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ABSTRACT This article attempts to paint a broad picture of the extraordinary explosive recent develop-
ments in the purinergic signaling field. After a brief historical review and update of purinoceptor subtypes,
the focus is on the physiological roles of purines and pyrimidines. These are considered both in terms of
short-term signaling in neurotransmission, secretion, and vasodilatation and in long-term (trophic) signal-
ing in development, regeneration, proliferation, and cell death. Examples of trophic signaling include carti-
lage development in limb buds, glial cell proliferation, development of skeletal muscle, changes in receptor
expression in smooth-muscle phenotypes, maturation of testicular spermatids, and bone remodeling. Plas-
ticity of purinoceptor expression in pathological conditions is described, including the increase in the
purinergic component of parasympathetic nervous control of the human bladder in interstitial cystitis and
outflow obstruction and in sympathetic cotransmitter control of blood vessels in hypertensive rats, the
appearance of P2X7 receptors in the glomeruli of the kidney from diabetic and transgenic hypertensive
animal models, and up-regulation of P2X1 and P2Y2 receptor mRNA in hearts of rats with congestive heart
failure. The role of P2X3 receptors in nociception is considered, and a new hypothesis about purinergic
mechanosensory transduction in the gut is explored. A personal view of some of the areas ripe for future
development concludes this article, including a discussion of different strategies that could lead to the
development of purinergic therapeutic agents. Drug Dev. Res. 52:1–10, 2001. © 2001 Wiley-Liss, Inc.
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INTRODUCTION

The purinergic signaling field was born more than
30 years ago. It had a very troubled postnatal period and
now, at last, it seems to be blossoming into puberty with
the promise of many good times to come as it matures.
This article starts with a brief historical review of the field
and an update of purinoceptor subtypes and then focuses
on the physiological and pathophysiological roles of pu-
rines and pyrimidines, stressing some of the new and
exciting avenues for future developments.

EARLY HISTORY

As is well known by now, the field started with the
seminal article by Drury and Szent-Györgyi in 1929, in
which they showed potent extracellular actions of purine
nucleotides and nucleosides on the heart. In a 1959 land-
mark article, Pamela Holton showed release of ATP during
antidromic stimulation of sensory nerves to the rabbit ear

artery in sufficient amounts to produce changes in vascular
tone. Then, in 1970 in Melbourne, we found evidence that
ATP is a neurotransmitter in nonadrenergic, noncholinergic
(NANC) nerves supplying the gut [Burnstock et al., 1970],
and in 1972, I put forward the purinergic neurotransmis-
sion hypothesis [Burnstock, 1972].

PURINOCEPTOR SUBTYPES

Implicit in the purinergic neurotransmission hy-
pothesis was the presence of postjunctional receptors for
ATP [Burnstock, 1976a], and a basis for distinguishing
P1 (adenosine) from P2 (ATP/ADP) receptors was pro-
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posed [Burnstock, 1978] that helped resolve some of the
earlier ambiguous reports. These were complicated by
the breakdown of ATP to adenosine by ectoenzymes, so
that some of the actions of ATP were directly on P2 re-
ceptors while others were due to indirect action via P1
receptors. It was not, however, until 7 years later that
Burnstock and Kennedy [1985] proposed a basis for dis-
tinguishing two types of P2 purinoceptor, P2X and P2Y,
based largely on pharmacological criteria. Soon after,
Gordon [1986] proposed two further P2 subtypes, namely,
P2T on platelets and P2Z on macrophages. Later, it was
recognized that pyrimidines as well as purines are po-
tent extracellular messengers, and they were named P2U
receptors [O’Connor et al., 1991].

Williams remarked that “this random walk through
the alphabet was not really satisfactory.” It was fortunate
that in the early 1990s studies of transduction mecha-
nisms [Dubyak, 1991] and cloning of both P2Y [Lustig et
al., 1993; Webb et al., 1993] and P2X [Brake et al., 1994;
Valera et al., 1994] receptors was reported. This led
Abbracchio and Burnstock [1994] to put forward a new
nomenclature system, which is now widely accepted.
They proposed that there were two families of P2
purinoceptors—P2X ionotropic ligand-gated ion chan-
nel receptors and P2Y metabotropic G protein–coupled
receptors. This framework allowed for a logical expan-
sion as new receptors were identified. There are currently
seven subtypes of P2X receptors and six subtypes of P2Y
receptors that are clearly recognized [Ralevic and
Burnstock, 1998]. In addition, there have been recent
suggestions for a P2X8 receptor [Bo et al., 2000] and sev-
eral new P2Y subtypes [King et al., 2001]. Earlier, four
subtypes of P2 receptors were cloned, namely, A1, A2A,
A2B, and A3 [Ralevic and Burnstock, 1998].

P2X Receptor Family

P2X receptors are characterized by two transmem-
brane domains, short intracellular N- and C-termini and
an extensive extracellular loop with conservation of 10
cysteines. It has become apparent that the pharmacol-
ogy of the recombinant P2X receptor subtypes expressed
in oocytes or other cell types is often different from the
pharmacology of P2Y-mediated responses in naturally
occurring sites. There are several contributing factors to
explain these differences. First, it is now recognized that
three P2X units (or possibly four) form the ionic pore
and that heteromultimers as well as homomultimers are
involved. For example, heteromultimers are clearly es-
tablished for P2X2/3 [Lewis et al., 1995; Radford et al.,
1997], P2X4/6 [Lê et al., 1998], P2X1/5 [Torres et al., 1998;
Haines et al., 1999], and P2X2/6 [King et al., 2000]. P2X7

does not form heteromultimers, and P2X6 will not form a
functional homomultimer [Torres et al., 1999; North and
Surprenant, 2000]. Second, spliced variants of P2X re-

ceptor subtypes might play a part. For example, a spliced
variant of P2X4 receptor, while it is nonfunctional on its
own, can potentiate the actions of ATP through the full-
length P2X4 receptors [e.g., Townsend-Nicholson et al.,
1999]. Third, the presence of powerful ectoenzymes in
tissues that rapidly break down purines and pyrimidines
is not a factor when examining recombinant receptors
[Zimmermann, 1996].

Early studies of the distribution of P2X receptor
subtypes based on Northern blot and in situ hybridiza-
tion studies [Collo et al., 1996] have been extended sub-
stantially, after antibodies to these receptors became
available, by immunohistochemical localization at both
light [Vulchanova et al., 1996; Bradbury et al., 1998; Chan
et al., 1998a; Xiang et al., 1998a,b, 1999; Bo et al., 1999;
Gröschel-Stewart et al., 1999a,b; Bardini et al., 2000;
Brouns et al., 2000; Lee et al., 2000a,b] and electron mi-
croscopic levels [Llewellyn-Smith and Burnstock, 1998;
Loesch and Burnstock, 1998, 2000; Loesch et al., 1999].
For example, while it was originally thought that smooth
muscle contained only P2X1 receptors, there is now evi-
dence for the presence of P2X2, P2X4, and probably P2X5

receptors as well as both homomultimers and hetero-
multimers [see, for example, Nori et al., 1998; Hansen et
al., 1999; Lewis and Evans, 2000]. P2X1 receptors, which,
in earlier studies, were not considered to be present in
the brain, now have been found at postjunctional sites in
synapses in the cerebellum [Loesch and Burnstock, 1998].
In current studies in my laboratory, Lele Jiang has found
alternating molecules of the P2X1 receptor and connexin
43 in discs in the heart, perhaps involved in gap junction
regulation. The P2X1 receptor is characterized by rapid
desensitization and potent actions of α,β-methylene ATP
(α,β-meATP), and there are now very potent selective
antagonists for this receptor, such as trinitrophenyl ATP
[Lewis et al., 1998] and diinosine pentaphosphate [King
et al., 1999].

The P2X2 receptor is widespread in the central ner-
vous system and has been found at both pre- and postsyn-
aptic sites in the hypothalamus [Loesch et al., 1999]. A
feature of the P2X2 receptor is lack of fast desensitization
and extreme sensitivity to acidity and Zn2+ [King et al.,
1996; Wildman et al., 1998, 1999a,b]. P2X3 receptors are
interesting in that they are predominantly localized in
sensory nerves, particularly the small nociceptive neu-
rons in the dorsal root ganglia and trigeminal and nodose
ganglia [Bradbury et al., 1998]. The central projections
are located in inner lamina II of the dorsal horn of the
spinal cord [Llewellyn-Smith and Burnstock, 1998], and
peripheral extensions have been noted in the skin, tongue,
and tooth pulp [Bo et al., 1999; Gröschel-Stewart et al.,
1999a; Burnstock, 2000; Alavi et al., 2001]. There is re-
cent evidence for P2X2 and P2X3 labeling of endothelial
cells of microvessels in brain, thymus, thyroid, and gut
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and also in epithelial cells in the thyroid [Gröschel-
Stewart et al., 1999b; Glass and Burnstock, 2001; Glass
et al., 2000; Loesch and Burnstock, 2000].

P2X4 and P2X6 receptors are prominent in the cen-
tral nervous system and are unique among P2X subtypes
in that responses to purines mediated by these receptors
are potentiated by suramin, pyridoxalphosphate-6-
azophenyl-2′,4′-disulphonic acid, and reactive blue 2,
agents commonly used as P2 antagonists [Bo et al., 1995;
Séguéla et al., 1996; Ralevic and Burnstock, 1998;
Townsend-Nicholson et al., 1999]. P2X5 receptors have
been shown to be associated with proliferating and dif-
ferentiating epithelial cells in the skin and hair follicles
[Gröschel-Stewart et al., 1999a], in the bladder and ure-
ter [Lee et al., 2000b], and in the vagina [Bardini et al.,
2000]. This receptor subtype is also prominent in a num-
ber of cell types in embryonic development [Meyer et
al., 1999a; Bar-Isaac et al., 2000].

P2X7 receptors are unique in that, as well as a cat-
ion pore, a large, 4-nm pore can be formed, which ap-
pears to be linked with apoptosis, perhaps associated with
the elongated C-terminus of this receptor [Surprenant
et al., 1996]. It is particularly interesting that in recent
studies in our laboratory, the P2X7 receptor has been
found to be internalized in cells that, under pathological
conditions such as ischemia and cancer, become exter-
nalized, leading to apoptosis. Fluorescent green protein
coupled to P2X7 receptors will provide a valuable tech-
nique for observing the movement of receptors in living
cells [see, for example, Dutton et al., 2000].

P2Y Receptor Family

P2Y receptors, in common with other G protein–
coupled receptors, have seven transmembrane domains,
an extracellular N-, and intracellular C-terminus. The
conservation between the different subtypes is greatest
in the transmembrane domains, the C-terminus show-
ing the greatest diversity. P2Y1 receptors, which were first
cloned from chick brain, where they are ATP-selective,
now appear to be ADP-selective in mammals and hu-
mans. In particular, 2-methylthioADP is a potent agonist
[Hechler et al., 1998], and MRS 2179 is a potent antago-
nist [Boyer et al., 1998]; MRS 2269 and MRS 2286 have
been identified as selective antagonists [Brown et al.,
2000]. At P2Y2 and P2Y4 receptors in the rat, ATP and
UTP are equipotent, but the two receptors can be distin-
guished with antagonists, that is, suramin blocks P2Y2

and Reactive blue 2 blocks P2Y4 [Bogdanov et al., 1998;
King et al., 1998]. The P2Y3 receptor is regarded as an
orthologue of P2Y6 by many researchers in the field, while
P2Y5, P2Y9, and P2Y10 appear to be orphan receptors with
no evidence of a functional role.

P2Y6 is UDP-selective, while P2Y7 turned out to be
a leukotriene receptor [Yokomizo et al., 1997]. P2Y8 is a

receptor cloned from frog embryos, where all the nucle-
otides are equipotent [Bogdanov et al., 1997], but no
mammalian homologue has been identified to date, apart
from a recent report of P2Y8 mRNA in undifferentiated
HL60 cells [Adrian et al., 2000]. P2Y11 is unusual in that
there are two transduction pathways, adenylate cyclase
as well as inositol trisphosphate, which is the second
messenger system used by the majority of the P2Y re-
ceptors. The P2YT receptor found on platelets was not
cloned until recently and seems likely to represent one
of a subgroup of P2Y receptors for which transduction is
entirely through adenylate cyclase. A receptor on C6
glioma cells and possibly a receptor in the midbrain, se-
lective for a diadenosine polyphosphate, also may oper-
ate through adenylate cyclase. An interesting question
has arisen by analogy with other G protein–coupled re-
ceptors as to whether dimers can form between the P2Y
subtypes.

PHYSIOLOGY
Non-neuronal Short-Term Signaling

A major step forward was the proposal in 1976 that
more than one transmitter can be released from nerve
terminals (the cotransmitter hypothesis) [Burnstock,
1976b]. This is now widely accepted, and the focus is on
defining the “chemical coding” of various nerve types,
that is, to describe the combination of neurotransmitters
in these nerves and their projections to various sites, such
as smooth muscle, secretory cells, or other nerves. In the
autonomic nervous system, the coding of prejunctional
fibers also is under investigation.

There is now supporting evidence that ATP is a
cotransmitter in many nerve types, probably reflecting
the primitive nature of purinergic signaling [Burnstock,
1996, 1999a]. Thus, there is now evidence for ATP as a
cotransmitter with noradrenaline and neuropeptide Y
in sympathetic nerves, for ATP with acetylcholine and
vasoactive intestinal peptide in some parasympathetic
nerves, for ATP with nitric oxide and vasoactive intesti-
nal peptide in enteric NANC inhibitory nerves, and for
ATP with calcitonin gene–related peptide and substance
P in sensory-motor nerves. There is also evidence for
ATP with γ-aminobutyric acid in retinal nerves and for
ATP with glutamate or with dopamine in nerves in the
brain. In sympathetically innervated tissues, such as vas
deferens or blood vessels, ATP produces fast responses
mediated by P2X receptors and followed by a slower
component mediated by G protein–coupled α-adreno-
ceptors; neuropeptide Y usually acts as a pre- or post-
junctional modulator of the release and/or action of
noradrenaline and ATP. Similarly, for parasympathetic
nerves supplying the urinary bladder, ATP provokes a
fast, short-lasting twitch response via P2X receptors,
whereas the slower component is mediated by G pro-
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tein–coupled muscarinic receptors. In the gut, ATP re-
leased from NANC inhibitory nerves produces the fast-
est response, nitric oxide gives a less rapid response,
and vasoactive intestinal peptide produces slow tonic
relaxations. In all cases of cotransmission, there are con-
siderable differences in the proportion of the cotrans-
mitters in nerves supplying different regions of the gut
or vasculature and between species. The plasticity of
expression of different cotransmitters in development
and in different pathological conditions is discussed later
in this article.

Some influential articles were published in Nature
in 1992, which provided the first clear evidence for nerve-
nerve purinergic synaptic transmission. One of these ar-
ticles showed that excitatory postsynaptic potentials in
the celiac ganglion were reversibly antagonized by
suramin, a P2X antagonist [Evans et al., 1992], which was
reported concurrently in an independent study [Silinsky
et al., 1992]. Similar experiments were carried out in the
medial habenula in the brain, showing reversible block
of excitatory postsynaptic potentials by suramin [Edwards
et al., 1992]. Since then, there have been many articles
describing either the distribution of various P2 receptor
subtypes in the brain and spinal cord or electrophysi-
ological studies of the effects of purines in brain slices,
isolated nerves, and glial cells [Gibb and Halliday, 1996;
Abbracchio, 1997; Robertson, 1998; Burnstock, 1999b].
Synaptic transmission also has been found in the myen-
teric plexus [Zhou and Galligan, 1996; LePard et al., 1997;
Spencer et al., 2000] and in various sensory and sympa-
thetic and pelvic ganglia [Zhong et al., 1998, 2000a,b;
Dunn et al., 2000].

Non-neuronal Signaling

It would be an error to think of purinergic signal-
ing only in relation to excitable tissues, because there
are now many examples of purinoceptor-mediate re-
sponses in non-neuronal and non-muscular cell types.
Such examples include endothelial cells, which express
P2Y1, P2Y2, and probably P2Y4 receptors that, when oc-
cupied, release nitric oxide leading to vasodilatation.
Moreover, there has been the more recent discovery of
P2X receptors in endothelial cells, probably leading to
the formation or regulation of gap and tight junctions
involved in permeability [Loesch and Burnstock, 2000];
P2Y receptors in pancreatic β-cells involved in insulin
secretion [Loubatières-Mariani and Chapal, 1988] and
P2Y2 receptors in hepatocytes [Schöfl et al., 1999]; P2YT,
P2X1, and P2Y1 receptors in platelets [Kunapuli and
Daniel, 1998]; and P2Y2 on myelinating Schwann cells
and P2Y1 receptors on non-myelinating Schwann cells
[Mayer et al., 1998]. P2 receptors also are involved in
signaling to endocrine cells, leading to hormone secre-
tion [Chen et al., 1995b; Lee et al., 1996; Tomi� et al.,

1996; Törnquist et al., 1996; Sperlágh et al., 1999; Glass
et al., 2000a; Vainio and Törnquist, 2000].

Long-Term (Trophic) Signaling

In addition to the examples of short-term signaling
described here, there are now many examples of
purinergic signaling concerned with long-term events,
such as development and regeneration, proliferation, and
cell death [Abbracchio, 1996; Neary et al., 1996;
Abbracchio and Burnstock, 1998]. For example, α,β-
meATP produces proliferation of glial cells, whereas ad-
enosine inhibits proliferation. A P2Y8 receptor was cloned
from the frog embryo, which appears to be involved in
the development of the neural plate [Bogdanov et al.,
1997]. P2Y1 receptors seem to have a role in cartilage
development in limb buds and in development of the
mesonephros [Meyer et al., 1999b]. P2X5 and P2X6 re-
ceptors have been implicated in the development of chick
skeletal muscle [Meyer et al., 1999a]. In recent studies
of purinoceptor expression in the mouse myotubes, we
have shown progressive expression of P2X5 (from E14 to
E18), P2X6 (from E16 to E18), and P2X2 (from E18 to
postnatal day 7) [Bar-Isaac et al., 2000].

In a study of purinoceptor signaling in smooth-
muscle phenotypes from the aorta, P2X1 was prominent
in the contractile phenotype. P2Y subtypes were also
present, but in the synthetic phenotype grown in cul-
ture, the P2X1 receptor was not detectable, while P2Y1

and P2Y2 receptors were substantially upgraded [Erlinge
et al., 1998]. P2X2, P2X3, P2X5, and P2X7 receptors have
been shown to be expressed in spermatids in distinct
developmental stages in the seminiferous epithelium of
the rat testis [Glass et al., 2000b]. This may be an inter-
esting new target in the development of contraceptives.
There are several reports implicating P2X and P2Y re-
ceptors in osteoclasts and osteoblasts involved in bone
remodeling [Morrison et al., 1998; Wiebe et al., 1999;
Dixon and Sims, 2000; Hoebertz et al., 2000].

PLASTICITY OF PURINOCEPTOR EXPRESSION
AND PATHOPHYSIOLOGY

Plasticity in Disease

It is by now well established that the autonomic ner-
vous system shows marked plasticity. The expression of
cotransmitters and receptors shows dramatic changes in

Fig. 1. Schematic of a novel hypothesis about purinergic mechano-
sensory transduction in the gut. It is proposed that ATP released from
mucosal epithelial cells during moderate distension acts preferentially
on P2X3 receptors on low-threshold subepithelial intrinsic sensory nerve
fibers (labeled with calbindin), contributing to peristaltic reflexes. ATP
released during extreme distension also acts on P2X3 receptors on high-
threshold extrinsic sensory nerve fibers (labeled with isolectin B4, IB4)
that send messages via the dorsal root ganglia (DRG) to pain centers in
the central nervous system.
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Figure 1.
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development and aging, in nerves that remain after trauma
or surgery, and in disease conditions [Burnstock, 1981,
1986, 1990, 1991; Milner and Burnstock, 1994; Abbracchio
and Burnstock, 1998]. A few examples follow.

It is well known that although the purinergic com-
ponent of parasympathetic transmission of the urinary
bladder is between 40% and 70% in experimental labo-
ratory animals, it is very small compared with muscar-
inic transmission in human bladder, despite the fact that
P2X receptors are clearly present [Burnstock, 2001].
However, there are now a number of examples where
the purinergic component in the human bladder is in-
creased up to 40% in pathophysiological conditions, such
as interstitial cystitis [Palea et al., 1993], outflow obstruc-
tion [Smith and Chapple, 1994; Bayliss et al., 1999], and
possibly also neurogenic bladder [Wammack et al., 1995].

Another example where ATP plays a significantly
greater cotransmitter role is in sympathetic nerves sup-
plying hypertensive blood vessels [Vidal et al., 1986;
Bulloch and McGrath, 1992; Brock and Van Helden,
1995]. In the healthy kidney, P2X1 receptors are promi-
nent in pre-glomerular arterioles and larger vessels, but
P2X receptor expression is never seen in the glomerulus
[Chan et al., 1998a]. However, recent studies in our group
have shown prominent expression of P2X7 receptors in
the glomerulus of damaged kidneys from both transgenic
hypertensive mice and streptozotocin-induced diabetic
rats [Chan et al., 1998b]. Up-regulation of P2X1 and P2Y2

receptor mRNA in hearts of rats with congestive heart
failure has been reported [Hou et al., 1999].

P2X3 Receptors and Nociception

There have been various reports over the years con-
cerning ATP on sensory nerves. In 1995, the P2X3 re-
ceptor was cloned [Chen et al., 1995a; Lewis et al., 1995]
and was shown to be expressed predominantly on noci-
ceptive neurons in sensory ganglia [Burnstock, 2000].
Sensory nerve terminals in the tongue are strongly
immunopositive for the P2X3 receptor [Bo et al., 1999],
and we have developed a tongue sensory-nerve prepara-
tion to examine the pathways of purinergic sensory sig-
naling [Rong et al., 2000]. ATP and α,β-meATP applied
to the tongue were shown to activate sensory afferent
fibers preferentially in the lingual nerve but not the taste
fibers in the chorda tympani.

A new hypothesis for purinergic mechanosensory
transduction in visceral organs involved in the initiation of
pain has been proposed [Burnstock, 1999c]. It is suggested
that distension of tubes (such as the ureter, salivary ducts,
and gut) and sacs (such as urinary bladder and gallbladder)
leads to the release of ATP from the lining epithelial cells.
ATP diffuses to the subepithelial sensory nerve plexus to
stimulate P2X3 and/or P2X2/3 receptors, which mediate
messages to pain centers in the central nervous system. It

has been established that ATP is released from the epithe-
lial cells in the distended bladder [Ferguson et al., 1997]
and ureter [Knight et al., 1999]. P2X3 receptors also have
been identified in subepithelial nerves in the ureter [Lee
et al., 2000b] and in the bladder [Cockayne et al., 2000].
Recording in a P2X3 knockout mouse, we have shown that
the micturition reflex is impaired and that responses of sen-
sory fibers to P2X3 agonists are gone, suggesting that P2X3

receptors on sensory nerves in the bladder have a physi-
ological as well as a nociceptive role [Cockayne et al., 2000].
Similarly, P2X3 receptors on projections of neurons from
the nodose ganglia supplying neuroepithelial bodies in the
lining of the lung [Brouns et al., 2000] may also mediate
pathophysiological events, perhaps involved in protective
responses to noxious gases.

I conclude this review by proposing another hy-
pothesis about sensory nerves in the gastrointestinal tract.
It is known that the sensory nerves in the gut arising from
dorsal root ganglia are labeled with P2X3 receptors (and
isolectin B4), but we now have been able to show that
the intrinsic sensory neurons in both myenteric and sub-
mucous plexuses, which are labeled with calbindin, also
show positive immunoreactivity for P2X3. It is proposed
that during moderate distension, low-threshold intrinsic
enteric sensory fibers are activated via P2X3 receptors
by ATP released from mucosal epithelial cells, leading to
reflexes concerned with propulsion of material down the
gut. In contrast, it is proposed that with substantial dis-
tension, which often is associated with pain, higher-
threshold extrinsic sensory fibers are activated by ATP
released from the mucosal epithelia, which pass messages
through the dorsal root ganglia to pain centers in the cen-
tral nervous system (Fig. 1). We are carrying out experi-
ments to test this hypothesis.

FUTURE DEVELOPMENTS

Some of the areas of research that seem likely to
predominate in the next few years include studies of
knockout mice for receptor subtypes, in addition to the
P2X1, P2X2, P2X3, P2X7, P2Y1, or P2Y2 knockout mice
that have been reported to date [Léon et al., 1999; Cesare
et al., 2000; Cockayne et al., 2000; Homolya et al., 2000;
Mulryan et al., 2000]. It is likely that there will be many
studies of purinergic signaling in the brain, focusing, it is
hoped, on physiological and behavioral roles, in addition
to applying purines and pyrimidines to neurons and glial
cells in brain slices and in culture. An expansion of stud-
ies to the long-term trophic roles of purines and pyrim-
idines in a variety of systems is highly desirable, in
particular, in embryonic development and wound heal-
ing. There is likely to be substantial interest in the thera-
peutic development of purinergic agents for a variety of
diseases. The therapeutic strategies are likely to extend
beyond the development of selective agonists and antago-
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nists for different P2 receptor subtypes to the develop-
ment of agents that control the expression of P2 recep-
tors, of inhibitors of extracellular ATP breakdown, and of
ATP transport enhancers and inhibitors. The interactions
of purinergic signaling with other established signaling
systems also will be an important way forward.
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