
Chapter 21

Purinergic receptors
Brian F. King and Geoffrey Burnstock

21.1 Introduction
The term purinergic receptor (or purinoceptor) was first introduced to describe classes of
membrane receptors that, when activated by either neurally released ATP (P2 purinoceptor)
or its breakdown product adenosine (P1 purinoceptor), mediated relaxation of gut smooth
muscle (Burnstock 1972, 1978). P2 purinoceptors were further divided into five broad
phenotypes (P2X, P2Y, P2Z, P2U, and P2T) according to pharmacological profile and tissue
distribution (Burnstock and Kennedy 1985; Gordon 1986; O’Connor et al. 1991; Dubyak
1991). Thereafter, they were reorganized into families of metabotropic ATP receptors (P2Y,
P2U, and P2T) and ionotropic ATP receptors (P2X and P2Z) (Dubyak and El-Moatassim
1993), later redefined as extended P2Y and P2X families (Abbracchio and Burnstock 1994).

In the early 1990s, cDNAs were isolated for three heptahelical proteins—called P2Y1, P2Y2,
and P2Y3—with structural similarities to the rhodopsin GPCR template. At first, these three
GPCRs were believed to correspond to the P2Y, P2U, and P2T receptors. However, the com-
plexity of the P2Y receptor family was underestimated. At least 15, possibly 16, heptahelical
proteins have been associated with the P2Y receptor family (King et al. 2001, see Table 21.1).
Multiple expression of P2Y receptors is considered the norm in all tissues (Ralevic and
Burnstock 1998) and mixtures of P2 purinoceptors have been reported in central neurones
(Chessell et al. 1997) and glia (King et al. 1996). The situation is compounded by P2Y protein
dimerization to generate receptor assemblies with subtly distinct pharmacological proper-
ties from their constituent components (Filippov et al. 2000). Also, the range of naturally
occurring nucleotides capable of stimulating P2Y receptors has extended beyond ATP and
its immediate breakdown products (Jacobson et al. 2000).

21.2 Molecular characterization
Cloning and heterologous expression of each of the three first P2Y receptors in oocytes, resul-
ted in increased Ca2+-mobilization following activation by ATP (Lustig et al. 1993; Webb et
al. 1993; Barnard et al. 1994). These three GPCRs were assimilated into the P2Y1–n receptor
family, as opposed to the cloned ionotropic ATP receptors that now form the P2X1–n receptor
family (Abbracchio and Burnstock 1994). The P2Y1 receptor was cloned from chick brain
and its agonist potency profile (2-MeSATP > ATP ≥ ADP) approximated the native P2Y
phenotype (Webb et al. 1993). The P2Y2 receptor was cloned from murine neuroblastoma
(NG108-15) cells and its agonist profile (ATP ≈ UTP > ATPγS) approximated the native
P2U phenotype (Lustig et al. 1993). The P2Y3 receptor was cloned from chick brain and
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its preference for ADP over ATP appeared to approximate the P2T phenotype (Barnard et
al. 1994). Thus, a seemingly perfect correspondence was established between these recom-
binant P2Y receptors and subtypes of metabotropic ATP receptors in mammalian tissues.
However, since that time, many other GPCRs associated with the P2Y receptor family have
been identified and now include P2Y1–12, turkey p2y, skate p2y, and the human UDP-glucose
receptor. A dinucleotide receptor, P2YAp4A or its older name P2D, is anticipated but has not
yet been cloned (Fredholm et al. 1997). The fifteen cloned receptor proteins are 328–532
amino acids in length and represent some of the shortest GPCRs found in mammalian cells.
They possess seven hydrophobic regions, forming the transmembrane spanning regions
TM1-VII, which lie between an extracellular N-terminus (21–51 residues in length) and
a cytosolic C-terminus (16–217 residues in length) possessing multiple consensus motifs
for phosphorylation by intracellular kinases. Alignment of the protein sequences for the
TM1-VII region reveals 17–62 per cent identity (35–80 per cent similarity).

The human P2Y1 receptor is found on chromosome 3q25 (Ayyanathan et al. 1996). P2Y1

orthologues (89–98 per cent identical over TMI-VII) have been cloned from brain tissue of
cow, chick, and turkey. Transcripts for mouse and rat orthologues are also present in nervous
tissue. Recently, a P2Y1-deficient mouse model has been generated with a phenotype showing
decreased platelet aggregation and increased bleeding (Fabre et al. 1999; Leon et al. 1999).
P2Y2 orthologues (94 per cent identical) have been cloned from canine, mouse, and rat
tissues. Rat P2Y2 was cloned from a pituitary cDNA library (Chen et al. 1996), although P2Y2

transcripts are more commonly associated with epithelial cell lines than brain derived cell
lines. It should be borne in mind that the anterior pituitary is derived from epithelial tissue,
and this may explain why P2Y2 was found in the rat pituitary. The human P2Y2 receptor
gene located on chromosome 11q13.5–14.1, lies adjacent to the P2Y6 gene at 11q13.3–13.5
(Pidlaoan et al. 1997). In addition, a P2Y2-deficient mouse model has been generated which
suggests this receptor is critical in regulating airway epithelial ion transport but not ion
transport in non-respiratory epithelia (Homolya et al. 1999). The human P2Y2 receptor
protein shows polymorphism at position 334 (an arginine–cysteine transition), due to a
replication error at nucleotide 1000 (thymine for cytosine), although this mutation does not
significantly alter functionality (Janssens et al. 1999).

The human P2Y4 gene encodes a receptor stimulated by UTP and antagonized by ATP
(Kennedy et al. 2000), and is located in region q13 of chromosome X (Nguyen et al. 1995).
By contrast, both ATP and UTP stimulate the mouse and rat P2Y4 receptors (Bogdanov
et al. 1998; Webb et al. 1998; Lazarowski et al. 2001). Rat P2Y4 was cloned from brain (Webb
et al. 1998) and heart (Bogdanov et al. 1998). The human P2Y4 protein is 89 per cent identical
to mouse and rat orthologues, whilst the two rodent P2Y4 receptors are 95 per cent identical
(over TMI-VII). The structural basis for the divergent pharmacology between human and
rodent P2Y4 receptors has not been elucidated. Agonist-activated human P2Y4 receptors are
rapidly internalized by a phosphorylation process involving serine-333 and serine-334 on
the C-terminus (Brinson and Harden 2001).

The open reading frame for the P2Y5 receptor is contained in intron 17 of the human
retinoblastoma susceptibility gene, a tumour-suppressing gene located on chromosome
13q14.12–14.2 (Herzog et al. 1996). Opinions vary on whether the P2Y5 receptor is a
functional or orphan GPCR. The chick orthologue (83 per cent identical over TM1-VII)
avidly binds [35S]-dATPαS (Webb et al. 1996b), but turkey P2Y5 does not respond func-
tionally to either dATPαS or other nucleotides (Li et al. 1997). The human P2Y5 receptor,
when expressed in oocytes, is weakly stimulated by ATP and slowly activates the PLCβ/Ca2+
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pathway (King and Townsend-Nicholson 2000). Human P2Y5 seems to couple inefficiently
to Gq isoforms and its role in nucleotide signalling is unclear.

The chick P2Y3 receptor is proposed to be an orthologue of mammalian P2Y6 receptors—
on the basis of similarity in protein sequence (78 per cent over TMI-VII) and a shared
pharmacological profile (Li et al. 1998). The latter receptor gene is located on human chro-
mosome 11q13.3–13.5, lying adjacent to the P2Y2 gene (q13.5–14.1; Pidlaoan et al. 1997;
Somers et al. 1997). Three forms of human P2Y6 cDNA were found by RT-PCR amplifica-
tion (Maier et al. 1997). Two forms contain the coding region for P2Y6 but possess different
5′-untranslated regions, probably the consequence of alternative gene splicing. The third
cDNA appears to be a pseudogene and shows a frame shift in the coding region that cannot
be translated into protein. P2Y6 transcripts for coding cDNAs were found in a series of
brain-derived cell lines (Maier et al. 1997). P2Y6 orthologues (88 per cent identical over
TMI-VII) have been cloned from rat and mouse.

The human P2Y11 gene is located on chromosome 19p31 (Suarez-Heurta et al. 2000),
where an intron interrupts the coding sequence at the 5′-end and separates the first 3 codons
from the remainder of the coding region (Communi et al. 1997). The P2Y11 and SSF1 genes
on chromosome 19 can undergo intergenic splicing to create a fusion protein (Communi
et al. 2001). This SSF1-P2Y11 protein is functionally indistinguishable from human P2Y11

itself. A canine P2Y11 receptor has been cloned from a kidney epithelial cell line (Zambon
et al. 2001).

P2Y12 is structurally related to the UDP-glucose receptor (49 per cent identical) but distinct
from P2Y1 (22 per cent identical) and is located on chromosome 3q24–25, adjacent to genes
for the UDP-glucose and P2Y1 receptors (Hollopeter et al. 2001). Both P2Y1 and P2Y12

are present in human blood platelets where they play a key role in haemostasis. A mutated
P2Y12 receptor arises through a two base pair deletion at the coding region for residue
240, a transcriptional frame shift and premature truncation of the protein (Hollopeter et al.
2001). The truncated P2Y12 protein is non-functional and, in one patient, was associated
with a mild bleeding disorder. P2Y12 transcripts were also found in rat glioma cells and rat
brain.

The skate p2y receptor was cloned from liver, but also found in brain, and is 69 per cent
similar to human P2Y1 (Dranoff et al. 2000). This chordate p2y receptor was claimed to
be the most primitive form of the P2Y1 receptor. In contrast, the turkey p2y receptor was
cloned from a cDNA library from whole blood, but the physiological role of this receptor
is unknown. This avian p2y receptor inhibits cAMP levels via the Gi/AC pathway, as well
as stimulating IP3 production via the Gq/PLCβ pathway (Boyer et al. 2000). The receptor is
structurally related to the Xenopus p2y8 receptor (67 per cent identical, 79 per cent similar
over TMI-VII). Both tp2y and xp2y8 receptors are stimulated by most naturally occur-
ring nucleoside triphosphates (ATP, CTP, GTP, ITP, UTP) and couple strongly to Gq/PLCβ

(Bogdanov et al. 1997; Boyer et al. 2000). Expression of amphibian xp2y8 receptor is confined
to the neural plate of developing Xenopus embryos and closely related to periods of neuro-
genesis (Bogdanov et al. 1997). P2Y9 (or P2Y5-like) and P2Y10 receptors are considered to
be orphan GPCRs (Janssens et al. 1997; Ralevic and Burnstock 1998). Human P2Y7 receptor
was wrongly identified as a nucleotide receptor (Akbar et al. 1996). This P2Y-like GPCR,
located on chromosome 14q11.2–q12 (Owman et al. 1996), has been reclassified as a chemo-
attractant leucotriene B4 (LTB4) receptor (Yokomizo et al. 1997). The P2Y-like protein (fb1)
cloned from human foetal hippocampus is located on chromosome 2q21 (Blasius et al. 1998)
and joins an extended family of orphan GPCRs with low sequence homology to functional
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P2Y receptors (Marchese et al. 1999). Finally, the human UDP-glucose receptor which is
probably the most unusual of the known P2Y-like receptors recognizes UDP-glucose and
UDP-galactose as its natural ligands, but not UTP or UDP and related mononucleotides
(Chambers et al. 2000). This receptor is 49 per cent identical to P2Y12 and, like the latter,
can couple to pertussis toxin sensitive Gi protein (Chambers et al. 2000). The physiological
role of the UDP-glucose receptor is unknown, but transcripts are spread widely throughout
the neuraxis. The UDP-glucose receptor is also structurally related to P2Y5, P2Y9, and P2Y10

receptors.

21.3 Cellular and subcellular localization
Presently, only six P2Y receptors P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, and P2Y12 are accepted as
clearly defined, distinct, nucleotide receptors in the P2Y receptor family. The UDP-glucose
receptor fulfils many criteria for acceptance, but the physiological role for UDP-glucose
signalling is mainly unexplored. The remainder of this review will concentrate on the six,
accepted, P2Y receptors.

The P2Y1 receptor was isolated first from chick brain, in which exceedingly high levels
of P2Y1 receptor expression are observed (37 pmol mg−1 protein for [35S]-dATPαS bind-
ing (Kd, 9 nM); cf. 1–2 pmol mg−1 for muscimol binding at GABAA) (Webb et al. 1993,
1994). Mammalian orthologues were later cloned from corpus callosum, as well as from
endothelial cells, insulinoma cells, and placenta. P2Y1-like immunoreactivity is located
throughout the human, rat, and bovine neuraxis and concentrated in neuronal cells in
cerebral and cerebellar cortex, hippocampus, caudate nucleus, putamen, subthalamic nuc-
leus, and midbrain (Moore et al. 2000; Moran-Jimenez and Matute 2000). P2Y1 receptor
transcripts are present in rat brain cortical astrocytes (Webb et al. 1996a) and P2Y1-like
immunoreactivity also observed in rat and bovine brain astrocytes (Moran-Jimenez and
Matute 2000). [35S]-dATPαS binding was observed throughout the rat neuraxis at putative
P2Y1 receptors (Simon et al. 1997). The related compound, [35S]-ATPαS, binds with high
affinity (Kd, 10.5 nM) to P2Y1-like receptors in rat cortex synaptosomes (Schäfer and Reiser
1999). Outside the brain, P2Y1 transcripts have been found in mammalian placenta, heart,
blood vessels, skeletal muscle, pancreas, blood platelets, and leucocytes, prostate, ovary,
small and large intestine, and in some large DRG neurones (Ralevic and Burnstock 1998;
King et al. 2001). P2Y1 transcripts are abundant in developing limb buds, mesonephros,
brain, somites, and facial primordia in the chick embryo (Meyer et al. 1999). At the subcellu-
lar level, a P2Y1-GFP construct expressed in HEK 293 cells was identified in plasmalemma,
endoplasmic reticulum, Golgi and microsomal fractions but was absent from nuclear and
mitochondrial fractions (Vöhringer et al. 2000).

P2Y2 receptors were first isolated from a murine neuroblastoma x glioma hybrid cell line
(Lustig et al. 1993) and later cloned from alveolar cells, bone, epithelial, endothelial, and
pituitary cells. P2Y2 receptor transcripts are found in mammalian heart and vasculature,
lung, kidney, osteoblasts, placenta, skeletal muscle, and endocrine tissues (King et al. 2001).
On a functional level, P2Y2-like receptors are found in astrocytes, chromaffin cells, epithelia,
endothelia, fibroblasts, glia, hepatocytes, keratinocytes, leucocytes, myocytes, pituitary cells,
and tumour cells (Ralevic and Burnstock 1998). P2Y2 receptors tagged with Haemagglutinin
A (HA) showed a punctate distribution on the surface of 1321N1 cells and, after agonist
activation, P2Y2-HA immunoreactivity was randomly internalized into the cytosolic pool
(Sromek and Harden 1998).
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Less information on the distribution of the remainder of the P2Y receptors exists. P2Y4

receptors were cloned from human placenta (Communi et al. 1995) and later isolated from
mammalian brain, epithelial cells, heart, and pancreas. P2Y4 transcripts are also found
in astrocytes, epithelial lining of hollow organs, kidney, leucocytes, and vascular smooth
muscle (King et al. 2001). P2Y4-like receptors were identified functionally in the jejunal
lining in P2Y2R-deficient mice (Cressman et al. 1999). The P2Y6 receptor was cloned first
from rat aortic smooth muscle (Chang et al. 1995) and later from human placenta and
T-lymphocytes. P2Y6 transcripts are found in mammalian bone, epithelia, heart, kidney,
leucocytes, lung, spleen, and thymus (King et al. 2001). A P2Y6-like receptor was identified
functionally in the epithelial lining of gallbladder and trachea in P2Y2 receptor-deficient
mice (Cressman et al. 1999) and a P2Y6-like receptor has also been reported in human nasal
epithelial cells (Lazarowski et al. 1997). The P2Y11 receptor was cloned from human placenta
and its transcripts are found in human spleen, intestine, and granulocytes (HL-60 cells)
(Communi et al. 1997). The P2Y11 receptor approximates the native P2Y receptor in HL-60
cells (Conigrave et al. 1998; Communi et al. 1999), and appears to be directly involved in the
differentiation of human granulocytes into neutrophils (Communi et al. 2000). Transcripts
for the canine P2Y11 receptor are more widespread and also found in brain (Zambon et al.
2001). P2Y12 receptors were cloned from rat and human blood platelets and its transcripts
are abundant in platelets but also present in brain (Hollopeter et al. 2001). P2Y12 receptor
transcripts were found in rat C6-2B glioma cells. The P2Y12 receptor is pharmacologically
similar to the human platelet P2T receptor and the endogenous P2Y receptor of C6-2B
glioma cells (Boyer et al. 1993; Hollopeter et al. 2001).

21.4 Pharmacology
The pharmacology of the P2Y receptors is complex and involves a wide range of purine- and
pyrimidine-based, mononucleotidic and dinucleotidic, compounds (King et al. 2001). Many
ligands are naturally occurring, but synthetic nucleotides are now available to test against
P2Y receptor subtypes.

21.4.1 Agonists
Human P2Y1 receptors are activated fully by ADP and the naturally occurring dinucleotide,
Ap4A. ATP can act either as a full agonist, partial agonist, or antagonist depending on receptor
reserve (King et al. 2001). Other mononucleotides (e.g. CTP, GTP, ITP, UTP and their imme-
diate breakdown products) are inactive. The synthetic alkylthio-ATP derivatives are potent
agonists (e.g. 2-MeSATP, 2-MeSADP, 2-HT-ATP, PAPET-ATP), as are phosphorothioate ATP
derivatives (e.g. ATPγS and ADPβS), while methylene phosphonate-ATP derivatives (α, β-
meATP and β, γ-meATP) are inert (Jacobson et al. 2000). At recombinant P2Y1 receptors,
dATPαS is either a weak agonist (Simon et al. 1995) or an antagonist (King and Townsend-
Nicholson 2000), whereas at P2Y1-like receptors in rat brain, ATPαS and ATP are equipotent
agonists (Schäfer and Reiser 1999). Human P2Y2 receptors are activated equally by ATP and
UTP, as well as by the dinucleotides Ap4A and Up4U (King et al. 2001; Pendergast et al. 2001).
The phosphorothioate derivatives ATPγS and UTPγS are potent stimulants, but other major
classes of synthetic nucleotides are not. Human P2Y4 receptors are activated by UTP and
Up3U (Pendergast et al. 2001), while CTP, GTP, ITP, and Ap4A are considered to be weak
agonists (Jacobson et al. 2000; King et al. 2001). In contrast, rat and mouse P2Y4 receptors



PURINERGIC RECEPTORS 429

are activated equally by UTP and ATP. Human P2Y6 receptors are activated by UDP and,
to a lesser extent, ADP with all other nucleoside triphosphates being very weak agonists
(Communi et al. 1996b). Of the synthetic compounds, UDPβS and Up3U are both potent
agonists at P2Y6 receptors (Malmsjo et al. 2000; Pendergast et al. 2001). Rat and mouse
orthologues show a similar pharmacological profile to human P2Y6 (Filippov et al. 1999;
Lazarowski et al. 2001). The human P2Y11 receptor is activated by ATP and ADP (Communi
et al. 1999) and the synthetic nucleotides BzATP, deoxyATP, 2-MeSATP, and AR-C67085
(2-propyl-d-β, γ-dichloromethylene-ATP) are also all potent agonists (Communi et al. 1999;
Qi et al. 2001). In contrast, some synthetic nucleotides—ADPβS, ATPγS, and A3P5PS—
are partial agonists, although, under some circumstances, they can also act as antagonists
(Communi et al. 1999). Human P2Y12 receptors are activated by ADP, 2-MeSADP and to a
lesser extent by ATPγS (Hollopeter et al. 2001).

21.4.2 Antagonists
Some synthetic adenosine 3′, 5′-bisphosphate derivatives are potent antagonists (e.g. MRS
2179 and MRS 2279) (Nandanan et al. 2000) at P2Y1 receptors and the classical P2 receptor
antagonists (PPADS, Reactive blue-2 and suramin) also inhibit P2Y1 receptor activity (King
et al. 2001). Suramin is also the one and only weak antagonist of P2Y2 receptors. For
human P2Y4, ATP is reported to be the most potent competitive antagonist (Kb, 0.7 µM;
Kennedy et al. 2000). Weak antagonist activity has also been reported for PPADS, suramin
and Reactive blue-2 at P2Y4, P2Y6, and P2Y11 receptors (Robaye et al. 1997; Bogdanov et al.
1998; Lazarowski et al. 2001; King et al. 2001;). Human P2Y12 is antagonized by 2-MeSAMP
(Hollopeter et al. 2001) and C13307 (Scarborough et al. 2001), while the native form of the
receptor is potently blocked by ARC67085 (Humphries et al. 1995). P2Y1 antagonists, in the
form of adenosine 3′, 5′-bisphosphate derivatives are inert at human P2Y12.

21.5 Signal transduction and receptor modulation
Most of the recombinant P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11) couple via the
Gq/PLCβ pathway to cause IP3 production, Ca2+-mobilization and activation of Ca2+-
dependent reporter currents in heterologous expression systems (King et al. 2001). When
expressed in cultured sympathetic neurones, some P2Y receptors inhibit native Ca2+ and
K+ currents by a direct action on ion channels by G protein catalytic and regulatory sub-
units (Filippov et al. 1997, 1998, 1999, 2000). Endogenous metabotropic P2 receptors affect
a much wider range of intracellular signalling pathways and utilize PLCβ, PLD, PLA2, AC,
MEP/MAP kinases and Rho-dependent kinase, as well as coupling directly to some ion
channels. The narrow selectivity of recombinant P2Y subtypes may only reflect the limited
availability of signalling pathways in expression systems used so far.

A native P2Y1-like receptor, in the clonal line (B10) of rat brain capillary endothelial
cells, appeared to couple negatively to adenylate cyclase and inhibit cAMP levels through a
PTX-sensitive G protein (Webb et al. 1996). The possibility that recombinant rP2Y1 receptors
might affect cAMP production was investigated by expression into 1321N1 and C6 rat glioma
cells that, respectively, utilize Gq/PLCβ and Gi/AC signalling mechanisms (Schachter et al.
1997). Experiments showed that rat P2Y1 receptors selected only the Gq/PLCβ pathway in
1321N1 cells, and not the Gi/AC pathway in C6 glioma cells. Although B10 cells possess
P2Y1 transcripts, it was later shown that B10 cells also possessed a P2Y12-like receptor that
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could activate the Gi/AC pathway and help explain earlier results (Simon et al. 2001). The
available evidence suggests that known species orthologues of P2Y1 couple primarily to the
Gq/PLCβ pathway. The skate p2y receptor, considered to be the most primitive form of P2Y1,
is the only GPCR in skate liver to signal via the Gq/PLCβ pathway (Dranoff et al. 2000). Apart
from the Gq/PLCβ signalling, P2Y1 receptors directly inhibit N-type Ca2+-currents in rat
sympathetic neurones (Filippov et al. 2000).

The P2Y2 receptor appears to couple mainly to the Gq/PLCβ pathway, although 35 per
cent of the evoked Ca2+-signal is inhibited by PTX (Erb et al. 1993; Parr et al. 1994). PLCβ

activation, via Gα of PTX-insensitive Gq and Gβ,γ complex of PTX-sensitive Gi, could account
for the P2Y2-induced Ca2+-signal (Lustig et al. 1996). In Xenopus oocytes, P2Y2 receptors
couple directly to co-expressed K+ channels of the Kir 3.0 subfamily via PTX-sensitive Gi/o

proteins (Mosbacher et al. 1998). In sympathetic neurons, P2Y2 receptors inhibit N-type
Ca2+-currents via a PTX-sensitive mechanism (Filippov et al. 1997, 1998). A native P2Y2-
like receptor, in canine MDCK-D1 epithelial cells, was reported to couple indirectly to
Gs/AC through an indomethacin-sensitive pathway (Zambon et al. 2000). Dual signalling
also occurs with the human P2Y4 receptor, since PTX limits the Ca2+ signal by 60 per cent in
the first 30 s of agonist activation but fails to inhibit Ca2+

i levels following prolonged (>300 s)
agonist activation (Communi et al. 1996a). By contrast, P2Y6 receptor signalling via Ca2+-
mobilisation was reported to be PTX-insensitive (Chang et al. 1995; Robaye et al. 1997).
However, P2Y6 receptors inhibit N-type Ca2+-currents via a PTX-sensitive mechanism in
sympathetic neurons (Filippov et al. 1999).

The P2Y11 receptor couples strongly to the Gq/PLCβ pathway, but also activates the Gs/AC
pathway (Communi et al. 1997, 1999; Qi et al. 2001). It was reported that inositol hydrolysis
and Ca2+-mobilisation, via the Gq/PLCβ pathway, could potentiate cAMP production via
the Gs/AC pathway in 1321N1 and CHO-K1 cells (Qi et al. 2001). This potentiating effect
may help explain differences in agonist potencies when a range of nucleotides was tested
against the two signalling pathways (Communi et al. 1999; Qi et al. 2001). The signalling and
pharmacological properties of P2Y11 mirror the endogenous P2Y receptor in HL-60 cells
(Conigrave et al. 1998; Suh et al. 2000).

P2Y1 receptors couple to the Gi/AC pathway to inhibit cAMP production, an effect blunted
by PTX (Hollopeter et al. 2001). While human P2Y12 receptors directly inhibit cAMP pro-
duction in CHO cells, receptor activation was otherwise assessed in oocytes by Gβ,γ subunit
stimulation of Kir 3.1 and 3.4 ion channels co-expressed with P2Y12 (Hollopeter et al. 2001).

21.6 Physiology and disease relevance
The multiplicity of P2Y receptor subtypes and ubiquitous presence in all human tissues
indicates nucleotidic signalling is important in the major physiological systems. The role
of purines and pyrimidines in the pathophysiology of disease, has been broadly described
in a number of reviews over the last five years (Burnstock 1997, 2002; Abbracchio and
Burnstock 1998; Burnstock and Williams 2000; Williams and Jarvis 2000; Boeynaems et al.
2001).

21.6.1 Diseases of the central nervous system
The widespread distribution and density of P2Y1 receptors in the neuraxis indicates a role
in central transmission. P2Y1-like receptors can inhibit (von Kügelgen et al. 1994, 1997;
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Bennett and Boarder 2000; Mendoza-Fernandez et al. 2000) or facilitate (Zhang et al. 1995)
transmitter release from central neurones. These pre-synaptic effects on transmitter release
could be explained by the known effector systems for P2Y1 receptors—for example, a direct
inhibitory action on N-type Ca2+-channels to limit exocytosis (Filippov et al. 2000) or large
Ca2+-transients via the Gq/PLCβ pathway to stimulate exocytosis (Mirinov 1994; Schäfer
and Reiser 1999). With regard to disease states, the presence of P2Y1 and P2U-like receptor
receptors on astrocytes (King et al. 1996) coupled to their signalling through the ERK
pathway (Neary et al. 1998, 1999, 2000), has implicated these receptors in the mitogenic
action of ATP in reactive astrogliosis. This is a hyperplastic condition associated with CNS
injury in a number of conditions including trauma, stroke, epilepsy and Alzheimer’s disease
and multiple sclerosis. Astrocytes support the viability of neurones and P2Y1 and P2U-
like receptor signalling is implicated in the reparative processes following such CNS injury
(Ciccarelli et al. 2001). It has been difficult to define a clear role for P2Y2 receptors in
the nervous system due to a lack of selective agonists and antagonists able to distinguish
this receptor from the other P2Y subtypes showing a P2U-like phenotype (i.e. P2Y4 and
P2Y6). The recent discovery of the di-uridine polyphosphate series, particularly Up4U as
a stable agonist of P2Y2 receptors, may alter these circumstances. A P2U-like receptor has
been implicated in the regulation of transmitter release from hypothalamic vasopressin
neurones (Hiruma and Bourque 1995) and paravertebral sympathetic neurones (Boehm
1998).

21.6.2 Peripheral indications
P2Y1-like receptors in rodent osteoclasts show an interesting chemosensitivity to extracellular
pH (Hoebertz et al. 2001) and this modulatory effect of H+ ions may have some bearing
on the purinergic (P2Y- and P2X-based) control of central respiratory drive during acidosis
(Ralevic et al. 1999). In addition, P2Y2 receptors are known to stimulate the mucus escalator
in lung and directly affect airway hydration (Yerxa 2001). Consequently, the utility of uridine-
based nucleotides (e.g. INS365 (Up4U)) is under investigation for chronic bronchitis and
cystic fibrosis (Shaffer et al. 1998).

P2Y receptors are being pursued for a number of potential peripheral disease indications.
For example, P2Y2 receptors may have an ameliorating influence in dry eye by stimulating
tear production (Pintor and Peral 2001; Yerxa 2001) and P2Y4 receptors have been implicated
in proliferative disorders of the kidney (Harada et al. 2000). Reports also suggest that modu-
lation of P2Y6 receptor activity may be implicated in nucleotide-promoted colonic damage
in inflammatory bowel disease (Somers et al. 1998). The P2Y11 receptor has been strongly
implicated in the differentiation of HL60 cells from granulocytes to neutrophils (Communi
et al. 2000) and it has therefore been postulated that P2Y11 receptor-directed ligands may be
important in neutropenia (a loss of neutrophils) and some forms of leukaemia (Boeynaems
et al. 2001). Finally, the P2Y12 receptor corresponds to the Gi-linked ADP receptor in human
blood platelets (Hollopeter et al. 2001) and, like the P2Y1 receptor, is intimately involved in
the clotting response (Hourani 2001). Use of a highly selective and competitive antagonist
(C13307) has been developed for the P2Y12 receptor and should help to clarify the role
of this receptor in disorders where the regulation of blood clotting may be of importance
(Scarborough et al. 2001).
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21.7 Concluding remarks
The understanding of purinergic GPCRs has advanced significantly in the last ten years, with
the cloning of multiple P2Y receptor subtypes and isolated study of their pharmacological
and signalling properties. Advances have also been made in the medical chemistry of P2Y
receptors, with the beginnings of agonist and antagonist selectivity for various P2Y subtypes.
Purinergic signalling in the nervous system is less than clear, but an improved armament
of selective ligands is now showing benefit. The role of P2Y receptors in diseases states is
slowly being revealed and clinical trials have begun in key therapeutic areas, although CNS
investigations are in their infancy. The role of purinergic signalling in neural development is
now being considered, as are conditions for upregulation of P2Y receptors at various stages
in the life cycle. The complexity of purinergic signalling represents a major challenge, which
has now been taken up by many laboratories in academia and industry.

Note: A Gi-coupled P2Y13 receptor—activated by ADP and inhibited by PTX—has been
found in brain and spleen (Communi et al. J Biol Chem 276, 41 479–85, December 2001).
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