during synaptic
transmission, activates astro-
cytes receptors, which in turn
initiate Ca2+ signals and Ca2+

waves in astroglial syncytium.
Astroglial Ca2+ signals induce
release of ATP, which feeds
back to neurones via activation
of pre- and postsynaptic P1 and
P2 receptors. ATP released from
astrocytes (II) triggers and
maintains astroglial Ca2+ waves.
Finally, ATP released from all
types of neural cells control
activation (III) of microglia
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both glial–glial signalling (for example by initiating
propagating Ca2+ waves [37, 39]) and in glial–neuronal
communications (for example regulating synaptic plasticity
[40]). Finally, massive release of ATP inevitably accom-
panies neural tissue damage, being thus ultimately involved
in many forms of neuropathology.

Purinergic signalling in neuronal–glial communications
has been discussed in many reviews [35, 41–50]; the
pathophysiological importance of purinergic signalling for
microglial activation was overviewed even more frequently
[51–63]. In the present essay, we shall specifically focus on
the purinergic receptors expressed in two major types of
glial cells of neural origin, in astrocytes and oligodendro-
cytes, and consider their physiological and pathophysiolog-
ical relevance.

P1 Receptors

P1 adenosine receptors are classical 7-transmembrane-
spanning metabotropic receptors coupled to several families
of Gi and Go proteins. Four types of adenosine receptors
(A1, A2A, A2B and A3) with distinct pharmacological and
functional properties were cloned [33]. As a rule, the A1

and A3 receptors exert an inhibitory effect on adenylyl
cyclase (mediated through Gi/o proteins), whereas A2A and
A2B receptors activate cyclic AMP (cAMP) production via
Gs proteins. A1 and A3 receptors also regulate phospholi-
pase C (PLC) and thus inositol 1,4,5-trisphosphate (InsP3)
synthesis; in some cells, A1 receptors were reported to
activate K+ and/or Ca2+ channels [33, 64–66].

Astrocytes

All four P1 receptors have been identified in astrocytes
(Table 1) using various functional assays applied to both in
vitro and in situ preparations [66]. Initially, the functional
role for adenosine receptors was demonstrated in electro-
physiological experiments on cultured rat astrocytes [67];
this study showed that adenosine hyperpolarised a sub-
population of astroglial cells, and this hyperpolarisation
was antagonised by a P1 receptor antagonist 8-phenyl-
theophylline. Subsequently, adenosine receptors with phar-
macological profiles corresponding to A1 and A2 types
were identified in human foetal astrocytes [68]. In these
cells, the A1 receptors inhibited, whereas A2 receptors
potentiated synthesis of cAMP. In primary cultures of rat
astrocytes, A2B receptors stimulated adenylyl cyclase and
their activation caused dose-dependent accumulation of
cAMP [69]. In the same cultures, stimulation of A1

receptors in type 1 (but not in type 2) astrocytes lead to
an inhibition of cAMP production [70].

Expression of A1 receptor-specific messenger RNA
(mRNA) was demonstrated in rat-cultured astroglia [71].
Activation of A1 receptors in rat-cultured astrocytes
activated PLC; incidentally, this activation was observed
only in cultures with high levels of A1 receptor expression
[72]; up-regulation of A1 receptors synthesis potentiated
A1-dependent PLC stimulation [71, 73].

In cortical astrocytes, acutely isolated from 4–12-day-old
rats, adenosine triggered [Ca2+]i responses, which were
mediated through InsP3-induced Ca2+ release and were
blocked by the selective A2B antagonist alloxazine [74].
The sensitivity of acutely isolated cells to adenosine was
much higher as compared with the same cells maintained in
culture, thus indicating modified adenosine receptors
expression in the in vitro conditions [74]. In astroglial
cultures obtained from neonatal rat forebrains, stimulation
of A1 receptors triggered both intracellular Ca2+ release and
Ca2+ entry and potentiated histamine-induced Ca2+ mobi-
lisation [75]. Similarly, adenosine, acting through P1
receptors, triggered [Ca2+]i elevation in the majority of
astrocytes in acute rat hippocampal slices [76]. In astrocytes
from acutely isolated mouse olfactory bulb slices, adenosine,
which occurred following enzymatic degradation of ATP
released from olfactory nerve terminals, induced [Ca2+]i
elevation via activation of A2A receptors [77].

In cultured mouse astrocytes adenosine triggered [Ca2+]i
transients in ∼85% of cells via activation of A3 receptors as
judged by a specific sensitivity to A3 receptor antagonists
[78]; incidentally, treatment with guanosine induced [Ca2+]i
responses as well, and these responses are likely to be also
mediated through A3 receptors.

In primary cultured astroglia, adenosine was shown to
modulate the amplitude and/or kinetics of [Ca2+]i transients
originated through InsP3-induced Ca2+ release initiated by
activation of metabotropic glutamate receptors, muscarinic
ACh receptors or P2Y receptors [79–84]. The signalling
systems involved, however, were different; in some cases,
intracellular Ca2+ mobilisation was promoted through
activation of A1 receptors [79, 80, 82]; in others, Ca2+

release was up-regulated through A2B receptors [81, 83],
whereas stimulation of A1 receptors suppressed the plateau
phase of the Ca2+ signal, possibly through inhibition of
store-operated Ca2+ entry [81]. Similarly, activation of A1

receptors suppressed sustained Ca2+ influx following
opening of P2X7 receptors in cultured cortical astrocytes
[85].

Astroglial adenosine receptors are also coupled with
astrocyte-dependent regulation of extracellular glutamate.
Activation of A2A receptors in hippocampal astrocytes
reduced glutamate uptake via inhibition of GLT-1 trans-
porter and resulted in glutamate release from astrocytes
through [Ca2+]i and a protein kinase A-dependent pathway
[86, 87]. This in turn potentiated neuronal activity in
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hippocampus due to an increase in glutamate concentration
in the synaptic zones [86].

P1 Receptors in Neuropathology Brain injury results in a
massive release of ATP (a substantial part of which is rapidly
converted into adenosine) and adenosine; the latter can
significantly increase in the cytosol upon conditions of cell
stress and hypoxia. As a consequence, adenosine concen-
trations can attain 10–50 μM [88]. Direct injections of
adenosine or the adenosine analogue 5′-(N-cyclopropyl)-
carboxamidoadenosine into the rat cortex triggered prominent
reactive astrogliosis, which was antagonised by the A2

receptor blocker 1,3-dipropyl-7-methylxanthine [89]. In pri-
mary rat striatal astroglial cultures, pharmacological blockade
of A2A receptors inhibited astrogliosis induced by basic
fibroblast growth factor [90]. Short-term (3 h) treatment of
cultured human astrocytes and astrocytoma cells with the

astrogliosis-promoting factor tumour necrosis factor (TNF)-α
caused phosphorylation of A2B receptors, which reduced their
positive coupling to adenylyl cyclase and in turn suppressed
A2B receptor-mediated cAMP production [91, 92].

Adenosine receptors are also involved in the regulation
of astroglia survival and death. Selective activation of A3

but not A1/A2 receptors triggered apoptosis in primary
cultured rat astrocytes and in C6 glioma cell line through
down-regulation of BCL2 expression and increase in
caspase 3 activity [93]. In fact, activation of A3 receptors
modulated astroglial cell death in a concentration-
dependent manner; low doses of A3 agonists induced
reorganisation of the cytoskeleton and increased cell
survival, whereas over-stimulation of A3 receptors induced
astroglial death [94, 95].

Adenosine also exerted a general glio-protective action
in conditions of glucose deprivation by maintaining mito-

Table 1 P1 adenosine receptors in neuroglia

Receptor type Experimental preparation/species/technique Properties/function References

Astrocytes

P1 receptorsa Cell culture/rat/electrophysiology Cell hyperpolarization [67]

Hippocampal slices/Ca2+ imaging Initiation of [Ca2+]i transients due to Ca2+ release
from the ER

[76]

A1 receptor Cell culture/rat Inhibition of cAMP production [69]

Cell culture/rat Activation of PLC [71–73]

Cell culture/rat forebrain/Ca2+ imaging Initiation of [Ca2+]i transients due to Ca2+ release
from the ER, activation of Ca2+ entry and
potentiation of histamine-induced Ca2+ release

[75]

Cell culture/rat cortex/Ca2+ imaging Potentiation of ACh-induced Ca2+ signalling [82]

Cell culture/rat hippocampus/Ca2+ imaging Potentiation of glutamate (mGluRs)-induced Ca2+

signalling
[79]

Cell culture/rat cortex/Ca2+ imaging Inhibition of P2X7-mediated Ca2+ influx [85]

A2A receptor Acute slices/mouse olfactory bulb/Ca2+ imaging Initiation of [Ca2+]i transients due to Ca2+ release
from the ER

[77]

Cell culture/Slices/rat hippocampus/electrophysiology Inhibition of astroglial glutamate transporter GLT-1
and activation of astroglial glutamate release

[86]

Cell culture/rat striatum Inhibition of astrogliosis [90]

Cell culture/rat Inhibition of iNOS and NO production [97]

A2B receptor Cell culture/rat Stimulation of cAMP production [69]

Acutely isolated cells/rat cortex/Ca2+ imaging Initiation of [Ca2+]i transients due to Ca2+ release
from the ER

[74]

Cell culture/rat cerebellum/Ca2+ imaging Potentiation of glutamate (P2Y)-induced Ca2+

signalling
[83]

A3 receptor Cell culture/mouse Initiation of [Ca2+]i transients due to Ca2+ release
from the ER

[78]

Cell culture/rat Activation of apoptosis at intense stimulation;
protective effects at low/moderate stimulation

[93–95]

Cell culture/mouse Up-regulation of CCL2 cytokine synthesis [100]

Oligodendrocytes

P1 receptors Neuronal–glial co-culture/mouse/Ca2+ imaging Initiation of [Ca2+]i transients following axonal
firing, inhibition of oligodendroglial precursors
proliferation and promotion of differentiation and
myelination

[101, 103]

a This refers to experiments were P1 receptors subtypes were not identified
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chondrial potential and ATP synthesis [96]. Activation of
A2A receptors was reported to inhibit inducible nitric
oxide (NO) synthase expression and NO production in
cultured rat astrocytes [97], which also may contribute to
glio-protection. Specific activation of A1 receptors had an
anti-apoptotic effect in primary astroglial cultures treated
with staurosporine; this effect was mediated through the
phosphatidylinositol 3-kinase (PI3K) pathway [98]. Both
A1 and A3 receptors are involved in protection of astro-
cytes against hypoxic conditions. Hypoxia-induced cyto-
toxicity was much more pronounced in astroglial cultures
obtained from A1 or A3 receptors knockout mice [99].
Stimulation of A3 receptors also increased the synthesis of
neuroprotective cytokine CCL2 in cultured mouse astro-
glia [100].

Oligodendrocytes

All four P1 adenosine receptors were identified in cultured
oligodendrocytes (Table 1) and their precursors at the
mRNA level [101]. Adenosine receptors play an important
role in differentiation of cells from the oligodendroglial
lineage. In experiments in vitro, in co-cultures of sensory
neurones and oligodendroglial precursor cells (OPCs),
adenosine and ATP released during action potentials
triggered Ca2+ signals in immature oligodendrocytes (rep-
resented by both NG2-positive cells and O4-positive
OPCs). This action was mediated through both P2Y and
P1 adenosine receptors [101] and allowed OPCs to detect
electrical activity of non-myelinated nerve fibres. Activa-
tion of adenosine receptors, however, had another specific
action; it inhibited OPCs proliferation, promoted their
differentiation and initiated myelination, thus constituting
a signalling loop between axon activity and oligodendro-
cyte function [101]. Incidentally, myelination was also
promoted by the astroglia-derived cytokine, leukaemia
inhibitory factor, which was released following stimulation
of astroglial P2Y receptors [102]. All in all, ATP and
adenosine released from axons represent a specific signal-
ling system coordinating axonal/oligodendroglial develop-
ment and interaction [103].

Adenosine receptors are also involved in various forms of
oligodendrocyte pathology. Genetic deletion of A1 adenosine
receptors triggered severe demyelination and provoked the
progressive-relapsing form of experimental allergic enceph-
alomyelitis (EAE), which is generally considered to be a
model for multiple sclerosis (MS) [104]. A substantial part of
the pathology was associated with activation of microglia,
although direct effects on oligodendrocytes can also play a
relevant role. Similarly, sustained activation of A1 receptors
in early postnatal brain reduces expression of myelin basic
protein and triggers white matter damage and ventriculome-
galy [105].

P2X Receptors

Ionotropic ATP receptors, classified as P2X in 1985 [29,
32] are represented by archetypical ligand-gated cationic
(Na+/K+/Ca2+) channels, assembled in trimeric form by
different subunits [106–108]. These subunits, encoded by
distinct genes, are classified P2X1 to P2X7 according to
historical order of cloning [31, 107]. Receptors, formed
through homo- or heteromeric assembly of P2X1 to P2X6

subunits (so far, homomeric composition was shown for
P2X1-5 subunits, whereas P2X6 subunits apparently cannot
olygomerise; heteromeric compositions are represented by
P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/6 and P2X4/6 chan-
nels), are activated by low micromolar ATP concentrations
[20, 35, 109, 110]. In contrast P2X7 receptors are much less
sensitive to ATP (their full activation is reached at mM ATP
concentrations) and demonstrate several properties, which
readily distinguish them from other P2X receptors [110–
112]. All P2X receptor subunits are expressed in the
nervous system, although their expression varies in differ-
ent regions of the peripheral nervous system and CNS.

Astrocytes

Surprisingly, our knowledge on the functional expression of
P2X receptors in astrocytes is very limited (Table 2).
Expression of various P2X subunits on the transcriptional
level was found in several astroglial preparations. Studies
on primary cultured rat cortical astrocytes identified the
expression of mRNA for P2X1–5 and P2X7 receptors [113,
114]. In tissue extracts from rat nucleus accumbens, reverse
transcriptase polymerase chain reaction (RT-PCR) revealed
expression of all seven P2X mRNAs [115]. In freshly
isolated retinal Müller cells, P2X3, P2X4, P2X5 but not
P2X7 mRNAs were identified [116]. In contrast, P2X7

receptor-specific mRNA was identified in Müller cells
isolated from human retina [117]. In acutely isolated mouse
cortical astrocytes, only P2X1- and P2X5-specific mRNAs
were found [118]. Astroglial localisation of some P2X
subunits was also corroborated by immunohistochemistry.
In nucleus accumbens (where all seven receptors were
present at transcriptional level), immunofluorescence
revealed that only P2X2–4 receptors were co-localised with
glial fibrillary acidic protein (GFAP)-labelled astroglial
profiles [115]. Mechanical lesion triggered up-regulation
of P2X1–4 and P2X7 immunofluorescence in nucleus
accumbens astrocytes [115]. Immunoreactivity for P2X1

and P2X2 receptors was detected in astroglial cells in
cerebellum [119, 120]; in a similar way, P2X2 receptors
were found in spinal cord astrocytes [121], whereas P2X4

receptors were identified in astrocytes from the brainstem
[122]. In hippocampal astrocytes, immunostaining revealed
expression of P2X1–4, P2X6 and P2X7 subunits [123].
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At a functional level, however, the activity and role of
astroglial P2X receptors remains virtually uncharacterized.
ATP-induced depolarisation and membrane currents with
accompanying [Ca2+]i rises were recorded from cultured
astrocytes [124, 125], although the subunit composition of
underlying receptors was not investigated. In hippocampal
astrocytes, voltage- and concentration-clamped in slices or
in isolation, an exhaustive series of experiments failed to
identify P2X-mediated currents [126], despite immunohis-
tochemical evidence suggestive of astroglial expression of
P2X subunits [123]. Similarly, ATP-induced currents were
not observed in Bergmann glial cells in acute cerebellar
slices [127]. Nonetheless, absence of ATP-induced currents
in the in situ experiments is not conclusive, as complex
geometry of glial cells, diffusional barriers and rapid
degradation of ATP in slice tissue may prevent detection
of functional responses.

In acutely isolated cortical astrocytes, P2X1/5 hetero-
meric receptor-mediated currents were discovered and
characterised [118]. The P2X1/5 heteromeric receptors were
initially described in heterologous expression systems
[128–131]; surprisingly, cortical astrocytes remain the only
“real” cells where operational P2X1/5 receptors were
hitherto found. The P2X1/5 combination exhibits several
unique features, which include a very high sensitivity to
ATP (currents are activated at nM ATP concentrations),
biphasic kinetics with distinct peak and steady-state
components and very little desensitisation in response to
the repetitive agonist applications. Using these P2X1/5

receptors, cortical astrocytes therefore are able to detect
extremely low levels of extracellular ATP.

In acutely isolated optic nerves, ATP triggered large [Ca2+]i
transients in astrocytes, which, at least in part, were mediated
through Ca2+ influx; these [Ca2+]i responses demonstrated

Table 2 P2X receptors in neuroglial cells

Receptor type Experimental preparation/species/technique Properties/function References

Astrocytes

P2X1-5, P2X7 Cell culture/rat cortex/RT-PCR Specific mRNAs detected [113, 114]

P2X1-7 Tissue extracts/rat nucleus accumbens/
RT-PCR

Specific mRNAs detected [115]

P2X2-4 Rat nucleus accumbens/immunostaining Immunoreactivity detected [115]

P2X3-5 Acutely isolated Müller cells/rat retina/
RT-PCR

Specific mRNAs detected [116]

P2X1, P2X5 Acutely isolated cells/mouse cortex/RT-PCR Specific mRNAs detected [118]

P2X1, P2X2 Rat, guinea pig cerebellum/immunostaining Immunoreactivity detected [119, 120]

P2X4 Rat brainstem/immunostaining Immunoreactivity detected [122]

P2X1-4, P2X6, P2X7 Rat hippocampus/immunostaining Immunoreactivity detected [123]

P2X1/5 Acute slices/mouse/electrophysiology Specific currents through P2X1/5 heteromeric
receptors

[118]

P2X?, P2X7? Acutely isolated optic nerve/mouse/Ca2+

imaging
[Ca2+]i transients associated with receptor
mediated Ca2+ entry

[133, 145]

P2X7 Acutely isolated Müller cells/human retina/
electrophysiology

Specific mRNAs and immunoreactivity as
well as currents through P2X7 receptors
were detected

[144]

P2X7 Cell culture/rat/Ca2+ imaging [Ca2+]i transients associated with receptor
mediated Ca2+ entry

[85, 113, 143]

P2X7 Cell culture/mouse cortex/electrophysiology Specific currents through P2X7 receptors;
activation of P2X7 receptors resulted in
release of excitatory amino-acids

[138]

P2X7 Cell culture/mouse Activate synthesis of endocannabinoid
2-arachidonoylglycerol

[150]

P2X7 Cell culture/human Stimulation of NO production [139]

P2X7 Cell culture/human Regulation of NF-κB signalling [142]

P2X7 Cell culture/rat Up-regulation of P2Y receptors expression [157]

P2X7 Cell culture/rat Down-regulation of aquaporin-4 expression [158]

Oligodendrocytes

P2X1,2,3,4,7 Cell culture/rat/Western blot Specific proteins detected [161, 162]

P2X7 Cell culture/rat/Ca2+ imaging [Ca2+]i transients associated with receptor
mediated Ca2+ entry

[162]

P2X7 Cell culture/rat optic nerve/electrophysiology Specific currents through P2X7 receptors [165]
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sensitivity to the P2X receptor antagonist NF023 and could be
mimicked by the P2X agonist α,β-methylene ATP (αβ-
meATP); yet, the subunit composition of the underlying P2X
receptors remains unknown [132, 133].

Functional roles of astroglial P2X7 receptors deserve
special attention. The P2X7 receptors are unique in their
low ATP sensitivity (in all probability, it is ATP4− that acts
as a true agonist), almost complete absence of desensitisa-
tion and ability to produce large transmembrane pores
upon intense stimulation [31, 110, 112]. The mechanism
of the pore formation remains obscure [111]; it may
involve the dilatation of the channel or activation of other
proteins (such as, for example, pannexins [134]) closely
associated with P2X7 receptors. Expression and distribu-
tion of P2X7 receptors in healthy brain remains contro-
versial; initial experiments using in situ hybridization
found that specific mRNAwas restricted to the ependymal
layer of the third ventricle [135]. Subsequent RT-PCR
studies, however, detected P2X7 mRNA in many areas of
the brain including hippocampus, cortex and brain stem
(see [112] for detailed account). Similarly, immunoreac-
tivity for P2X7 receptors was demonstrated in hippo-
campus, medulla oblongata, cerebellum, thalamus and
amygdala [112]. At the same time, the specificity of many
antibodies used for P2X7 receptors immunostaining
remains far from ideal [136], thus making many previous
observations questionable. A recent in-depth analysis of
the cellular distribution of P2X7 mRNA in the rat brain
using isotopic in situ hybridization found its presence in
microglia, oligodendrocytes and neurones in many brain
areas; yet it failed to detect any presence of P2X7 mRNA
in astroglia [137].

There is ample evidence for P2X7 receptor expression in
cultured astrocytes at both the transcriptional and protein
levels [113, 114, 138–143]. Immunoreactivity for P2X7

receptors was also reported for freshly isolated astrocytes
and astrocytes in brain slices [123, 143]. On a functional
level, experiments on cultured astrocytes demonstrated both
P2X7-mediated Ca2+ signalling [85, 113, 144] and charac-
teristic P2X7 ion currents [138]. Similarly, P2X7 currents
were identified in Müller cells freshly isolated from human
retina [145]. In isolated optic nerve, activation of P2X7

receptors underlie Ca2+ influx and astroglial release of ATP,
which subsequently acted upon neighbouring glial cells
[133, 146]. This astroglia-originated signalling was absent
in a P2X7 knockout model [133].

Activation of P2X7 receptors in cultured astrocytes has
numerous functional consequences. First and foremost,
opening of P2X7 channels triggers release of glio-
transmitters glutamate, GABA, ATP and associated purines
through exocytosis, P2X7 associated transmembrane pore
or through Cl-/HCO3

−-dependent mechanism of an as yet
unidentified nature [111, 138, 144, 147, 148]. In hippo-

campal astrocytes, prolonged activation of P2X7 receptors
lead to a sustained glutamate release, which obviously may
have pathological relevance [149]. High concentrations of
ATP, acting most likely through P2X7 receptors, were also
shown to remarkably (∼60 times) increase production of
endocannabinoid 2-arachidonoylglycerol in cultured astro-
glia [150]. Furthermore, stimulation of P2X7 receptors in
cultured astrocytes or astroglial cell lines was shown to
affect other signalling pathways, for example, modulate
release of TNF-α [151], stimulate NO production [139,
152], induce phosphorylation of AKT [153] and
p38MAPK/ERK1/ERK2 [154], stimulate transmembrane
transport of NADH [155] and regulate NF-κB signalling
[142]. Stimulation of P2X7 receptors increased production
of lipid mediators of inflammation cysteinyl leukotrienes,
this action being mediated through P2X7-mediated Ca2+

signalling [156]. Activation of P2X7 receptors in the
astroglial cell line RBA-2 rapidly decreased glutamate
uptake via Na+-dependent transporter and reduced expres-
sion and activity of glutamine synthetase [157]. Further-
more, P2X7 receptors are involved in the control of
expression of other purinoceptors and channels; in partic-
ular, P2X7 stimulation up-regulates expression of P2Y2

receptors [158] and down-regulates expression of
aquaporin-4 [159] in cultured rat astrocytes.

Nonetheless, the crucial data on the functional expres-
sion of P2X7 receptors in astroglial cells in undisturbed
grey matter are yet to be obtained. Indeed, astrocytes in
tissue culture are certainly different from the in vivo state,
as the procedure for isolation triggers astrogliosis, which
launches various programmes of functional remodelling,
including, most likely, changes in P2X7 receptors expres-
sion. There are certain hints that brain injury does induce
expression of P2X7 channels. For example, P2X7 immuno-
reactivity in nucleus accumbens was observed only after
mechanical damage [115], similarly focal cerebral ischemia
resulted in an appearance of astroglial P2X7 receptors in the
rat cortex [160]. Vitreoretinopathy resulted in a significant
increase in P2X7 current density in freshly isolated human
Müller cells [161]. The immunoreactivity for P2X7 recep-
tors was also found in reactive astrocytes from brain
autopsies obtained from MS patients [139].

In conclusion, P2X7 receptors are associated with
astroglial responses to brain lesions and most likely
constitute a part of global functional remodelling, which
accompanies reactive astrogliosis. In this process, P2X7

receptors play an important role regulating both patholog-
ically relevant signalling events (for example, underlying
massive Ca2+ influx or regulation of various kinases) and
production and release of numerous inflammatory factors.
The full pathological profile of astroglial P2X7 receptors is
still to be uncovered, although they might be considered as
potentially important therapeutic targets.
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Oligodendrocytes

Oligodendroglial precursor cells in purified postnatal
cultures expressed P2X1,2,3,4,7 proteins [162, 163]. There
is little evidence, however, about functional expression of
P2X1–6 receptors in both OPCs and mature oligodendro-
cytes (Table 2). In the isolated optic nerve, the broad
agonist of P2X receptors αβ-meATP triggered a small [Ca2+]i
elevation, thus suggesting possible involvement of P2X1–6

receptors [164]. In contrast, in oligodendrocytes from corpus
callosum slices, ATP failed to activate measurable currents
[165].

At the same time, P2X7 receptors may be operational in
oligodendrocytes from other areas of the CNS and in white
matter tracts. For example, functional P2X7 receptors were
found in the cells of oligodendroglial lineage in vitro. In
cultured OPCs, the specific P2X7 agonist 2′,3′-O-(benzoyl-
4-benzoyl)-ATP (BzATP) triggered large Ca2+ transients,
which were effectively inhibited by the P2X7 receptor
agonist oxidised ATP (oxATP) [163]. In cultured oligoden-
drocytes from optic nerve ATP in high concentrations
(EC50, ∼8.8 mM) and BzATP (EC50, ∼0.5 mM) triggered
sustained inward currents. These currents were potentiated
in divalent cation-free extracellular solutions and were
inhibited by oxATP. In addition high concentrations of
ATP and BzATP induced a rapid increase in [Ca2+]i, which
was almost exclusively dependent on transmembrane Ca2+

entry [166]. These data taken together are indicative of
activation of P2X7 receptors [166]. In addition P2X7

receptor immunoreactivity was detected in oligodendro-
cytes from the optic nerve and the spinal cord [166, 167].
Stimulation of P2X7 receptors for 15 min (with 1 mM ATP
or BzATP) induced significant oligodendroglial death in
culture and in situ in the optic nerve.

The P2X7-dependent death of oligodendrocytes may
have pathophysiological relevance for demyelinating dis-
eases and for MS in particular. Indeed, in EAE, which is
considered a model for MS, treatment with the P2X7

antagonists oxATP or brilliant blue G inhibited demyelin-
ation and restored axon conduction velocity [166, 167].
Moreover, the levels of P2X7 expression appeared to be
increased in white matter of MS patients [166]. These data
may indicate the relevance of P2X7 receptors as a
therapeutic target for treatment of demyelinating diseases.

P2Y Receptors

Metabotropic P2Y purinoceptors are (similar to P1 recep-
tors) 7-transmembrane domain G protein-coupled receptors
[20, 45]. They can be broadly divided into the P2Y1,2,4,6,11

and P2Y12,13,14 groups based on phylogenetic similarity
and G protein preference [30]. The P2Y1,2,4,6,11 are coupled

to Gq/G11 proteins and regulate activity of PLC, thus
controlling InsP3-mediated Ca2+ release from the endoplas-
mic reticulum (ER) [30]. The P2Y12,13,14 receptors modu-
late ion channels and inhibit adenylyl cyclase via Gi/o

proteins [30]. This general scheme has exceptions, and in
some cases, the same receptor can couple to different G
proteins [168] or exert effector action without any G
proteins involvement [169].

Astrocytes

The majority of astrocytes studied in situ or in isolation
express metabotropic P2Y purinoceptors (Table 3 and [41]).
Primary cultured rat cortical astrocytes express mRNA for
P2Y1,2,4,6,12, 13 and UDP-glucose P2Y14 receptors [41, 113,
114]. Similarly, in cerebrocortical glial cultures, RT-PCR
found the predominant expression of P2Y1,4,6 mRNAs
[170]. Spinal cord astrocytes predominantly express
P2Y1,2-specific mRNA [171]. In astrocytes freshly isolated
from the CA1 area of 8–12-day-old rat hippocampi, P2Y1

receptors were identified in about 50% of cells at both
transcriptional and protein levels [172], although some cells
also expressed P2Y2,4 receptors. The proportion of astro-
cytes expressing P2Y2 receptors in CA1 area increased
from ∼5% at P8–P12 to ∼38% at P25 [173]. Isolated rat
Müller retinal glial cells expressed mRNA for P2Y1,2,4,6

receptors [174], expression of these receptors was further
corroborated by immunostaining as well as by functional
and pharmacological analysis [175]. Interestingly, in tiger
salamander Müller cells, the palette of P2Y receptors was
somewhat richer: They express functional P2Y1,2,6,11 and
possibly P2Y4 and P2Y13 receptors [176]. In nucleus
accumbens, the immunoreactivity for P2Y1,4 receptors in
astroglial cells was detected; whereas in cortex, astrocytic
profiles were positively stained for P2Y1,2,4,6 receptors
[177].

Treatment of cultured astrocytes from various brain
regions with ATP induced [Ca2+]i transients, which were,
as a rule, a consequence of P2Y receptor activation,
production of InsP3 and subsequent Ca2+ release from the
ER [178–181]. Stimulation of rat brain astroglial cultures
with ATP and UTP induced rapid and dose-dependent
increase in PLC-dependent inositol phosphate production
[182–184] accompanied with [Ca2+]i increase due to
intracellular Ca2+ release [185–188]. In rat striatal astro-
cytes in vitro ATP induced fast [Ca2+]i transients, which
were independent from extracellular Ca2+ and were
inhibited by the SERCA blocker thapsigargin or by the
PLC blocker U-73122 [189]. Likewise, ATP triggered
[Ca2+]i rise in pituitary folliculo-stellate cells (pituitary glia)
and in rat neurohypophysial astrocytes through generation of
InsP3-induced Ca2+ release [190, 191]. The very same InsP3-
induced intracellular Ca2+ release occurred in cultured spinal
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cord astrocytes [192, 193]. Sometimes, P2Y-mediated Ca2+

release from the ER in cultured astrocytes also triggered
secondary store-operated Ca2+ entry [194].

Functionally, P2Y1 and/or P2Y2 receptors assume the
leading role in triggering ATP-induced Ca2+ signalling in
astroglia. In embryonic glial cultures, the agonist profile for

initiating [Ca2+]i transients was 2-methylthioADP (2-
MeSADP)>2-methylthioATP(2-MeSATP)>ADP>ATP>
adenosine 5′-O-(3-thiotriphosphate), which is characteristic
for P2Y1 receptor [170]. Similarly, P2Y1 receptors drive
ATP-induced [Ca2+]i responses in astrocytes from the
supraoptic nucleus in acutely isolated slice preparations

Table 3 P2Y receptors in neuroglial cells

Receptor type Experimental preparation/species/technique Properties/function References

Astrocytes

P2Y1,2,4,6,12, 13 and
UDP-glucose P2Y14

receptor

Cell culture/rat/RT-PCR Specific mRNAs detected [41, 113,
114]

P2Y1,4,6 Cell culture/rat cortex/RT-PCR Specific mRNAs detected [169]

P2Y1,2 Cell culture/rat spinal cord/RT-PCR Specific mRNAs detected [170]

P2Y1,2,4 Cell culture/rat hippocampus/RT-PCR,
Western blot

Specific mRNAs and proteins detected; ∼50% of cells
express P2Y1, some cells also express P2Y2,4

[171]

P2Y1,2,4,6 Acutely isolated Müller cells/rat retina/RT-
PCR, immunostaining, electrophysiology

Specific mRNAs and immunoreactivity detected;
stimulation of P2Y receptors triggered Ca2+-dependent
K+ currents

[173, 174]

P2Y1,2,4,6,11,13 Acutely isolated Müller cells/tiger
salamander/Ca2+ imaging

[Ca2+]i transients associated with Ca2+ release of the ER;
receptors subtypes were identified using specific
pharmacology

[175]

P2Ya Cell culture/rat/biochemical assays, Ca2+

imaging
Increase in InsP3 production; [Ca

2+]i transients
associated with Ca2+ release of the ER

[181–183,
185–187]

P2Ya Cell culture/rat, striatum/Ca2+ imaging [Ca2+]i transients associated with Ca2+ release of the ER [188]

P2Ya Cell culture/rat, neurohypophysis/Ca2+

imaging
[Ca2+]i transients associated with Ca2+ release of the ER [189, 190]

P2Ya Cell culture/rat, spinal cord [Ca2+]i transients associated with Ca2+ release of the ER [191, 192]

P2Ya Acute slices/mouse, cerebellum, Bergmann
glial cells/Ca2+ imaging, electrophysiology

[Ca2+]i transients associated with Ca2+ release of the ER [126, 203]

P2Y Cell culture/rat, hippocampus,/Ca2+

imaging
[Ca2+]i transients associated with Ca2+ release of the ER [204]

P2Y1 Acute slices/mouse, olfactory bulb/Ca2+

imaging
[Ca2+]i transients associated with Ca2+ release of the ER [77]

P2Y1, P2Y4 Acutely isolated optic nerve/mouse/Ca2+

imaging
[Ca2+]i transients associated with Ca2+ release of the ER [163]

P2Y1 Cell culture/mouse, cortex Stimulation of ATP release through volume-sensitive
anion channels

[36]

P2Ya Cell culture/rat Stimulation of ATP release via exocytosis [37, 208,
209, 211]

P2Ya Cell culture/cell lines Stimulation of ATP release through hemichannels [213, 214]

P2Ya Cell culture/rat Stimulation of glutamate release via exocytosis [218]

P2Y1 Cell culture/rat hippocampus; Acute slices/
mouse hippocampus

Stimulation of glutamate release via exocytosis [219]

P2Ya Cell culture/rat Promotion of astroglial differentiation [230, 231]

P2Ya Cell culture/rat, human Initiation of astrogliosis [234–237]

P2Ya Retina preparations/rat, rabbit Initiation of astrogliosis [240–242]

P2Y1, P2Y12 Rat, Nucleus accumbens, cortex/in vivo Initiation of astrogliosis [176, 245]

Oligodendrocytes

P2Y1,2,4 Cell culture/rat/Western blot Specific proteins detected [161, 162]

P2Y1 Rat, rabbit/brain/immunostaining Immunoreactivity detected in oligodendrocytes
throughout the CNS

[257]

P2Ya Cell culture/mouse, rabbit, retina/Acute
slices/mouse, corpus callosum/Ca2+

imaging, electrophysiology

[Ca2+]i transients associated with Ca2+ release of the ER [164]

a This refers to experiments were P2Y receptors subtypes were not identified
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[195]. The ER-release component of ATP-induced [Ca2+]i
elevation in rat cortical astrocytes in culture was signifi-
cantly inhibited by the P2Y1 antagonist MRS2179 [113],
although in the same cells, sugar nucleotides triggered
[Ca2+]i rise by activation of UDP-glucose P2Y14 receptor
[113].

P2Y1 receptors played the major role in generating and
maintaining propagating Ca2+ waves in hippocampal
cultured astrocytes [37]. In cultured spinal cord astrocytes,
however, ATP-mediated propagating Ca2+ waves required
both P2Y1 and P2Y2 receptors, as pharmacological inhibi-
tion of either of them eliminated the wave propagation
[196, 197]. Further investigations demonstrated that P2Y1

and P2Y2 receptors expressed in cultured dorsal spinal cord
astrocytes have different functional kinetics. Activation of
P2Y1 receptors specifically resulted in [Ca2+]i oscillations,
which were the consequence of cyclic protein kinase C
(PKC)-mediated depression of the said receptors [171,
198]. Incidentally, Ca2+ waves in astroglial syncytium can
be generated by both InsP3 diffusion through gap junctions
and by a regenerative wave of ATP release. The contribu-
tion of these mechanisms differs between various brain
regions and can be readjusted under various physiological
conditions. In spinal cord astroglia, expression levels of
connexion 43 regulate expression of P2Y receptors, which,
in turn, maintain ATP-dependent Ca2+ wave propagation.
Acute inhibition of Cx43 synthesis results in down-
regulation of P2Y1 receptor production and in an increase
of P2Y4 receptor expression, which in turn modified the
mode of Ca2+ wave propagation [199]. Similar remodelling
of P2Y receptor profile and Ca2+ wave propagation was
also observed after treatment of astroglial cultures with the
cytokine IL-1β [200]. Interestingly, in the inflammatory
conditions (for example, in astroglial cultures chronically
treated with IL-1β), activation of P2Y2 receptors decreases
gap junction communications [201].

Expression of P2Y2 receptors in cultured rat astrocytes
was up-regulated by guanosine and UTP; they increased
both the levels of P2Y2-specific mRNA and augmented
P2Y2-mediated [Ca2+]i transients [202]. This regulatory
action of guanosine and UTP involved ERK1-2/MAPK
signalling cascade [202].

Functional P2Y receptors linked to InsP3-induced Ca2+

release were also found in freshly isolated human Müller
cells; Ca2+ released from the ER store activated Ca2+-
dependent (BK) K+ channels and Ca2+-gated cationic
channels [203].

Activation of metabotropic purinoceptors was also
instrumental in inducing Ca2+ signalling in astroglial cells
in situ. In Bergmann glial cells in cerebellar slices, ATP
triggered [Ca2+]i transients, which did not require extracel-
lular Ca2+ and were inhibited by incubation with thapsi-
gargin or by intracellular perfusion with the InsP3 receptor

antagonist heparin, thus indicating involvement of a P2Y/
PLC/InsP3-dependent signalling cascade [127, 204]. Simi-
larly, astroglial [Ca2+]i transients mediated by P2Y recep-
tors were observed in astrocytes from stratum radiatum
region of mouse hippocampus [205]. In astrocytes imaged
in acute mouse olfactory bulb slices, a significant part of
ATP-induced [Ca2+]i transients were mediated through
MRS2179-sensitive P2Y1 receptors [77]. In isolated optic
nerve preparations, P2Y1 and/or P2Y4 receptors were
responsible for the major part of [Ca2+]i elevation following
exposure to ATP [164].

P2Y Receptors and Regulation of Gliotransmitter Release
Stimulation of metabotropic ATP receptors triggers release
of gliotransmitters from astroglia. In particular ATP
stimulation of cultured astrocytes triggers release of ATP
itself; this release occurs through several pathways. In
astrocytes cultured from 1-day-old mouse cortex, for
example, ATP-triggered ATP release was not affected by
chelating [Ca2+]i with BAPTA/AM but was inhibited by
non-selective anion channel blockers [36]. Interestingly,
stimulation of P2Y1 receptors was found to activate
volume-sensitive Cl− channels in cultured astrocytes, thus
indicating a direct link between activation of purinoceptors
and ATP release via anion channel [206]. Similar Ca2+

independency of ATP release was found in rat cultured
astrocytes; in this study, inhibition of the ER by thapsi-
gargin also did not affect ATP secretion [207]. ATP can be
also released from astrocytes through hemichannels [208].

At the same time, there is ample evidence in favour of
exocytotic ATP release from astroglia. Exposure of rat
cultured cortical astrocytes to 10 μM UTP triggered ATP
release [209]. This release was inhibited by the P2 receptor
antagonist suramin, by the inhibitor of ER Ca2+ accumu-
lation thapsigargin, by the complex Golgi fragmenter
brefeldin A, by cytoskeleton disruption with cytochalasin
D and by the exocytosis inhibitor botulinum toxin A [209].
These data taken together suggested a role for InsP3-
mediated ER Ca2+ release triggering Ca2+-regulated exocy-
tosis [209]. Similarly, exocytotic ATP release was found to
be the primary cause for generation of propagating Ca2+

signals in cultured rat hippocampal astrocytes [37]. The
ATP-rich vesicles, which can be released following [Ca2+]i
elevation, were identified in rat cultured astrocytes; in fact,
these astrocytes contained two pools of vesicles, containing
either glutamate or ATP, with distinct properties [210]. The
ATP release with subsequent activation of P2Y receptors
was also the primary mechanism for Ca2+ wave propaga-
tion in corpus callosum slices [211]. Exocytotic [Ca2+]i-
and vSNARE-dependent ATP release was also detected in
astroglial progenitors [212]. In addition, release of ATP
from astrocytes constitutes a powerful mechanism for
astroglia–microglia signalling [213].
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P2Y-induced [Ca2+]i rise may trigger ATP release
through connexins/hemichannels; in particular, overexpres-
sion of connexins in glial cell lines (normally devoid of gap
junctions) significantly increased [Ca2+]i-regulated ATP
release and produced propagating Ca2+ waves [214, 215].

ATP released from astroglia also acts as a source of
adenosine, which rapidly builds up due to ATP degradation.
This adenosine acts as an important gliotransmitter because it
affects synaptic transmission through numerous synaptic and
extrasynaptic P1 receptors expressed in neurones [216, 217].
In certain conditions, for example upon hypoxic stress,
astrocytes are able to release adenosine from separate
unidentified pools, which, in turn, suppresses overall synaptic
activity and exerts a general cytoprotective action [218].

ATP, acting through metabotropic receptors, triggered
release of glutamate and aspartate from cultured cortical
astrocytes [219]. Secretion of excitatory amino acids in this
preparation was inhibited by intracellular Ca2+ chelation
and by thapsigargin, indicating a role for Ca2+ release from
the ER [219]. The P2Y1-mediated intracellular Ca2+ release
also controls secretion of glutamate from astrocytes in
culture and in situ in acute hippocampal slices [220]. This
glutamate release occurs through exocytosis, which was
directly shown by visualising fluorescence-labelled gluta-
matergic vesicles using total internal fluorescence reflection
imaging. The P2Y1 receptor activation also triggered
release of TNFα and prostaglandins, which regulated
glutamate release synergistically with intracellular Ca2+

signals [220]. In mouse prefrontal cortex, stimulation of
astroglial P2Y4 receptors triggered vesicular release of
glutamate, which positively modulated NMDA receptors in
layer V pyramidal neurones through activation of neuronal
metabotropic glutamate receptors [221]. Furthermore, evi-
dence exists suggesting that ATP may trigger glutamate
release through activation or positive modulation of
volume-regulated anion channels [222, 223].

In fact, co-release of glutamate and ATP/adenosine from
astrocytes may provide for a coordinated regulation of
synaptic transmission, where glutamate exerts general
excitatory and adenosine general inhibitory action on
synaptic transmission [48, 224, 225].

ATP also stimulates mobilisation of arachidonic acid and
eicosanoid production in cultured astrocytes, an effect that
depends on synergism between P2Y-mediated [Ca2+]i
elevation and direct coupling of subset of P2Y receptors
with phospholipase A2 [226, 227]. Similarly stimulation of
metabotropic P2Y receptors increased synthesis of prosta-
glandins [228]. Activation of P2Y1 receptors induced
expression of brain-derived neurotrophic factor in astroglial
cell line [229]. Stimulation of P2Y4 receptors in cultured
cortical astrocytes induced a significant increase in expres-
sion and release of glycoprotein thrombospondin (TSP)-1,
which is a potent stimulator of synaptogenesis [230].

Regulation of Growth and Differentiation In postnatal rat-
cultured astrocytes, ATP and its analogues (α, β-meATP, β,
γ-meATP, ADPβS, 2-MeSATP and UTP) promote astro-
glial differentiation and process growth, these being
accompanied with C-fos and C-jun mobilisation and
involving activation of phospholipase A2 [231, 232].
Interestingly, ATP effects on morphological differentiation
were developmentally regulated [233]: In cultures from
embryonic (E18) animals, ATP suppressed cAMP-
dependent stellation via P2Y receptors, whereas in postna-
tal cells, it promoted differentiation (although most likely
through P1 receptors).

P2Y Receptors in Neuropathology ATP triggered morpho-
logical gliosis in cultured rat and human astrocytes [234],
which involved extracellular signal regulated protein
kinases (ERK)1/2 mediated induction of cyclo-oxygenase-
2 (COX-2), but was independent of [Ca2+]i changes, thus
suggesting a subset of P2Y receptors linked to ERK/COX-2
pathway [235–237]. In rat primary astroglial cultures, ATP,
acting through P2Y receptors, stimulated astrocyte prolif-
erative activity [238]. Activation of P2Y receptors also
potentiated proliferation of astroglia induced by broad
astrogliotic agent fibroblast growth factor 2 [239]. Mito-
genic effects of ATP are mediated through the P2Y–PKC–
ERK signalling pathway in a [Ca2+]i-independent fashion
[240]. Reactive gliosis in retina, induced by intravitreal
injection of the proteolytic enzyme dispase, triggered an up-
regulation of P2Y receptors and increased Ca2+ signalling
[241, 242]. Similar up-regulation of P2Y receptors and
proportion of cells demonstrating P2Y-induced Ca2+ signals
was observed in rabbit Müller cells following mechanical
detachment of retina from pigmented epithelium [243].
Inhibition of P2 receptors with suramin attenuated reactive
gliosis of Müller cells in the same model [244].

Likewise, injection of the P2Y agonist 2-MeSATP into
the rat nucleus accumbens triggered astrogliosis manifested
by increase in GFAP immunoreactivity and astroglial
hypertrophy [245]; these effects were alleviated by the
non-selective P2 receptor antagonists PPADS and reactive
blue 2. Detailed pharmacological analysis led to a sugges-
tion that purines induced astrogliosis in the nucleus
accumbens mostly through activation of P2Y1 and P2Y12

receptors [246]; whereas in cortex, P2Y1 receptors take the
leading role [177]. The P2Y1 receptors may also be
involved in sensitization to D-amphetamine; the latter
triggered up-regulation of P2Y1 receptors in vivo, which
enhanced ATP-induced astrogliosis [247]. In primary
mouse astroglial cultures, stimulation of P2Y1 and P2Y6

receptors led to a [Ca2+]i-dependent activation of nuclear
factor of activated T cells, a transcription factor believed to
activate astrogliosis [248]. Astroglial P2Y2 receptors are
also coupled with αβ3/β5 integrin signalling pathways,
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which control cytoskeletal remodelling and motility and are
involved in regulation of various stages of astrogliosis [249,
250]. Activation of P2Y2 and P2Y4 receptors can also
regulate astrogliosis via extracellular signal-regulated pro-
tein kinases (ERK) and signal transducer and activator of
transcription 3 (STAT3) signalling cascade [251].

Brain lesions up-regulated P2Y expression in several
regions of the brain, including cortex (where stab wound
increased the immunoreactivity for P2Y1,2,4,6 receptors) and
in nucleus accumbens, where lesion increased expression of
P2Y1,4 proteins and triggered additional expression of
P2Y2,6 receptors [177].

Metabotropic P2Y receptors are linked to several
glioprotective pathways. Activation of P2Y2 receptors was
reported to inhibit cell death in astroglial cell line [252]. In
hippocampal astroglial cultures, stimulation of P2Y1 recep-
tors protected the cells against hydrogen peroxide-induced
oxidative damage [253]. Brief stimulation of P2Y receptors
significantly increased resistance of astrocytes isolated from
old mice to oxidative stress, this effect being connected
with Ca2+ release from the ER store [254]. In human glial
cell lines, the glioprotective action of ATP was mediated
through P2Y6 receptors [255].

Stimulation of recombinant P2Y2 receptors expressed in
an astrocytoma cell line activated several cell survival
mechanisms, including up-regulation of anti-apoptotic
proteins BCL-2 and BCL-x and down-regulation of pro-
apoptotic factor BAX; in addition, P2Y2 receptors stimu-
lated expression of various neurotrophins, neuropeptides
and growth factors known for their neuroprotective abilities
[256].

Oligodendrocytes

Cultured rat OPCs express P2Y1,2,4 proteins (Table 3); the
ATP-induced [Ca2+]i elevation, however, is mediated
mainly by P2Y1 receptors (as suggested based on sensitiv-
ity to the P2Y1 antagonist MRS2179 [257]). Using
immunohistochemistry, P2Y1 receptors were also localised
in NG-positive glial cells in rat cortical sections [257].
Similarly, P2Y1 immunoreactivity was detected in oligo-
dendrocytes throughout the CNS [258]. Activation of P2Y
receptors triggers intracellular Ca2+ release in cultured
mature (O10 positive) and immature (O4 positive) oligo-
dendrocytes but not in O4-negative precursor cells [165]. In
oligodendrocytes in corpus callosum slices, ATP triggered
robust [Ca2+]i transients [165, 259], which originated
exclusively through P2Y-activated/InsP3-induced Ca2+ re-
lease from the ER stores [165]. Similarly, P2Y receptor-
mediated ER Ca2+ release significantly contributes to Ca2+

signalling in oligodendrocytes from the optic nerve [260].
Stimulation of P2Y receptors control OPC migration and
maturation in vitro [161].

Conclusions

The purinergic signalling system is, arguably, the main
extracellular signalling system that integrates neuronal–glial
and glial–glial circuits in the nervous system. Indeed, in the
CNS, purines and pyrimidines mediate reciprocative sig-
nalling between neurones and astrocytes in the grey matter
and between axons and oligodendrocytes in the white
matter. In addition, purines and pyrimidines provide for
multiple signalling pathways within glial syncytium, being
responsible for propagating Ca2+ waves and for astroglial–
oligodendroglial communications. Furthermore, the puri-
nergic signalling system is intimately involved in neuropa-
thology by mediating reactive astrogliosis, providing for
glioprotection in stress conditions and assuming the main
responsibility for microglial activation. The extended
family of purinoceptors, universally expressed in glial cells,
is coupled to numerous signalling cascades governing glial
physiological and pathological responses. In-depth under-
standing of the molecular physiology and pathophysiology
of these receptors may further our understanding of the
integrative mechanisms within neural circuits and provide
new strategies for curing neurological diseases.
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