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After some early hints, cotransmission was proposed in 1976

and the ‘chemical coding’ gradually established for sympathetic,

parasympathetic, sensory-motor, enteric and some invertebrate

nerves. More recently, cotransmission has been recognised in

the central nervous system. ATP appears to be a primitive

signalling molecule that has been retained as a cotransmitter

in every nerve type in both peripheral and central nervous

systems, although the relative role of ATP varies considerably

in different species and pathological conditions. In the past

two years, interest has focused on the mechanisms

underlying cotransmission, plasticity and differential control

of cotransmitter expression.
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Abbreviations
ACh acetylcholine

BDNF brain-derived neurotrophic factor

CGRP calcitonin gene-related peptide

DA dopamine

GABA g-amino butyric acid

LGV large granular vesicle

NA noradrenaline

NMDA N-methyl-D-aspartate

NO nitric oxide

NPY neuropeptide Y

SP substance P

VIP vasoactive intestinal polypeptide

Introduction
After some early hints, the possibility that some nerve

fibres synthesise, store and release more than one nerve

transmitter that produces changes in postjunctional activ-

ity via specific postjunctional receptors was postulated by

Burnstock in 1976 [1], challenging what had become

known as Dale’s Principle — the concept that nerves

utilise only one transmitter [2]. Soon after, Hökfelt et al.
[3] focused on the colocalisation, vesicular storage and

release of peptides from both peripheral and central

nerves. Colocalised substances are not necessarily

cotransmitters; however, they can (especially peptides)

act as pre- and/or postjunctional neuromodulators of the

release and actions of the principal cotransmitters. For

example, neuropeptide Y (NPY) synthesised, costored

and released from sympathetic nerves in several prepara-

tions does not have a direct action on postjunctional cells,

but rather acts as a pre- and postjunctional modulator of

both the release and the actions of noradrenaline (NA)

and ATP [4,5] (Figure 1j).

Several reviews of the early literature on cotransmission

are available [6–10]. Most of the early studies were carried

out on vertebrate autonomic and invertebrate nervous

systems [6]. ATP and NPY were established as cotrans-

mitters with NA in sympathetic nerves supplying both

visceral and cardiovascular systems. Vasoactive intestinal

polypeptide (VIP) and ATP were shown to be cotrans-

mitters with acetylcholine (ACh) in parasympathetic

nerves. The ‘chemical coding’ of neurotransmitters in

the gut were described [11], including non-adrenergic

non-cholinergic inhibitory nerves utilizing a combination

of ATP, nitric oxide (NO) and VIP. Calcitonin gene-

related peptide (CGRP) and substance P (SP) were

identified as cotransmitters in sensory-motor nerves

(together with ATP in some fibres), as were ACh and

ATP in motor nerve endings. The proportions of these

cotransmitters vary considerably between species and

organs, and show plasticity of expression during devel-

opment and in pathological conditions [6]. In general,

classical transmitters are contained in small synaptic

vesicles, whereas peptides are stored in large granular

(dense-cored) vesicles (LGVs), although small molecule

transmitters are sometimes stored together with peptides

in LGVs [12,13�].

Recent interest has focused on the mechanisms that

underlie cotransmission and its physiological significance

[13�,14,15]; these issues are discussed in this review.

Recent reports of cotransmission
Central nervous system

Evidence for ATP being a cotransmitter with established

neurotransmitters in the nervous system has recently

been reviewed [16��]. In preparations of affinity-purified

cholinergic nerve terminals from the rat cuneate nucleus,

ATP and ACh are co-released. Co-release of ATP with

catecholamines from neurons in the hypothalamus and

locus ceruleus has been reported, and there is recent

evidence for co-release of ATP with g-amino butyric acid

(GABA) in dorsal horn and lateral hypothalamic neurons

[17,18�], and for ATP with glutamate in the hippocampus.

Colocalisation of functional nicotinic and ionotropic

nucleotide receptors has been identified in isolated
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cholinergic synaptic terminals in the midbrain [19]; ATP

and dopamine (DA) are probably co-released from the

terminals of ventral tegmental neurons in the nucleus

accumbens.

Co-release and interaction of two fast inhibitory cotrans-

mitters, GABA and glycine, in synaptic bouton prepara-

tions of the sacral dorsal commissural nucleus of the sacral

spinal cord have been described [20��]. Earlier papers

showed that glycine/GABA cotransmission occurred in

brain stem motor neurones and spinal interneurones.

Co-release of NA and DA from neurones in the cerebral

cortex has also been reported. Neurons in the tubero-

mammillary nucleus in the posterior hypothalamus con-

tain histamine, GABA, galanin, enkephalin and SP as

cotransmitters [21]. GABA/somatostatin cotransmission

has been reported at synapses in a subpopulation of

amygdala projection neurons to the nucleus tractus soli-

tarius, which might inhibit cardiovascular reflex responses

to fear or emotion-related stimuli [22].

Cholecystokinin is colocalised with DA in rat mesence-

phalic neurons, and with glutamate in cortico-striatal

neurones; released CCK appears to be involved in loco-

motor behaviour [23]. Synthesis and storage of glutamate,

ACh and GABA in basal forebrain neurones projecting to

the entorhinal cortex have been reported. Galanin is co-

stored with enkephalin, and often NPY, in some neurones

of the substantia gelatinosa, whereas tachykinins and

enkephalin, galanin and SP are co-stored in neurones

in deeper layers of the dorsal horn. Co-storage of galanin

and neurotensin, as well as CGRP and SP, has been

shown using postembedding immunocytochemistry to

be present in LGVs [13�]. RT–PCR and in situ hybridisa-

tion studies have shown co-storage of oxytocin and vaso-

pressin mRNA in LGVs in hypothalamic neurosecretory

neurones.

Figure 1
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Spectrum of signalling variations offered by cotransmission (blue

arrows ¼ neurotransmission; red arrows ¼ pre- or post-junctional

neuromodulation). (a) Fast transmission is usually produced by small

molecules (C1) released at low frequency nerve stimulation acting on

ionotropic receptors (R1), whereas slow transmission is usually

produced by release of peptides (C2) or other molecules at high

frequency stimulation acting on G-protein-coupled receptors (R2).

(b) Cotransmitters C1 and C2 can both be fast messengers acting

via ionotropic receptors (R1 and R2). (c) Cotransmitters C1 and

C2 act on receptors (R1 and R2) localised on different postjunctional

cells. (d) Cotransmitters C1 and C2 not only act postjunctionally

via R1 and R2 receptors but can also act as prejunctional modulators

to either inhibit (�) or enhance (þ) the release of C1 and/or C2.

(e) Cotransmitters C1 and C2 act synergistically to enhance the

combined responses produced via R1 and R2 receptors. (f)
Cotransmitters C1 and C2 act to inhibit the responses evoked via R1

and/or R2 receptors. (g) Cotransmitter C1 evokes neurotransmission

via R1 receptors, while C2 evokes long-term (trophic) responses of

postjunctional cells via R2 receptors. (h) Cotransmitter C1 produces

excitation via R1 receptors when the postjunctional smooth muscle

target has low tone, with C2 having little influence; however, when the

smooth muscle tone is high, the dominant response might be relaxation

produced by C2 via R2 receptors. (i) Substance C3 is taken up by nerve

terminals, rather than being synthesised and stored as is true for the

cotransmitters C1 and C2. C3 can then be released on nerve stimulation

to act on postunctional R3 receptors. In these circumstances, C3 would
be known as a ‘false transmitter’. (j) A coexisting substance C3 (often a

peptide) can be sythesised and stored in a nerve, but not act directly via a

postjunctional receptor to produce changes in postjunctional cell activity.

It could, however, act as a prejunctional inhibitor (�) of the release of the

cotransmitters C1 and C2, or as a postjunctional enhancer (þ) of the

responses mediated by R1 and R2.
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Sympathetic neuromuscular cotransmission

Early experiments establishing sympathetic cotransmis-

sion have been reviewed [24]. Excitatory junction poten-

tials evoked by sympathetic nerve stimulation of the

smooth muscle of visceral organs and blood vessels are

caused by ATP, whereas NA activates second messenger

systems that produce little change in membrane potential.

Studies of the vas deferens have been extended by experi-

ments showing that enzymes responsible for degrading

ATP are released together with the cotransmitters ATP

and NA. In a recent paper, ATP diphosphohydrolase and

AMPase were identified as the enzymes likely to be

involved [25]. In contrast, clearance of NA occurs through

reuptake into nerves. Ectonucleotidase in cardiac sympa-

thetic nerve endings modulates ATP-mediated feedback

of NA release [26]. In a study examining why sympathetic

cotransmission to prostatic and epididymal ends of the vas

deferens differs markedly, it was concluded that most

varicosities located in the epididymal end of the vas

deferens release an insufficient amount of ATP to evoke

excitatory junctional currents [27]. Nerve terminals on

sympathetic neurones controlling the rat tarsal muscle

show diverse chemical coding [28].

Enteric nervous system

In recent papers, evidence has suggested that ACh and

ATP are fast excitatory cotransmitters to myenteric neu-

rones [29�] and that there may be colocalisation of ACh,

ATP and serotonin in enteric S neurones [30].

Invertebrate cotransmitters
The neuropeptide proctolin is a cotransmitter with

SchistoFLRFamide, octopamine and probably glutamate

in nerves supplying the oviduct of the locust [31]. GABA

and a catecholamine (probably DA) are colocalised in a

subpopulation of interneurones within the central pattern

generator currents that control feeding-related beha-

viours in Aplysia [32�]. Neuropeptides are colocalised

with classical transmitters in the crayfish stomatogastric

nervous system [33]. Various neuropeptides, including

periviscerokinin-1 and -2, pyrokino-5, YLSamide, VEA

acid and SKN acid have been shown to be synthesised

and colocalised in clear vesicles in median neurosecretory

cells in abdominal ganglia of the cockroach [34]. Seroto-

nin and NO appear to function as presynaptic cotrans-

mitters to serotinergic neurones in the nervous system of

the snail [35].

Physiological significance of
cotransmission — synaptic integration
Several major themes have emerged about the physiology

of cotransmission; these are described below.

Fast and slow cotransmitters: different firing patterns

Although single presynaptic action potentials release

small molecule neurotransmitters, trains of impulses

are needed to release neuropeptides (see Figure 1a,b

for different firing patterns of cotransmitters). ACh is

released at lower firing rates than those needed for the

two peptide cotransmitters from motor neurones that

innervate the Aplysia accessory radula closer muscle.

For sympathetic and parasympathetic cotransmission,

release of ATP is favoured at low frequency stimulation,

whereas NA and ACh are released at higher frequencies

[5,36]. There are instances where more than one fast

cotransmitter is released (e.g. glutamate and ATP)

together with one or more peptides.

Different cotransmitters act at different targets

Neurones using multiple transmitters may project to two or

more targets (Figure 1c). For example, in frog sympathetic

ganglia, ACh and neuropeptide luteinising hormone-

releasing hormone both influence postganglionic C cells,

but only the neuropeptide influences B cells. An early

paper by Lundberg [9] reported that ACh released at low

frequency stimulation from parasympathetic nerves sup-

plying salivary glands acts on acinus cells to produce

secretion and a minor dilatation of vessels whereas, at

higher frequency stimulation, its cotransmitter VIP causes

powerful vasodilatation of vessels in the glands and post-

junctional enhancement of ACh-induced saliva secretion.

Presynaptic modulation of cotransmitter release

A cotransmitter can feed back on presynaptic receptors

that increase or decrease its own release or that of its

cotransmitter(s) (Figure 1d). For example, tachykinins

presynaptically stimulate the release of DA and NA in the

striatum and the locus coerulus, respectively [13�]. ATP

released as a cotransmitter with glutamate from primary

afferent fibres in lamina II of the spinal cord can act on

prejunctional P2X3 receptors to facilitate the release of its

cotransmitter, glutamate, whereas adenosine resulting

from ectoenzymatic breakdown of ATP acts on presy-

naptic P1 receptors to inhibit glutamate release. At

hypothalamic synapses, ACh can differentially modulate

the release of cotransmitters: activation of presynaptic

muscarinic receptors enhances the release of ATP, while

concomitantly depressing GABA transmission [37��].
Neuropeptides co-released with classical transmitters

from nerves of Drosophila can act as modulators of the

actions of the classical transmitters [38�]. The modulation

of cotransmitter release and presynaptic action by other

agents might provide a new level of synaptic flexibility, in

which individual neurones utilise more than one trans-

mitter but retain independent control over their synaptic

activity [37��].

Synergistic co-operativity

There are an increasing number of reports of the syner-

gistic actions of cotransmitters (Figure 1e). It has long

been established that ATP and NA released from sympa-

thetic nerves have synergistic actions on smooth muscle

of vas deferens and blood vessels, and that ATP released

from motorneurones facilitates the nicotinic actions of
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ACh at the skeletal neuromuscular junction [6]. In recent

reports, co-operativity between receptors for ATP and N-

methyl-D-aspartate (NMDA) in induction of long-term

potentiation in hippocampal CA1 neurons has been

demonstrated [39�]. GABA and ATP appear to act in

concert on primary afferent nerve terminals to regulate

transmitter release [18�]. Thyrotropin-releasing hormone

and serotonin have been reported to have synergistic

actions in spinal cord neurons [10].

In view of the evidence for cotransmitter synergy, the

reports that known nucleotide P2 receptor antagonists,

such as suramin, have actions on non-purinergic receptors

needs to be questioned. For example, the claims that

suramin and reactive blue-2 have antagonistic actions on

NMDA and GABA receptor channels in hippocampal

neurones are probably explained by blockade of the P2

receptor-mediated responses of the cotransmitter ATP,

thereby removing its synergistic potentiating effect.

The mechanisms underlying cotransmitter synergism are

not well understood. However, it has been suggested that

postjunctional synergism between the responses of vas

deferens to NA and ATP is caused by the ability of NA to

potentiate the contractile responses to ATP by sensitising

smooth muscle cells to Ca2þ via an inhibitory action on

myosin light chain phosphatase, an action mediated by

protein kinase C (Smith and Burnstock, unpublished).

Negative crosstalk

Co-application of nicotinic and P2X receptor agonists

produces less than the additive responses predicted by

independent receptor activation (Figure 1f). A recent

study of the interactions between nicotinic a3b4 and

nucleotide P2X2 channels expressed in Xenopus oocytes

showed that the activation of one channel type affects

distinct kinetic and conductance states of the other; co-

activation resulted in non-additive responses because of

inhibition of both channel types [40]. In synaptically

coupled myenteric neurones, nicotinic fast excitatory

postsynaptic currents were occluded during activation

of endogenously coexpressed P2X channels. Inhibitory

interactions between 5-hydroxytryptamine (5-HT)3 and

P2X receptors have been described in submucosal [41]

and myenteric [42�] neurones. Cross-inhibition of GABAA

and glycine receptors has been demonstrated in rat sacral

dorsal commissural neurones that co-release GABA and

glycine [20��]. Negative cross-talk has also been de-

scribed between anionic GABAA and cationic P2X iono-

tropic receptors of rat dorsal root ganglion cells. Occlusion

was absent in the presence of the antagonists 20,30-O-

(2,4,6-trinitrophenyl)-ATP or picrotoxin.

Cotransmitters and trophic factors

Some co-stored and co-released substances can act as

long-term (trophic) factors, as well as neurotransmitters

(Figure 1g). For example, it is well known that ATP can

act on P2 receptors, or P1 (adenosine) receptors after

ectoenzymatic breakdown, to promote cell proliferation,

motility, differentiation or death [43]. NPY released from

sympathetic nerves has cardiovascular trophic effects in

end-stage renal disease [44]. NPY also appears to play a

role in modulating immunological effects such as differ-

entiation of T helper cells and monocyte mediator release

[45]. There is growing evidence that neurotrophic factors

might be synthesised, stored and released from nerve

terminals together with fast neurotransmitters [13�]. For

example, it has been claimed that brain-derived neuro-

trophic factor (BDNF) is localised in LGVs in neurones of

the spinal cord, is released from sensory neurones and can

act as a trophic modulator of central neuronal activity, at

least in the hippocampus, visual system and spinal cord.

Mixed excitatory and inhibitory effects of

cotransmission

Although cotransmitters generally have similar actions on

postjunctional cells, there are early examples of cotrans-

mitters having opposite actions on the mammalian uterus,

one or other dominating depending on the hormonal

and/or tonic status of the postjunctional muscle cells

(Figure 1h). The discovery that GABA and ATP are

co-released from presynaptic nerves in the spinal cord

raised the possibility that a dorsal horn synapse could be

excitatory or inhibitory, depending on its postsynaptic

receptor or the amount of transmitter released. BDNF

increases the release of ACh and reduces NA release from

sympathetic nerves to cause a rapid shift from excitatory

to inhibitory transmission [46��,47].

Cotransmission transporters and false transmitters

Co-expression of neurotransmitter transporters, which

recapture endogenously synthesised and released trans-

mitter, has been demonstrated in the plasma membrane

of some central nervous system neurones and, in some

instances, this may indicate cotransmission [48]. In other

cases, however, the neurones might be taking up trans-

mitters originating from neighbouring structures. For

example, it has been known for some time that sympa-

thetic nerves take up serotonin, which can then be

released as a ‘false transmitter’, rather than a genuine

‘cotransmitter’. A ‘false transmitter’ is a substance

actively taken up and subsequently released by a neurone

that does not synthesise it (Figure 1i).

Cotransmitter plasticity: control of
transmitter expression
Cotransmitter plasticity during development and ageing,

following trauma or surgery and after chronic exposure to

drugs, as well as in disease, has been reviewed by

Burnstock [6]. In a recent study using primary cultures

of neonatal rat spinal neurones, evidence was presented

for the regulation of SP (NK1) receptor expression by

CGRP [49�]. There were some outstanding early studies

of the factors influencing cotransmitter expression in
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sympathetic nerves [50], and a physiological role for

neuropoietic cytokines in the control of VIP expression

during the development of cholinergic sympathetic neu-

rones was proposed. A recent study presented evidence

that cholinergic differentiation in sympathetic neurones

is promoted by neurotrophic factors from three different

protein families (glial cell line-derived neurotrophic fac-

tor, neurotrophin 3 and ciliary neurotrophic factor),

whereas noradrenergic differentiation is promoted by

nerve growth factor [51]. In another study, BDNF was

claimed to switch sympathetic neurotransmission to the

heart from an adrenergic excitation to cholinergic inhibi-

tion; it was also shown that the action of BDNF was

mediated by the P75 neurotrophic receptor [46��,47].

Histamine, galanin and GABA acting as cotransmitters

in neurones of the tuberomammillary nucleus (hypotha-

lamus) have independent control mechanisms [21].

Changes in chemical coding of myenteric neurones in

ulcerative colitis have been reported, with a shift from

cholinergic to more SP-positive cotransmission [52].

Conclusions
To establish that compounds shown to be localised in

nerves are actually cotransmitters, several criteria need to

be satisfied:

1. The substance is synthesised and stored in the nerve.

2. The substance is released upon nerve stimulation.

3. Specific receptors for the substance need to be iden-

tified on postjunctional sites that, when occupied, lead

to changes in postjunctional activity.

4. A transport system needs to be present for the sub-

stance itself or its breakdown products, uptake of

which leads to renewal of messenger storage in nerve

terminals.

It has been particularly difficult to establish cotransmitter

roles for the many peptides found in nerves, partly because

specific receptors and physiological roles have not been

established for some of these and partly because of the

lack of selective antagonists. In some enteric neurons, up

to six neuropeptides have been identified. It is important

to distinguish between neuromodulator, neurotransmitter

and neurotrophic roles for released peptides.

It is becoming clear that ATP is a primitive signalling

molecule that has been retained as a cotransmitter in

every nerve type in both the peripheral and central

nervous systems [15,16��], although the relative role of

ATP varies considerably in different species and patho-

physiological conditions. ATP appears to become a more

prominent cotransmitter in stress and inflammatory

conditions. Most nerves contain and release ATP as a

fast cotransmitter together with classical fast transmitters

such as ACh, NA, glutamate, GABA and one or more

peptides. In view of this, I recommend that we give up

using the terms ‘adrenergic’, ‘cholinergic’, ‘peptidergic’,

‘purinergic’, ‘aminergic’ and ‘nitrergic’ when describing

nerves, although adrenergic, cholinergic, peptidergic,

purinergic, aminergic or nitrergic transmission is still

meaningful.
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