
The concept of purinergic neurotransmission was pro-
posed in 1972 (REF. 1), after it was shown that adenosine  
5′-triphosphate (ATP) was a transmitter in non-adrenergic,  
non-cholinergic (NANC) inhibitory nerves supplying 
the guinea-pig taenia coli2. Later it was shown that ATP 
was a cotransmitter in sympathetic and parasympathetic 
nerves3 and it is now recognized that ATP is a cotrans-
mitter in all nerve types in both the peripheral and central 
nervous systems4. Separate membrane receptors for 
adenosine (ADO) and ATP were identified in 1978 and 
called P1 and P2 receptors, respectively5. P2 receptors 
were then divided into P2X and P2Y receptors on the 
basis of pharmacology6 and molecular cloning7. Currently, 
4 subtypes of P1 receptor, 7 subtypes of ionotropic P2X 
receptors, many of which can form heteromultimers and 
homomultimers, and 8 subtypes of metabotropic P2Y 
receptors are known to exist8–10.

Since 1992, there has been an explosion of interest in 
purinergic neurotransmission and neuromodulation 
in different regions of the brain and spinal cord4,11. The 
various purinergic receptor subtypes are widely dis-
tributed throughout the central nervous system (CNS) 
(FIG. 1, TABLE 1) and they control local network behaviours 
by regulating the balance between the release and effects 
of ATP, ADO and ectonucleotidases on synaptic trans-
mission12. Multiple purinergic receptors have also been 
identified on glial cells, including astrocytes, oligodendro-
cytes and microglia13 (TABLE 1) and important purinergic 
mechanisms involving neuron–glial cell interactions have 
been described14,15. Astrocytes are intimately associated 
with neurons and, through their extensive contacts with 
synapses, they are able to regulate synaptic transmission 

(BOX 1). In addition to providing physiological modula-
tory actions, glial cells are also involved in neurological 
disorders and psychiatric states.

Most studies of the extracellular actions of ATP have 
been concerned with the short-term events that occur 
in neurotransmission and neuromodulation in the CNS, 
and the involvement of purinergic signalling in these 
processes is now well established. However, purines and 
pyrimidines can also have potent long-term (trophic) 
roles in cell proliferation and growth, as well as in dis-
ease and cytotoxicity16. ATP can act as a growth and 
trophic factor, altering the development of neurons17 and 
glia18 by regulating two important second messengers: 
cytoplasmic Ca2+ and cyclic adenosine monophosphate 
(cAMP). Moreover, the release of ATP by neural activity 
provides a mechanism that links functional activity in 
neural circuits to growth and differentiation of cells in the  
nervous system. Different effects, such as mitogenesis and 
apoptosis, might be induced depending on the functional 
state of glial cells, the expression of selective receptor 
subtypes, ectoenzymes controlling the availability of ATP 
and ADO and the presence of multiple receptors on the 
same cells.

Although it was originally thought that apart from 
the ATP released from nerves, the main source of ATP 
to act on P2 receptors was damaged or dying cells, it is 
now known that ATP is released from many cell types, 
including glial cells, in response to mechanical deforma-
tion, hypoxia or some agents (such as acetylcholine, ATP 
and thrombin) which do not damage the cell. However, 
there is active debate about the precise transport 
mechanism(s) involved in ATP release (BOX 2).
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Abstract | Purines have key roles in neurotransmission and neuromodulation, with their 
effects being mediated by the purine and pyrimidine receptor subfamilies, P1, P2X and P2Y. 
Recently, purinergic mechanisms and specific receptor subtypes have been shown to be 
involved in various pathological conditions including brain trauma and ischaemia, 
neurodegenerative diseases involving neuroimmune and neuroinflammatory reactions,  
as well as in neuropsychiatric diseases, including depression and schizophrenia. This article 
reviews the role of purinergic signalling in CNS disorders, highlighting specific purinergic 
receptor subtypes, most notably A2A, P2X4 and P2X7, that might be therapeutically targeted 
for the treatment of these conditions.
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Purinergic signalling might also be involved in vari-
ous behavioural pathways, but apart from brainstem 
control of autonomic functions4, relatively few studies 
on this exist. ATP coreleased with glutamate induces 
long-term potentiation in CA1 neurons that are asso-
ciated with learning and memory19,20. The hypnotic/ 
sedative (somnogenic) actions of ADO are well known 
as are the central stimulant actions of methylxanthine 
antagonists21. ADO also exerts central inhibitory effects 
on spontaneous locomotor activity in rodents, which 
is antagonised by caffeine. A2A receptors in the nucleus 
accumbens mediate this locomotor depression22. P2X2 
receptors are expressed by all hypothalamic hypo-
cretin/orexin neurons, where they might be involved 

in arousal and wakefulness23, and in the cerebellum, 
where they appear to be associated with motor learn-
ing and coordination24. In the striatum, extracellular 
ATP and ADO are involved in the regulation of the 
feeding-associated mesolimbic neuronal activity in 
an antagonistic manner25 and increased hypothalamic 
P2Y1 receptor expression is associated with enhanced 
food intake26.

This Review will discuss the involvement of purin-
ergic signalling and specific receptor subtypes in the 
pathophysiology of CNS disorders. It will emphasize 
the most recent findings in this field and focus on the 
therapeutic potential of targeting specific purinergic 
receptors to treat such conditions.

Figure 1 | Purinergic signalling in the spinal cord. Presynaptic primary afferent nerve terminals in the dorsal horn of 
the spinal cord are depicted releasing both glutamate (GLUT) and ATP as cotransmitters by exocytosis. The released 
ATP acts postsynaptically on P2X2/4/6 and on various P2Y receptor subtypes activated by ADP, UTP and UDP, as well  
as ATP. Glutamate acts postsynaptically on α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors 
(AMPARs) and/or N‑methyl‑d-aspartate receptors (NMDARs). ATP is broken down by ectonucleotidase to adenosine 
(ADO), which acts as a presynaptic inhibitory modulator through P1(A1) receptors, but ATP itself can act 
presynaptically either to inhibit the release of transmitter through P2Y receptors or to enhance the release of 
glutamate through P2X3 receptors. ATP is also released from astrocytes (and probably also from microglia) together 
with glutamate to participate in glial–neuron interactions. Both P2X and P2Y receptor subtypes are expressed by 
astrocytes. Leukaemia inhibiting factor (LIF) released by astrocytes in response to ATP promotes myelination in 
oligodendrocytes and re-myelination through P2Y1 receptors. P2X7 receptors on oligodendrocytes mediate 
apoptosis. Resting microglia express P2X4 and P2X7 receptors involved in neuropathic pain. ATP, through P2X7 
receptors, promotes IL-1b release. Occupation of P2X4 receptors leads to release of brain-derived neurotrophic factor 
(BDNF) to act on TrkB receptors expressed by neurons in the pain pathway. Occupation of P2X7 receptors leads, 
through ERK and/or nuclear factor of activated T cells (NFAT), to activation of the transcription factor cAMP response 
element-binding protein (CREB), whereas P2Y1 receptors also activate CREB, but through p38 signalling. P2Y12 
receptors on resting microglia mediate cell migration after injury, whereas P2Y6 receptors that are expressed on the 
activated amoeboid microglia mediate phagocytosis of debris at the site of damage. Inhibitory interneurons that 
corelease γ‑aminobutyric acid (GABA), glycine and ATP modulate the nociceptive pathway. 
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CNS injury 
Trauma. Cellular damage can result in the release of 
large amounts of ATP into the extracellular environ-
ment, which might be important for triggering cellular 
responses to trauma27. Mechanical strain also causes 
ATP release from cortical astrocytes, leading to protein 
kinase B (AKT) activation. Interestingly, the P2 receptor 
antagonist, pyridoxal phosphate‑6-azophenyl‑2-4‑ 
disulphonic acid (PPADS) can attenuate this Akt activa-
tion28. Such activation of purinergic receptors coupled to 
protein kinase cascades regulates the expression of genes 
involved in long-term, trophic actions29. For example, 
trauma-induced activation of purinergic signalling in 
astrocytes via P2Y4 receptors stimulates the synthesis 
and release of thrombospondin‑1, an extracellular 
matrix molecule that induces synapse formation during 
development and might have a role in CNS repair and 
remodelling after injury30.

In vivo, ATP released from astrocytes is essential 
for mediating the injury-induced defensive responses 
of microglia31, establishing a potential barrier between 
the healthy and injured tissue32. However, in some cases, 
ATP might also contribute to the pathophysiology ini-
tiated after trauma33. Following brain trauma, activated 
P2Y12 and probably P2X4 receptors34,35 stimulate the 
migration and chemotaxis of resting microglia to the site 
of damage, where they become transformed into the 
activated amoeboid form; an effect that is replicated 
by ATP36 (Supplementary information S1 (figure)).  
In addition, P2Y6 receptors are upregulated to limit 
secondary damage by mediating the phagocytosis of 
debris37. Accumulation of P2X4 receptor-positive micro-
glia and macrophages following experimental traumatic 
brain injury and spinal cord injury has been described38. 
Activated microglia also show significant changes in 
P2X7 receptor expression, which have an important role 
in controlling microglial proliferation and death39,40. 

Following neuronal injury, ATP can also act in 
combination with fibroblast, epidermal and platelet-
derived growth factors, as well as nerve growth factor 
(NGF) from both neurons and glial cells16 to stimulate 
astrocyte proliferation, contributing to the process of 
reactive astrogliosis and to hypertrophic/hyperplastic 
responses29. P2 receptors stimulate the signal transducer 
and activator of transcription 3 (STAT3), suggesting that 
P2 receptor/STAT3 signalling could have an important 
role in astrocyte proliferation and reactive astrogliosis41. 
P2Y receptors mediate reactive astrogliosis, via induc-
tion of cyclooxygenase‑2 (COX2), and P2Y receptor 
antagonists might counteract excessive COX2 activation 
in both acute and chronic neurological disease42.

Cerebellar lesions result in upregulation of P2X1 and 
P2X2 receptors in precerebellar nuclei43, and stab wound 
injury in the nucleus accumbens leads to increased 
expression of several subtypes of P2X and P2Y recep-
tors27. A novel mechanism for inhibition of apoptosis in 
neuroprotection implicates parallel, interacting systems 
involving extracellular ATP acting through P2Y2 recep-
tors and neurotrophin acting through TrkA receptors44. 
It has also been claimed that P2Y2 receptors activate 
neuroprotective mechanisms in astrocytes45.

ATP released during trauma acts through P2 recep-
tors to inhibit the release of the cytotoxic excitatory 
transmitter glutamate, but also stimulates the release of 
the inhibitory transmitter γ‑aminobutyric acid (GABA) 
from hippocampal nerves, thus serving a protective role46. 
The number of P2Y1 receptor-positive neurons and glial 
cells in the rat nucleus accumbens has been shown to be 
significantly increased after injury47. Oligodendrocytes 
can be killed by ATP, as well as by glutamate, released 
from damaged brain tissue in trauma injury or stroke, 
probably through P2X7 receptors48.

A number of studies illustrate potential therapeutic 
strategies that might be adopted following trauma (see 
tables 2,3). A role for P2X7 receptors, which are highly 
expressed on spinal cord neurons, in mediating spinal 
cord injury has been proposed49.

Cerebral ischaemia. Ischaemia can produce and exacer
bate many serious insults to the CNS, including stroke 
and paralysis. ADO has an important protective role 
against ischaemic damage in the brain50, although 
ATP, rather than ADO has been claimed to accelerate 
recovery from hypoxic/hypoglycaemic perturbation 
through a P2 receptor51,52. After transient forebrain 
ischaemia, ectonucleotidase is upregulated and there 
is an increased release of purines into cerebral cortical 
perfusates53. Upregulation of P2X2 and P2X4 receptors 
in cell cultures of hippocampus, cortex and striatum is 
associated with ischaemic cell death and was prevented 
by P2 receptor antagonists54. Rapid ischaemic release of 
ADO occurs via a Ca2+-independent mechanism, with a 
subsequent, Ca2+-dependent release of ATP only during 
anoxic depolarisation, suggesting that the release of these 
purines is governed by distinct temporal and mechanistic 
processes55. 

Following ischaemia, P2X7 receptors are upregulated 
on neurons and glial cells in rat cerebral cortex56,57, and 
become hypersensitive in cerebrocortical cell cultures58, 
although earlier studies showed that deletion of P2X7 
receptors (knockout mice) and/or treatment with the 
P2X7 antagonist KN62 had little effect on ischaemic cell 
death59. Microglial P2X4 and P2X7 receptors might be 
involved in cortical damage produced by oxygen and/or 
glucose deprivation60 and activation of P2X receptors 
contributes to the ischaemia-induced facilitation of 
glutamate release61.

Cortical spreading depression releases ATP into the 
extracellular space in rat cortex and the subsequent 
activation of P2Y receptors makes a major contribution 
to the induction of ischaemic tolerance in the brain62,63. 
The transcription cofactor, LMO4, is a rapidly induced 
downstream effector of ATP signalling that promotes 
neuron survival following hypoxia64. Pretreatment 
with cerebrocrast, a 1,4-dihydropyridine derivative, 
is claimed to prevent ischaemic brain damage and  
promote ATP production in brain cells65.

Neurodegenerative diseases
P2Y receptor antagonists have been proposed as poten-
tial neuroprotective agents in the cortex, hippocampus 
and cerebellum following neuronal death associated 
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with neurodegenerative diseases such as Alzheimer’s 
disease, Parkinson’s disease, Huntington’s disease and 
amyotrophic lateral sclerosis (ALS)66. It has been sug-
gested that adenine is involved in the control of Purkinje 
cell survival67.

Microglia might help fight infection in the CNS, 
but over-stimulation of microglia could accelerate 
neuronal damage caused by neurodegenerative diseases 
that exhibit microglial proliferation and activation68; 
P2Y agonists might be a potential treatment for toxic 

immunoreactions. Cross-talk between neurons and 
mast cells has also been implicated in neurodegenera-
tive diseases with an inflammatory and/or autoimmune 
component, such as Alzheimer’s disease and multiple 
sclerosis (MS)69.

Parkinson’s disease. In Parkinson’s disease there is a 
progressive loss of dopaminergic neurons of the sub-
stantia nigra pars compacta projecting to the striatum. 
The dopamine precursor L‑3,4-dihydroxyphenylalanine  

Table 1 | Characteristics of purine and pyrimidine receptors					   

Receptor Main distribution Main functions

P1 
(adenosine)

A1 Brain, spinal cord, testis, heart, 
autonomic nerve terminals

Prejunctional neuromodulation of neurotransmitter 
release; behavioural effects (sedation, anticonvulsive, 
anxiolytic); cardiac depression

A2A Brain, heart, lungs, spleen Facilitates neurotransmission; smooth muscle 
relaxation

A2B Large intestine, bladder Role in allergic and inflammatory disorders; 
vasodilatation

A3 Lung, liver, brain, testis, heart Facilitates release of allergic mediators; cardio‑ & 
cytoprotective 

P2X P2X1 Smooth muscle, platelets, cerebellum, 
dorsal horn spinal neurons

Smooth muscle contraction; platelet activation

P2X2 Smooth muscle, CNS, retina, chromaffin 
cells, autonomic and sensory ganglia

Sensory transmission & modulation of synaptic 
function

P2X3 Sensory neurons, NTS neurons, some 
sympathetic neurons 

Mediates sensory transmission; facilitates glutamate 
release in CNS

P2X4 CNS, testis, colon Modulates chronic inflammatory & neuropathic pain

P2X5 Proliferating cells in skin, gut, bladder, 
thymus, spinal cord

Inhibits proliferation & increases differentiation

P2X6 CNS, motor neurons in spinal cord Functions as a heteromeric channel in combination 
with P2X2 & P2X4 subunits 

P2X7 Apoptotic cells in, for example, 
immune system, pancreas and skin

Mediates apoptosis, cell proliferation & pro-
inflammatory cytokine release

P2Y P2Y1 Epithelial and endothelial cells, 
platelets, immune cells, osteoclasts, 
glial cells

Smooth muscle relaxation & mitogenic actions; 
platelet shape change & aggregation; bone 
resorption

P2Y2 Immune cells, epithelial and 
endothelial cells, kidney tubules, 
osteoblasts, astrocytes

Vasodilatation through endothelium & 
vasoconstriction through smooth muscle; 
mitogenic actions; mediates surfactant secretion; 
epithelial cell Cl– secretion; bone remodelling 

P2Y4 Endothelial and epithelial cells, 
intestine, pituitary, brain (low levels  
in liver and bone marrow)

Regulates epithelial Cl– transport; vasodilatation 
through endothelium; mitogenic actions

P2Y6 Some epithelial cells, placenta, T cells, 
thymus, spleen, kidney, activated 
microglia

NaCl secretion in colonic epithelium; role in 
epithelial proliferation

P2Y11 Spleen, intestine, brain, granulocytes Role in maturation & migration of dendritic cells; 
granulocytic differentiation

P2Y12 Platelets, glial cells, spinal cord Platelet aggregation; role in dense granule secretion 

P2Y13 Spleen, brain, lymph nodes, bone 
marrow, liver, pancreas, heart

Function largely unknown, but present in both the 
immune system and brain

P2Y14 Placenta, adipose tissue, stomach, 
intestine, discrete brain regions, 
spleen, lung, heart, bone marrow, 
peripheral immune cells

Chemoattractant receptor in bone marrow 
hematopoietic stem cells; dendritic cell activation

Abbreviations: CNS, central nervous system; NTS, nucleus tractus solarius.
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(L-DOPA) is still the most commonly prescribed treatment 
for Parkinson’s disease, but long-term treatment with 
L‑DOPA often produces uncontrollable movements 
known as dyskinesia. Expression of A2A receptors in the 
brain of patients with Parkinson’s disease and dyskinesia 
is increased70, and in a rat model of Parkinson’s disease, 
A1, dopamine D1 and glutamate mGlu5 receptors have 
been shown to interact during locomotion71. Specific 
A2A receptor antagonists are currently being investigated 
for the treatment of Parkinson’s disease72.

Release of ATP from disrupted cells might cause cell 
death in neighbouring cells expressing P2X7 receptors, 
leading to a necrotic volume increase, which has been 
implicated in the pathogenesis of Parkinson’s disease73. 
Differing expression patterns of the P2 receptor sub-
types in the dopaminergic system74 and the facilitatory 
action of ATP and glutamate on the effect of taurine on 
osmolarity could influence the vulnerability of nigral 
dopaminergic cells in Parkinson’s disease75.

Several non-selective P2 agonists (for example, 
hydrolysis-resistant adenine and uracil nucleotide ana-
logues) and antagonists (for example, suramin, PPADS, 
Reactive Blue 2 and Brilliant Blue G) have been available 
for some time, but it has been only recently that ligands 
displaying selectivity towards specific P2 receptor  
subtypes have been identified8,76.

Alzheimer’s disease. ATP release during neuronal exci-
tation or injury can enhance the inflammatory effects 
of cytokines and prostaglandin E2 in astrocytes and 
might contribute to the chronic inflammation seen in 
Alzheimer’s disease77.

P2X7 receptors are upregulated in the brain of patients 
with Alzheimer’s disease and in animal models78,79. 
Stimulation of P2X7 receptors on human macrophages 
and microglia enhanced the degenerative lesions observed 
in Alzheimer’s disease80. P2X7 receptors could therefore 
represent a therapeutic target for inflammatory responses 
seen in neurodegenerative disorders. Furthermore, the 
G51S purine nucleoside phosphorylase polymorphism is 
associated with a faster rate of cognitive decline in patients 
with Alzheimer’s, highlighting the important role of 
purine metabolism in the progression of the disease81. 

P2Y1 receptors are expressed on a number of struc-
tures that are characteristic of Alzheimer’s disease, such 
as neurofibrillary tangles, neuritic plaques and neuropil 
threads82, and P2Y2 receptor activation might mediate a 
neuroprotective effect83. Abnormalities in Ca2+-mediated 
signal transduction triggered by ATP in microglia from 
patients with Alzheimer’s disease have been reported84.

Hippocampal presynaptic A1 receptors are decreased 
in Alzheimer’s disease85, but accumulate in neuro
degenerative structures where they mediate both amyloid 
precursor protein processing and Tau phosphorylation 
and translocation86.

Huntington’s disease. A2 receptors localized on striatal out-
put neurons are dramatically decreased in Huntington’s 
disease87 and blockade of A2A receptors prevents electro
encephalogram (EEG) and motor abnormalities in a 
rat model of the disease88. There is also a decrease of 
striatal A1 and A2A receptors in hyperkinetic neuro-
degenerative movement disorder, which is common 
in patients with Huntington’s disease89. In a mouse 
model of Huntington’s disease, a transient increase in 
A2A expression in early postnatal development is followed 
by a decrease90,91. Changes in P2X receptor-mediated  
neurotransmission in cortico-striatal projections have 
been found in two different transgenic models of 
Huntington’s disease92. 

Amyotrophic lateral sclerosis. Potentiation of P2X4 recep-
tors by the anti-parasite medication ivermectin (22,23-
dihydroavermectin B1a + 22,23-dihydroavermectin B1b) 
extends the life span of the transgenic superoxide 
dismutase 1 (SOD1) mouse model of ALS93. Increased 
expression of P2X1 receptors on axotomized facial motor 
neurons was impaired in SOD1‑G93A-mutant mice after 
injury94, perhaps due to the SOD1 mutation interfering 
with injury-elicited P2X1 activation. This finding suggests 
that the release of ATP from mutant motor neurons is 
altered after damage.

Diabetes. Diabetic neuropathy includes central neuro-
pathic complications, such as decreased cognitive per-
formance accompanied by modifications of hippocampal 
morphology and plasticity95,96. It was recently shown that 
synaptic ATP signalling is depressed in streptozotocin-
induced diabetic rats97 and that the density of P2X3/6/7 
and P2Y2/6/11 receptors was decreased in hippocampal 
nerve terminals compared with controls. Changes in 
prejunctional modulation of neurotransmission in the 
hippocampus of streptozotocin-induced diabetic rats 
was also shown, namely, downregulation of inhibitory A1 
receptors and upregulation of facilitatory A2A receptors.

Neuroimmune and neuroinflammatory disorders 
Contrary to the earlier view that the brain is an immuno-
logically privileged organ unable to mediate an inflam-
matory response, immuno-mediated reactions do occur 
in the brain. The CNS can undergo all the typical changes 
induced by inflammation, activate endogenous inflamma-
tory cells and generate inflammatory mediators98. Neurons 
are surrounded by a dense population of support cells, 

 Box 1 | Astrocyte purinergic signalling

Following synaptic activity, neurotransmitters acting 
through glial metabotropic receptors induce the release 
of glutamate and adenosine 5′-triphosphate (ATP) from 
astrocytes213. By releasing ATP, which is converted in the 
extracellular space to adenosine, astrocytes exert 
powerful presynaptic inhibition of synaptic transmission. 
Rapid electrical signals in neuronal networks interact 
with slow modulatory signals provided by glia. In vivo 
studies have shown that neuronal networks are under 
the continuous modulatory control of astrocytes 
through both purinergic and N‑methyl‑d-aspartate 
(NMDA) receptor-dependent pathways. ATP enhances 
the release of glutamate and γ-aminobutyric acid 
(GABA) from nerve terminals through P2X1, P2X3, P2X2/3 
and P2X7 receptors214 and inhibits release through P2Y1, 
P2Y2 and P2Y4 receptors215.
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astroglia, oligodendroglia and microglia, and biochemi-
cal information is exchanged between them. Microglia 
are immune cells and share all the roles of macrophages 
in the periphery. Indeed, microglia have a key protective 
role in CNS trauma and infection and also have roles in 
regeneration and CNS malfunction. Microglia release 
several factors that affect neural functions including 
cytokines, chemokines, growth factors, ATP and activated  
oxygen and nitrogen species.

Purinergic signalling, involving ATP released from 
both neurons and glial cells and its breakdown product 
ADO, appear to have a major role in the neuroimmune 
and neuroinflammatory events involving microglia99,100, 
including neuropathic pain101,102. ATP potently activates 
nuclear factor of activated T cells (NFAT), a central 
transcription factor involved in cytokine gene expres-
sion and could represent a novel mechanism by which 
extracellular ATP can modulate early inflammatory gene 
expression within the nervous and immune system103. 
A later paper suggested that P2X7 receptors mediate 
the phosphorylation of cAMP response-element bind-
ing protein (CREB), a putative inhibitory transcription 
factor in microglia, indicating that ATP might be an 
endogenous inhibitor or neuroprotective molecule that 
decreases the inflammatory capacity of microglia104.

Microglia often need priming by proinflammatory 
factors such as interleukin (IL)‑1β, which is impli-
cated in neurodegeneration, to generate a full immune 
response. Secretion of IL‑1β is the end result of a chain of 
intracellular events occurring within a multi-molecular 
structure called the ‘inflammasome’105. Inflammasome 
activation and IL‑1β release is regulated by various fac-
tors, including extracellular ATP acting through P2X7 
receptors106. ATP also increases 2‑arachidonoylglycerol 
(2-AG) production through P2X7 receptors on micro-
glial cells and because prolonged increases in 2‑AG 
levels in brain parenchyma are thought to orchestrate 
neuroinflammation, P2X7 receptors could be a target 

for therapy aimed at controlling exacerbated neuro
inflammation. Microglial P2X7 receptors are activated 
by purines to release inflammatory cytokines such as 
IL‑1β, IL‑6 and tumour necrosis factor (TNF)‑α107. 
Activated microglia can also act as scavenger cells that 
induce apoptosis in damaged neurons by releasing toxic 
factors, including nitric oxide, and then take up the 
debris by phagocytosis32. The P2X7 receptor is involved 
in the formation of multinucleated giant macrophage-
derived cells, a hallmark of chronic inflammatory reac-
tions108. Lysophosphatidylcholine, an inflammatory 
phospholipid, might regulate microglial function by 
enhancing the sensitivity of P2X7 receptors109. Indeed, a 
recent report showed that prion infection is associated 
with hypersensitivity of P2X7 receptors in microglia110.

Expression of the P2X4 receptor by lesion-activated 
microglia during formalin-induced inflammatory pain 
has also been reported111. Activation of microglial cells 
by pro-inflammatory bacterial lipopolysaccharide leads 
to a transient increase in ivermectin-sensitive P2X4 
receptor currents, whereas dominant P2X7 receptor 
currents remain largely unaffected; both receptor sub-
types contribute to neuroinflammatory mechanisms and 
pathologies112.

Astrocytes can sense the severity of damage in the 
CNS from the ATP that is released from damaged cells 
and can modulate the TNF‑α-mediated inflamma
tory response, depending on the extracellular ATP 
concentration and the type of astrocyte P2 receptor 
that is activated113. Thus, micromolar ATP activation 
of P2Y receptors might boost a moderate inflamma-
tory response, whereas millimolar ATP activation of 
P2X receptors might prevent the perpetuation of a 
comparatively large inflammatory response, perhaps 
by inducing apoptosis. Protein kinase B/AKT is a key 
signalling molecule that regulates cell survival, growth 
and metabolism and inhibits apoptosis28. P2X7 receptor 
activation in astrocytes increases chemokine monocyte 
chemoattractant protein 1 (MCP1) expression through 
mitogen-activated protein kinase (MAPK) signalling, 
and it has been suggested that regulation of MCP1 in 
astrocytes by ATP could be important in mediating com-
munication with haematopoietic inflammatory cells114.

Multiple sclerosis. P2 receptors on oligodendrocytic 
progenitor cells regulate migration, proliferation and 
differentiation of these cells115. In MS lesions of autopsied 
brain tissue, P2X7 receptors were detected on reactive 
astrocytes, whereas in cultured astrocytes, P2X7 recep-
tor stimulation increased the production of nitric oxide 
synthase activity116. Interferon‑β (IFN‑β) has beneficial 
effects in remitting/relapsing MS, perhaps by preventing 
astrocyte apoptosis; the levels of apyrase and 5′-nucleo
tidase increased in synaptosomes from the cerebral cortex 
of rats that were experimentally demyelinated with ethi
dium bromide and treated with IFN‑β117, indicating that 
IFN-b might interfere with the metabolism of purines.

Neuronal pathology is an early feature of MS 
and the animal model of experimental autoimmune  
encephalomyelitis (EAE). Lesional accumulation of P2X 
receptors on macrophages in rat CNS during EAE has 

 Box 2 | Mechanisms of ATP release

There is compelling evidence for exocytotic vesicular 
release of adenosine 5′-triphosphate (ATP) from 
nerves216, but for ATP release from non-neuronal cells 
various other transport mechanisms have been 
proposed, including ATP-binding cassette transporters, 
connexin or pannexin hemichannels, and possibly 
plasmalemmal voltage-dependent anion channels4,217. 
Surprisingly, exocytotic vesicular release of ATP has 
been shown in endothelial cells, urothelial cells and 
osteoblasts. Recent papers have also shown vesicular, 
glutamate-triggered ATP transport from astrocytes218, 
which might involve lysosomes219; although ATP 
transport through connexin hemichannels has also been 
described220. Adenosine is largely produced by the 
ectoenzymatic breakdown of ATP released from 
neurons, but it is possible that some subpopulations  
of neurons and/or astrocytes release adenosine 
directly221,222. Extracellular breakdown of ATP released 
from neurons and non-neuronal cells occurs through 
ectoenzymes, but the details of the signalling pathway(s) 
are yet to be determined223.

R E V I E W S

580 | july 2008 | volume 7	  www.nature.com/reviews/drugdisc

© 2008 Macmillan Publishers Limited.  All rights reserved. 

 

http://ca.expasy.org/uniprot/O95644
http://ca.expasy.org/uniprot/P16220
http://ca.expasy.org/uniprot/P01584
http://ca.expasy.org/uniprot/P05231
http://ca.expasy.org/uniprot/P01375
http://ca.expasy.org/uniprot/P13500
http://ca.expasy.org/uniprot/P01574


Hypercapnia
Abnormally high levels of 
carbon dioxide in the blood.

Genetic absence epilepsy
A type of epilepsy with  
non-convulsive seizures.

Panic disorder
An anxiety disorder 
characterized by recurrent 
inappropriate and sudden 
attacks of fear.

been described118. P2X7 expression is elevated in seem-
ingly normal axon tracts in patients with MS and ATP 
can kill oligodendrocytes by activating P2X7 receptors. 
Mice deficient in P2X7 receptors are more susceptible  
to EAE than wild-type mice and show enhanced  
inflammation in the CNS119.

NTPase1, an ectonucleotidase that degrades ATP to 
AMP, is expressed by immuno-suppressive regulatory 
T cells (Treg) cells. Patients with the remitting/relaps-
ing form of MS have strikingly reduced numbers of 
NTPDase1-positive Treg cells, suggesting that purines 
might be involved120. A regulatory role of P2Y1 receptor 
signalling in oligodendrocyte progenitor cells has been 
observed and it has been suggested that ATP released 
in high amounts under inflammatory conditions might 
act on P2Y1 receptors to influence the remyelination 
processes in MS115.

Epileptic seizures
Epilepsy affects approximately 1% of the population 
worldwide and recurring seizures have devastating behav-
ioural, social and occupational consequences, damaging 
the brain and increasing pre-existing neurological defi-
cits. Current anticonvulsant drugs and complementary 
therapies are not sufficient to control seizures in about a 
third of epileptic patients, so there is an urgent need for 
improved treatments. Epilepsy is often accompanied by 
massive glial cell proliferation, but the role of these cells 
in seizures and epilepsy is still unclear.

Microinjection of ATP analogues into the pre-
piriform cortex induces generalized motor seizures 
suggesting that P2X receptor antagonists might have 
potential as neuroleptic agents121. Epileptiform activity 
in the CA3 region of rat hippocampal slices is modu-
lated by adenine nucleotides, probably acting through 
an excitatory P2X receptor122. The hippocampus of 
chronic epileptic rats shows abnormal responses to 
ATP associated with increased expression of P2X7 
receptors, which are substantially upregulated in 
chronic pilocarpine-induced epilepsy in rats (perhaps 
in microglia) and might participate in the pathophysiol-
ogy of temporal lobe epilepsy123. In a study of kainate- 
provoked seizures, enhanced immunoreactivity of 
the P2X7 receptor was observed in microglia as they 
changed from the resting to the activated state124. The 
amount of extracellular ATP detected in hippocampal 
slices following electrical stimulation of Schaffer 
collaterals was significantly greater in mice with an 
inherited susceptibility to audiogenic seizures125, this 
is perhaps associated with reduced brain Ca2+-ATPase 
activity. Uridine is released during epileptic activity and 
might act as an inhibitory neuromodulator126, although 
the underlying mechanism is not known. Increased 
hydrolysis of ATP occurs in rat hippocampal slices 
after seizures induced by quinolinic acid127. There is 
a decrease of presynaptic P2X receptors in the hippo
campus of rats that have suffered a convulsive period, 
which might be associated with the development of 
seizures and/or neurodegeneration during epilepsy128. 
Glutamate released from astrocytes by ATP has also 
been implicated in epileptogenesis129.

P1 (ADO) receptors might also have a role in epileptic 
seizures130,131. Decreased extracellular ADO levels and 
altered A1 and P2 receptor activation caused by hypercapnia 
in hippocampal slices provide a plausible mechanism for 
hyperventilation-induced epileptic seizures in vulner-
able humans132. A lower density of P1 (A1) receptors in 
the nucleus reticularis thalami in rats with genetic absence 
epilepsy has been reported133.

Neuropsychiatric disorders
Mood and motivation: depression and anxiety. Reduced 
adenosinergic activity is involved in mania and aggres-
sive behaviour134 and A2A receptors have been implicated 
in panic disorder135. ADO has been reported to interact 
with two potent mood regulators: the psychotomimetic 
phencyclidine and with alcohol136. Striatal A2A receptors 
appear to be important mediators of the molecular and 
behavioural sequelae following administration of the 
antipsychotic drug haloperidol137. There is selective 
attenuation of psychostimulant-induced behavioural 
responses in mice lacking A2A receptors138. Caffeine is 
probably the most widely used psychologically active 
drug for many psychomotor variables139.

Purinergic stimulation via inosine and hypoxanthine 
can produce an anxiety response that is related to the 
benzodiazepine receptor140. Mice lacking the A1 receptor 
showed signs of increased anxiety141 whereas stimula-
tion of P2Y1 receptors in the dorsomedial hypothalamus 
had anxiolytic-like effects142. Chronically administered 
guanosine has anxiolytic effects in mice that are perhaps 
associated with modulation of glutamatergic excita-
tion143, although receptors for guanosine have not been 
identified yet.

An antidepressant effect of ADO has been reported in 
mice, apparently involving A1 and A2A receptors144. Major 
depressive illness is associated with significant elevation 
in the density of microglia and in circulatory levels of pro-
inflammatory cytokines145. The P2X7 receptor gene has 
been shown to be involved in both major depressive ill-
ness146 and bipolar affective disorders147. Electroconvulsive 
therapy is considered one of the most effective treatments 
for major depression148. The possibility that high levels of 
ATP are released with electroconvulsive therapy does not 
appear to have been considered.

The inhibitory action of dilazep (a nucleoside transport 
inhibitor) on clonidine-induced aggressive behaviour was 
mostly attributed to central purinoceptor stimulation149. 
Suramin blocked the conditioned fear response in a rat 
model, suggesting that P2 receptors might be involved 
in fear behaviour150. A1 receptor activation selectively 
impairs the acquisition of fear conditioning in rats151. An 
A2A receptor genetic polymorphism has been implicated 
in panic disorder. P2 receptors of the mesolimbic-meso-
cortical system, probably of the P2Y1 subtype, are involved 
in the release of transmitters such as dopamine and 
glutamate, which are responsible for the generation and 
pattern of behaviour after motivation-related stimuli152. 
Evidence from A2A receptor knockout mice suggests that 
A2A receptors are involved in goal-directed behaviour153. 
Glial P1 receptors have also been implicated in mood 
disorders154. 
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Schizophrenia. The involvement of ATP receptors in 
schizophrenia has been discussed in relation to reports 
that antipsychotic drugs such as haloperidol, chlorpro-
mazine and fluspirilene inhibit ATP-evoked responses 
mediated by P2X receptors155. It was suggested that 
ATP might facilitate dopaminergic neurotransmission  
and that various antipsychotic drugs suppress dopa
minergic hyperactivity through inhibition of P2X 
receptor‑mediated effects. ADO might also contrib-
ute to the pathophysiology of schizophrenia156 and 
ADO–dopamine interactions in the ventral striatum 
have been implicated157. A2A and D2 receptor hetero-
oligomerization has been postulated158. A hypothesis in 
which dysfunction of purinergic signalling (for example, 
decreased ATPase activity in erythrocytes, leading to 
increased levels of ATP and decreased ADO) could lead 
to schizophrenia has been put forward159. Striatal A2A 
receptors are upregulated in schizophrenia160 and trans-
genic overexpression of ADO kinase in brain might lead 
to altered sensitivity to the psychomimetic drugs that 
are commonly used to treat this disorder161.

Alcohol and drug addiction. Addiction is a chronic relaps-
ing neurological disorder in which ADO A2A, P2X and 
P2Y receptors have been implicated4. For example, specific 
involvement of A2A receptors in the addictive properties of 
cannabinoids has been reported. The lack of A2A receptors 
in knockout mice diminishes the addictive-reinforcing 
efficacy of cocaine. A number of studies have suggested 
that opioids can modulate ADO signalling. Morphine has 
been shown to release purines in brain and spinal cord, 
and opioid analgesia can be at least partially antagonised 
by P1 ADO receptor antagonists. In animals withdrawn 
from chronic treatment with either morphine or cocaine, 
there are persistent increases in extracellular ADO in the 
ventral tegmental region, a brain region that is intimately 
involved in the rewarding effects of these drugs. Heroin 
administration seems to enhance the catabolism of ADO 
in the brain by increasing ADO deaminase. P2Y1 recep-
tors were upregulated in both astrocytes and neurons in 
the striatum and nucleus accumbens of rats treated for 5 
days with amphetamine162.

Although ethanol is probably the oldest and most 
widely used psychoactive drug, the cellular mechanisms 
by which it affects the nervous system are poorly under-
stood. Some insights in relation to purinergic P2 recep-
tor signalling have emerged in recent years163. Ethanol 
inhibits P2X receptor-mediated responses of dorsal 
root ganglion neurons by an allosteric mechanism. In 
the case of P2X4 receptors, ethanol inhibition is altered 
by mutation of histidine 241 in the rat. Furthermore, 
ethanol differentially affects ATP-gated P2X3 and P2X4 
receptor subtypes expressed in Xenopus oocytes. Finally, 
A1 receptor activation has been shown to mediate ethanol-
induced inhibition of stimulated glutamate release in the 
hippocampus of near-term fetal guinea-pig. 

Neuropathic pain
ATP released locally can initiate pain pathways through 
P2X3 and P2X2/3 receptors located on sensory fibres 
in visceral organs, the tongue and the skin164,165. P2X3 

receptors — probably those located on primary afferent 
nerve terminals in the inner lamina II of the spinal cord 
(FIG. 2) — also have a significant role in neuropathic and 
inflammatory pain166,167. P2X2, P2X4 and P2X6 receptors 
have been located on dorsal horn neurons relaying noci-
ceptive information further along the pain pathway168. In 
addition, ATP coreleased with GABA in spinal interneu-
rons is probably involved in modulation of nociceptive 
pathways169. Importantly, it has been shown that P2X7 
receptors in microglia are also involved in neuropathic 
pain, although the underlying mechanisms involving 
both P2X4 and P2X7 receptors are still not clear. P2X 
receptor activation in the spinal cord might also elicit 
allodynia, with P2X4 receptor upregulation in spinal cord 
microglia having a crucial role 170. These observations 
have led to an explosion of work focused on purinergic 
signalling in neuropathic pain165,171–173.

Following the initial discovery by Tsuda et al.170, there 
have been a number of papers investigating the role of 
P2X4 receptors in spinal microglia in neuropathic pain172. 
Brain-derived neurotrophic factor (BDNF) is released 
from microglia by the stimulation of P2X4 receptors 
that affect anion reversal potentials in spinal lamina I 
neurons174. The increased levels of spinal fibronectin 
following peripheral nerve injury have been implicated in 
the upregulation of microglial P2X4 receptors 175. Ligands 
for the innate immune system sensor: toll-like receptors, 
and the nucleotide-binding oligomerization domain 2 
receptors stimulate microglial P2X4 receptor upregula-
tion, suggesting that microglia sense the activation of an 
inflammatory response using multiple recognition sys-
tems176. Recently, LYN, a member of SRC-family kinases, 
was also shown to have an important role in the patho-
genesis of neuropathic pain and could be a key mediator 
of nerve injury-induced upregulation of P2X4 receptors  
(K. Inoue, personal communication). Enhancement of 
pain behaviour after nerve injury not only requires the 
P2X receptor, but also phospho38 (p38) MAPK177. ATP 
causes the activation of p38 or ERK1/2 MAPKs result-
ing in the release of TNF‑α and IL‑6. In rats exhibiting 
allodynia, the level of p38 was increased in micro-
glia. Intraspinal administration of the p38 inhibitor, 
SB203580, suppressed allodynia, suggesting that neuro-
pathic pain hypersensitivity depends on the activation 
of the p38 signalling pathway in microglia in the dorsal 
horn following peripheral nerve injury. Platelet activating 
factor, which is released from activated microglia, is a 
potent inducer of tactile allodynia and thermal hyper-
algesia after intrathecal injection into the spinal cord, 
and it was suggested that this response is mediated by 
ATP178. The possible mechanisms that underlie the role 
of P2X4 receptors in neuropathic pain and the involve-
ment of inflammatory cytokines have been reviewed in 
REFs 179,180.

The P2X7 receptor, by regulating IL‑1β production, 
also has a role in the development of neuropathic 
and inflammatory pain181. Data from P2X4 and P2X7 
receptor knockout animals indicate that they share a  
common pain phenotype, although this phenotype 
appears to be conferred through different mecha-
nisms182. One report suggests that P2X4 and P2X7 
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receptors form heteromultimers183, which probably 
have a different pharmacological profile from the homo
multimer receptors.

In contrast to the P2X receptors, activation of  
UTP-sensitive P2Y2 and/or P2Y4 receptors and the UDP-
sensitive P2Y6 receptor, inhibit spinal pain transmission184. 
P2Y1 and P2Y4 receptors were identified in sensory  

neurons, in a subpopulation of which P2X3 receptors 
were also expressed185. P2Y receptors are expressed on the 
sensory ganglia, neurons in the dorsal spinal cord and in 
glial cells186. The rostral ventromedial medulla serves as a 
crucial link in bulbo-spinal nociceptive modulation and 
it has been suggested that on-cells preferentially express 
P2X receptors, whereas off-cells express P2Y receptors 
in this region187. Activation of P2Y receptors inhibits  
P2X3 receptor channels through G protein-dependent 
facilitation of their desensitisation188.

A number of studies have demonstrated the thera-
peutic potential of modulating specific P2X receptor 
subtypes to treat neuropathic pain (TABLE 2). Intrathecal 
administration of ATP produces long-lasting allodynia, 
most probably through P2X2/3 receptors189. The involve-
ment of spinal P2X2 and P2X3 receptors in neuropathic 
pain in a mouse model of chronic constriction injury 
has been claimed190. A recent study suggests that P2X3/
P2X2/3 receptor-dependent cytosolic phospholipase A2 
(cPLA2) activity in primary sensory neurons is a key 
event in neuropathic pain and that cPLA2 might also be 
a potential drug target191. It is claimed that sensitisation 
of P2X3 receptors, rather than a change in ATP release, is 
responsible for neuropathic pain and allodynia192. There 
are data suggesting that the P2X3 and P2X2/3 receptor 
antagonism that reduces inflammatory hyperalgesia and 
chemogenic nociception is mediated by the spinal opioid 
system193. The role of P2X3 receptors in acute pain, 
inflammatory pain, chronic neuropathic pain, migraine 
and cancer pain is reviewed in REF. 194.

As neuropathic pain and allodynia are abolished in 
both P2X4 and P2X7 knockout mice, there is great inter-
est in finding selective antagonists that might be suitable 
for therapeutic development. Recent reviews on the role 
of P2X7 receptors in pain and inflammation highlight the 
potential therapeutic benefit of P2X7 receptor modu
lation195,196. Antidepressants have been shown to be 
effective in relieving neuropathic pain197 and preliminary 
clinical studies with paroxetine, which antagonises P2X4 
receptors in transfected cells, suggest that it is effective 
against chronic pain. Classical antidepressants, such 
as sertraline and clomipramine, have also been shown 
to inhibit extracellular breakdown of ATP thereby 
modulating ATP and ADO levels in the synaptic cleft198. 
There is still an urgent need to understand the various 
mechanisms underlying the successful application of 
P2X3, P2X4 and P2X7 receptor antagonists for the treat-
ment of pain, neurodegenerative disorders and trauma. 
For a review of the recent progress in the development 
of ADO receptor ligands as anti-inflammatory agents, 
readers are referred to REF. 199. 

Migraine
The involvement of ATP in migraine was first suspected 
in conjunction with the vascular theory of this disorder, 
which proposes that ATP is released from endothelial 
cells during the reactive hyperaemia that is associated with 
pain following cerebral vascular vasospasm (that is not 
associated with pain)200. More recently, P2X3 receptor 
involvement in neuronal dysfunction in brain areas that 
mediate nociception, such as the trigeminal nucleus and 

Figure 2 | Hypothetical schematic of the roles of purine nucleotides and 
nucleosides in pain pathways. At sensory nerve terminals in the periphery, P2X3 and 
P2X2/3 receptors have been identified as the main P2X purinoceptors, although more 
recent studies have also shown expression of P2Y1 and possibly P2Y2 receptors on a 
subpopulation of P2X3 receptor-immunopositive fibres. Other known P2X receptor 
subtypes (1‑7) are also expressed at low levels in dorsal root ganglia. Although less potent 
than ATP, adenosine (ADO) also appears to act on sensory terminals, probably directly 
through P1(A2) receptors; however, it also acts synergistically (dashed line) to potentiate 
P2X2/3 receptor activation; 5‑hydroxytryptamine, capsaicin and protons might also have 
this effect. At synapses in sensory pathways in the CNS, ATP appears to act 
postsynaptically through P2X2, P2X4 and/or P2X6 receptor subtypes, perhaps as 
heteromultimers, and after breakdown to ADO, it acts as a presynaptic inhibitor of 
transmission through P1(A1) receptors. ATP and glutamate are cotransmitters in primary 
afferent central nerve terminals (see Fig. 1). P2X3 receptors on the central projections of 
primary afferent neurons in lamina II of the dorsal horn mediate facilitation of glutamate 
and probably also ATP release. P2X4 and P2X7 receptors on activated microglia have been 
implicated in neuropathic pain. Sources of ATP acting on P2X3 and P2X2/3 receptors on 
sensory terminals include sympathetic nerves, endothelial, Merkel and tumour cells. 
Yellow dots, molecules of ATP; blue dots, molecules of ADO. Modified, with permission, 
from REF. 224  (1996) Elsevier.
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Algogenic stimuli
A pain-producing stimuli.

the thalamus, have been considered201,202. P2X3 receptors 
are the only ligand-gated channels known to be expressed 
exclusively by a subset of trigeminal and spinal sensory 
neurons203. The interaction of P2Y1 receptors on trigemi-
nal neurons with P2X3 receptors after sensitization with 
algogenic stimuli (for example, NGF, BDNF or bradykinin) 
has been proposed and could also represent a new poten-
tial target for anti-migraine drugs204. Slow upregulation 
of nociceptive P2X3 receptors on trigeminal neurons by 
calcitonin gene-related peptide (CGRP) has been dem-
onstrated202. In an in vivo model of mouse trigeminal 
pain, anti-NGF treatment suppressed responses evoked 
by P2X3 receptor activation205. However, the effect of add-
ing NGF on P2X3 receptor-mediated currents was shown 
not to be mediated by NGF-induced CGRP release.

Evidence for the possible role of ADO in migraine 
has been reviewed in REF. 206. Plasma ADO has been 
observed to rise during migraine attacks and ADO has 
been reported to trigger migraine attacks. Conversely, 
dipyridamole, an ADO uptake inhibitor, can increase 
migraine attack frequency. A1 receptor stimulation has 
also been considered for migraine treatment207 and it 
has been claimed that A2A receptor gene variation might 
contribute to the pathogenesis of migraine208.

Future directions and therapeutic strategies
There is compelling evidence that purinergic signalling 
has an important role in CNS disorders4,172 and consider
able effort has been made to synthesize therapeutic 

purinergic antagonists (TABLES 2,3). Besides being impor-
tant pharmacological tools for the characterization of the 
pathophysiological roles of P2X and P2Y receptors in 
native systems, there is agreement that such ligands might 
represent new therapeutic entities of potential interest in 
various human diseases. In my opinion, the most promis-
ing areas for purinergic drug discovery at present are for 
the treatment of visceral pain with P2X3/P2X2/3 receptor 
antagonists and neuropathic and inflammatory pain with 
P2X7 antagonists. A2A antagonists are promising for the 
treatment of Parkinson’s disease. Interest in P2X7 antago-
nists, and to a lesser extent P2Y2 agonists, for the treat-
ment of other neurodegenerative diseases is also gaining 
ground. Other purinergic therapeutic strategies that are 
being explored include A1 agonists and A2A antagonists 
for the treatment of epilepsy, and the use of P2X7 antago-
nists for the treatment of brain and spinal cord trauma 
and neuroinflammation. Areas of potential interest, 
although largely unexplored at present, include the treat-
ment of depression and anxiety with A1 and A2A agonists 
and P2Y1 antagonists. A2A receptor antagonists are also 
being investigated for the treatment of schizophrenia. 
The design and synthesis of selective P2Y ligands has 
been greatly aided by the development of three‑dimen-
sional structures of these receptors, structure-activity 
relationships, mutagenesis and homology modelling 
studies based on the crystallization of the GPCR rho-
dopsin8. Detailed three-dimensional structures of P2X 
receptors have not yet been proposed due to the lack 

 Table 2 | Agonists and antagonists of P1 receptors and potential therapeutic strategies for CNS disorders

Receptor Selective 
agonists

Selective antagonists Diseases and potential therapeutic strategies

P1 (non-
specific)

ADO Theophylline, caffeine • ADO is neuroprotective225

• Caffeine is effective against Alzheimer’s and Parkinson’s 
disease226

• Ectonucleotidase inhibition reduces glioma progression227

A1 CPA, CCPA, 
S‑ENBA, 
GR79236, 
CVT‑510

DPCPX (8.5), MRS1754, 
N‑0840, WRC‑0571

• ADO attenuates glioblastoma growth228; reduces 
epileptic seizures229, has antidepressant143 and 
anticonvulsant230 effects

• Agonists might be candidates for antimigraine drugs207

• Paeoniflorin activates receptors attenuating 
neuroinflammation and dopaminergic neurodegeneration 
in Parkinson’s disease231

• Propentofylline and AIT‑082 enhance memory in 
Alzheimer’s disease232

A2A CGS 21680, 
HENECA, 
ATL‑146e, 
CVT‑3146

ZM241385 (9.0), 
SCH58261 (7.9‑9.5), 
KF17837, KW‑6002 

• Agonists have antidepressant effects143; reduce long-term 
injury after spinal trauma233

• Antagonists are used to treat Parkinson’s disease72, 
motor abnormalities in Huntington’s disease88, protect 
motor neurons in amyotrophic lateral sclerosis234and treat 
schizophrenia235. They are also anticonvulsive230 and can 
be used to manage drug addiction235

• KW‑6002 enhances motor & motivational responses236

A2B Bay60‑6583, 
MRS3997

MRS1754 (8.7), 
MRS1706 (8.4), PSB1115 
(7.7), Enprofylline, 
MRS2029‑F20, 

No information available 

A3 2-Cl-IB-MECA, 
IB‑MECA, 
DBXRM, VT160

MRS1220 (8.8), VUF5574 
(8.4), MRS1523 (7.7), 
MRS1191 (7.0), L‑268605, 
VUF8504

No information available

CNS, central nervous system. For definitions of agonists and antagonists see Supplementary information S3 (box).
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of a suitable protein template. Moreover, development 
of selective P2X receptor ligands has been complicated 
by the presence of heteromultimeric P2X receptors dis
playing unique pharmacology9. Selective non-nucleotide  

antagonists have been reported for P2Y1,2,6,12,13 and 
P2X2/3, P2X3 and P2X7 receptors76 (Supplementary 
information S2 (table)). Initially P2X3 and P2X2/3 
receptors were targeted because they were shown to 

Table 3 | Agonists and antagonists of P2 receptors and potential therapeutic strategies for CNS disorders

Receptor Selective agonists Selective antagonists Diseases and potential therapeutic strategies

P2 (non-
specific)

ATP, UTP, UDP Suramin, PPADS • ATP improves locomotion after trauma237

• ATP-MgCl2 protects the spinal cord from secondary 
injury after trauma & protects the brain following 
ischaemia238

• Suramin & PPADS are neuroprotective against 
ischaemia239, whereas ATP accelerates recovery 
following hypoxia / hypoglycaemia51

• PPADS is neuroprotective against NMDA-induced 
toxicity240

• Ap4A might protect against cerebral ischaemia in 
stroke241

• P2Y receptor activation induces ischaemic tolerance 
in brain62

• P2Y antagonists are beneficial in acute & chronic 
neurological disease42

• Apyrase reduces glioblastoma growth242

P2X1 L‑β,γ-meATP, α,β-
meATP 

TNP-ATP (8.9), IP5I (8.5), 
NF023 (6.7), NF449 (6.3)

No information available

P2X2 None None No information available

P2X3 α,β-meATP TNP-ATP (8.9), A317491 
(7.5), RO3 (7.5)

• A317491 reduces chronic inflammatory & neuropathic 
pain & tactile allodynia170

• Antagonists might be candidates for antimigraine 
drugs243

P2X4 None benzofuro‑1,4-
diazepin‑2-ones

• Antagonists proposed for treatment of neuropathic 
pain & allodynia170

P2X5 None None No information available

P2X6 None None No information available

P2X7 BzATP Brilliant blue G (8.0), 
decavanadate (7.4), 
KN62, A438079 6.9) 

• o-ATP improves function in trauma area49 & relieves 
inflammatory pain244

• Antagonists (& nicotinamide) reduce demyelination in 
EAE48 and control neuroinflammation245

• A438079 (REF. 195) & A74003 reduce neuropathic pain 
& allodynia246,247

P2Y1 2-MeSADP, ADPβS, 
MRS2365, 

MRS2500 (8.8), 
MRS2279 (8.0), 
MRS2179 (7.0), PIT (6.8)

• Agonists cause anxiolytic-like effects141

• Antagonists blocking Ca2+ waves in astrocytes are 
possible new treatments for epilepsy128

P2Y2 UTPγS, Ap4A, INS 
37217, INS365, 
2‑thio-UTP

AR‑C126313 • Agonists mediate neuroprotection44; have analgesic 
effects & activate neuroprotective mechanisms in 
astrocytes183 

P2Y4 UTPγS, Up4U ATP (6.2) • Agonists might be beneficial in CNS repair and 
remodelling after injury30

P2Y6 UDP, 2‑phenacyl-
UDP, UDPβS 

MRS2578 (7.4) • Agonists have analgesic effects, mediate phagocytosis 
of debris at site of damage in brain trauma37

P2Y11 ARC67085, NAD+, 
NAADP+, NF546

NF157, 5′-AMPS, NF340 No information available

P2Y12 ADP, 2‑MeSADP ATP, ARL‑66096, 
CT50547, Cangrelor 
(AR‑C69931MX), 
INS49266, AZD6140, 
PSB0413

No information available

P2Y13 None MRS2211 No information available

P2Y14 MRS2690, UDP 
glucose, UDP-
galactose

None No information available

CNS, central nervous system; EAE, experimental autoimmune encephalitis; NMDA, N-methyl-d-aspartate; PPADS, phosphate-6-
azophenyl-2-4-disulphonic acid. For definitions of agonists and antagonists see Supplementary information S3 (box).
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