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SUMMARY

The extent of heterogeneity in a meta-analysis partly determines the di�culty in drawing overall con-
clusions. This extent may be measured by estimating a between-study variance, but interpretation is
then speci�c to a particular treatment e�ect metric. A test for the existence of heterogeneity exists,
but depends on the number of studies in the meta-analysis. We develop measures of the impact of
heterogeneity on a meta-analysis, from mathematical criteria, that are independent of the number of
studies and the treatment e�ect metric. We derive and propose three suitable statistics: H is the square
root of the �2 heterogeneity statistic divided by its degrees of freedom; R is the ratio of the standard
error of the underlying mean from a random e�ects meta-analysis to the standard error of a �xed e�ect
meta-analytic estimate, and I 2 is a transformation of H that describes the proportion of total variation
in study estimates that is due to heterogeneity. We discuss interpretation, interval estimates and other
properties of these measures and examine them in �ve example data sets showing di�erent amounts of
heterogeneity. We conclude that H and I 2, which can usually be calculated for published meta-analyses,
are particularly useful summaries of the impact of heterogeneity. One or both should be presented in
published meta-analyses in preference to the test for heterogeneity. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

A systematic review of studies addressing a common question will inevitably bring together
material with an element of diversity. Studies will di�er in design and conduct as well as
in participants, interventions, exposures or outcomes studied. Such diversity is commonly
referred to as methodological or clinical heterogeneity, and may or may not be responsible
for observed discrepancies in the results of the studies. Statistical heterogeneity exists when
the true e�ects being evaluated di�er between studies, and may be detectable if the variation
between the results of the studies is above that expected by chance.
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Addressing statistical heterogeneity (referred to simply as heterogeneity in this paper) is
one of the most troublesome aspects of many systematic reviews. The interpretative problems
depend on how substantial the heterogeneity is, since this determines the extent to which
it might in�uence the conclusions of the meta-analysis. It is therefore important to be able
to quantify the extent of heterogeneity among a collection of studies. An obvious means
of achieving this is by estimating the between-study variance of the parameters of interest.
This is done as part of a random e�ects meta-analysis [1]. The variance can be used to
describe the extent of variability in e�ect across studies, for example, as a range of odds ra-
tios or risk ratios. However, such a measure does not facilitate comparisons of heterogeneity
across meta-analyses of di�erent types of outcomes, such as dichotomous and continuous out-
comes. Further, interpretation of this estimate in isolation can be di�cult, since it is speci�c
to the chosen measure of e�ect in the meta-analysis. For example, in clinical trials a com-
mon measure of treatment e�ect for dichotomous outcome data is the odds ratio. The extent
of heterogeneity is quanti�ed on the scale of the log-odds ratio, an unintuitive scale to
most.
A more common way of indicating the extent of heterogeneity is a statistical test, often

described as Cochran’s �2 test or the Q-test [2; 3]. A p-value is frequently quoted as an
indication of the extent of between-study variability. It is widely appreciated that the test has
poor power in the common situation of few studies, and excessive power to detect clinically
unimportant heterogeneity when there are many studies [4]. The test does not therefore provide
a relevant summary of the extent to which heterogeneity impacts on the meta-analysis.
We here aim to develop measures of the extent of heterogeneity in a meta-analysis that

overcome the shortcomings of existing measures. Our focus is on the impact of heterogeneity
on the results of a meta-analysis and therefore, more loosely, on the degree to which con-
clusions might be generalized to situations outside those investigated in the studies at hand.
We desire measures which are easily interpretable by non-statisticians and which do not in-
trinsically depend on the number of studies or type of outcome data. A measure with such
properties could have many useful applications. Apart from our primary motivation of devel-
oping a simple, universal statistic that summarizes the impact of heterogeneity in a wide range
of meta-analyses, it may enable quanti�cation of how much heterogeneity can be accounted
for by study-level covariates, or by particularly in�uential studies.
In the following section we introduce some motivating examples illustrating a variety of

meta-analytic situations. In Section 3 we then present our desirable properties formally, and
develop potential measures of the impact of heterogeneity for the mathematically tractable
special case of studies which have equally precise estimates. We explore properties and in-
terpretations of those that show promise in the general case in Section 4, and propose three
measures for general use within systematic reviews and apply them to our example data sets.
Finally, in Section 5 we discuss the strengths and limitations of our proposals.

2. MOTIVATING EXAMPLES

We introduce �ve data sets from systematic reviews of clinical trials, to which we apply our
methods in Section 4. They have been chosen to provide a range of meta-analyses with regard
to numbers of studies, measures of treatment e�ect and extent of heterogeneity.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1539–1558
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2.1. Homogeneous set of trials: Human albumin (Figure 1(a))

A systematic review collated randomized controlled trials of human albumin solution for
resuscitation and volume expansion in critically ill patients [5]. An overall detrimental e�ect

Figure 1. Con�dence interval plots for four example data sets: (a) 24 trials of albumin versus placebo
[5]; (b) 11 trials of adjuvant chemotherapy [7]; (c) 19 trials of sclerotherapy versus control [8]; (d) 7
trials of CDP-choline versus control [9]; (e) 3 trials of gamma nail versus sliding hip screws [10].

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1539–1558
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Figure 1. Continued.

of albumin on mortality was apparent, in part due to a striking lack of heterogeneity in
relative risks between the trials, despite a degree of clinical diversity that led to controversy
[6]. Figure 1(a) illustrates the relative risks of death on albumin relative to placebo for all
24 trials included in the meta-analysis.

2.2. Moderate heterogeneity: Adjuvant chemotherapy (Figure 1(b))

Our second example is a meta-analysis based on individual patient data undertaken by the
Sarcoma Meta-analysis Collaboration [7]. Fourteen trials of adjuvant chemotherapy for local-
ized resectable soft-tissue sarcoma of adults were identi�ed. We address the outcome of local
recurrence-free interval, for which 11 trials contributed data. This is a time-to-event outcome,
and the treatment and control groups were compared using hazard ratios. There was no sta-
tistically signi�cant heterogeneity, but the results were not as apparently homogeneous as the
albumin trials.

2.3. Heterogeneous set of trials: Sclerotherapy (Figure 1(c))

A meta-analysis was undertaken of 19 trials of sclerotherapy versus control treatment for
the prevention of �rst bleeding in cirrhosis [8]. Substantial heterogeneity in odds ratios was
identi�ed in terms of both size and direction of e�ect. In particular, six were statistically
signi�cant with odds ratios less than one (favouring sclerotherapy) and one was statistically
signi�cant with an odds ratio greater than one.

2.4. Outlying trial: CDP-choline (Figure 1(d))

Meta-analysis on a memory outcome (recall production) included seven trials of cytidinedi-
phosphocholine (CDP-choline) for cognitive and behavioural disturbances associated with
chronic cerebral disorders in the elderly [9]. The studies used a variety of instruments and
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so a standardized di�erence between mean measurements (denoted SMD) in the treatment
and control groups was used. The SMD in one study di�ered substantially from the SMDs in
the other studies. The authors noted that this study ‘used a non-standard memory assessment
and the results were disparate from the remaining studies. For this reason the analysis was
repeated excluding this study’.

2.5. Extreme heterogeneity among few trials: gamma nail (Figure 1(e))

Our �nal example is an extreme set of three trials of gamma nails versus sliding hip screws
for extracapsular hip fractures [10]. For the outcome of radiographic screening time, all three
trials yielded a highly statistically signi�cant mean di�erence, but two found longer screening
times for gamma nails and one found longer screening times for sliding hip screws.

3. METHODS

3.1. Background

Di�erent techniques for meta-analysis require di�ering types of information, ranging from the
direction of average e�ect in each study to individual data from each participant in each study.
We consider a widely applicable, and widely used, approach based on an observed estimate,
and its corresponding precision, from each study. Methods described by DerSimonian and
Laird [1] and Whitehead and Whitehead [3] follow this approach, and the so-called ‘Peto
method’ [11] can be viewed within this framework. We denote an estimate of parameter �i
from study i (i=1; : : : ; k) by yi, and its precision (which we de�ne as the reciprocal of the es-
timate’s variance) by wi. We make the conventional assumption that the precisions are known,
although in reality these are estimated from the data in each study. In a traditional �xed e�ect
meta-analysis the �i are assumed identical and a summary estimate, �̂F, is calculated as a
weighted average of the study estimates, using the precisions as weights: �̂F =

∑
wiyi=

∑
wi.

The variance of �̂F under the �xed e�ect assumption is vF=1=
∑
wi. A basic random e�ects

meta-analysis may be achieved by incorporating an estimate of the between-study hetero-
geneity, �2, into the weights [1] to produce a summary estimate �̂R=

∑
w∗
i yi=

∑
w∗
i , where

w∗
i =(w

−1
i + �̂2)−1. An approximate variance of �̂R under the random e�ects assumption is

vR=1=
∑
w∗
i .

A test of homogeneity of the �i is provided by referring the statistic

Q=
∑
wi(yi− �̂F)2

to a �2 distribution with k − 1 degrees of freedom. A moment-based estimate of �2 may be
obtained [1] by equating the observed value of Q with its expectation

E[Q]=�2
(∑

wi−
∑
w2i∑
wi

)
+ k − 1 (1)

yielding

�̂2DL=
Q− (k − 1)∑
wi−

∑
w2i∑
wi

(2)
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By convention this is replaced with zero if Q¡k − 1, with the consequence that, for a given
set of studies, the precision of a random e�ects summary estimate will not exceed the precision
of a �xed e�ect summary estimate.

3.2. Derivation of candidate measures

We derive candidate measures of heterogeneity by considering the special case in which the
sampling variances of estimates from each study are known and equal, say to 1=wi=�2 for
all i. Measures which do not ful�l appropriate properties in this situation will not be useful
for consideration in the general case. In developing mathematical criteria to match the desired
properties of a measure of heterogeneity, we set out the scenario as follows. We have k
studies with true underlying treatment e�ects �i such that E[�i]=� and var(�i)=�2. From
each study an estimate yi of �i is available such that E[yi | �i]=�i and var(yi | �i)=�2. No
particular distributions are assumed. The parameters underlying the scenario are �; �2; �2 and
k, where � and �2 are unknown, k is known and �2 is assumed known.
Under these simplifying assumptions we �nd

�̂2DL = �
2
(
Q
k − 1 − 1

)
(3)

�̂R = �̂F= �y

vF =
�2

k
(4)

vR ≈ (�2 + �2)
k

and note that the unconditional variance of an individual yi is given by

var(yi)=�2 + �2

Let us denote our measure of heterogeneity by f(�; �2; �2; k). We formulate our criteria as
follows:

(i) Dependence on the extent of heterogeneity. Our �rst criterion requires that

f(�; �′2; �2; k)¿f(�; �2; �2; k) whenever �′2¿�2

This criterion is self-evident.
(ii) Scale invariance. A linear transformation of the parameter space from R to a+ bR

suggests the requirement that

f(a+ b�; b2�2; b2�2; k)=f(�; �2; �2; k) for any a; b

We impose this criterion in order that comparisons may be made across meta-analyses
using di�erent scales of measurement and using di�erent types of outcome data. It
also re�ects the idea that the axes of con�dence interval plots (such as Figure 1) are
unimportant in describing the impact of heterogeneity.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1539–1558
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(iii) Size invariance. This criterion states that the measure is not dependent on the number
of studies:

f(�; �2; �2; k ′)=f(�; �2; �2; k) for all k; k ′

This criterion arises because the number of studies, although related to the evidence
for heterogeneity, should not intrinsically a�ect its extent.

Note that we do not propose that our measure should be independent of the precisions of
estimates observed in the studies. Thus sets of studies with identical heterogeneity �2, but with
di�erent degrees of sampling error �2, will produce di�erent measures. Our aim is to describe
the impact of the heterogeneity on the meta-analysis, its conclusions and its interpretation,
rather than describing the underlying between-study variability. The latter can best be achieved
simply by estimating the between-study variance, �2.
Criterion (iii) implies that the measurement must not involve k and (ii) implies it must not

involve �. Further, criterion (i) implies that �2 must be involved (as does common sense) and
that f(:) should increase monotonically with �2. Criterion (ii) thence implies that �2 must be
involved, and also that f(:) must be a function of the ratio of �2 to �2. Our goal is therefore
to �nd a monotonic increasing function of �=�2=�2 which is easily interpretable, and where
the dependence on �2 is implicit rather than explicit so that the measure may be applied in
the more general case of unequal study precisions.
First, we consider

�+1=
�2 +�2

�2
(5)

Using an estimate in place of �2 will lead to an estimate of this. The moment estimate yields,
from (3)

H 2=
Q
k − 1 (6)

as a possible measure of the amount of heterogeneity. Alternatively, noticing that the numer-
ator in (5) may be estimated by kvR from (4) and the denominator is kvF, we might consider
the statistic

R2=
vR
vF

(7)

as an estimate of �+1 and hence an alternative measure of the amount of heterogeneity.
Both H 2 and R2 have appealing interpretations, which we discuss in Section 4.
Now we consider a di�erent function of �

�
1+�

=
�2

�2 +�2
(8)

Although explicitly involving the within-study variance, which will in practice vary between
studies, we consider a statistic of the form

I 2=
�̂2

�̂2 + �̂2
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We discuss approaches to deriving �̂2, and demonstrate why this construction has potential
application in the general case, in the following section.

3.3. Generalizability

The formal criteria we used to derive the measures do not generalize conveniently to the
situation in which precisions di�er between studies, where �−2 is replaced by a set of values
{wi; i=1; : : : ; k}. Now the data are the set of k pairs {yi; wi}. Whereas generalizations of
criteria (i) and (ii) are immediate, that of (iii) is prevented by the inseparable association
between actual wis and the number of studies, k. However, the measures H 2 and R2 can both
easily be calculated for studies with di�erent precisions, since they do not explicitly involve
�2 in their calculation, although they are no longer identical.
The statistic I 2 requires a number, �̂2, that describes the ‘typical’ within-study variance.

We consider two possibilities. The �rst has been suggested by Takkouche et al. [12], who
present a statistic in the form of I 2 as a quanti�cation of heterogeneity in a meta-analysis.
They take the reciprocal of the arithmetic mean weight, to give �̂2=kvF. For the second, we
note that using (1) we can write

E[H 2]=
�2 + s2

s2

for the general case, where

s2=
∑
wi(k − 1)

(
∑
wi)

2 −∑
w2i

(9)

Hence we use �̂2=s2. We prefer this second method, for there is a convenient relationship
between I 2 and H 2:

I 2=
H 2 − 1
H 2 (10)

4. INTERPRETATION AND PROPERTIES OF PROPOSED MEASURES
OF HETEROGENEITY

Here we develop the statistics H 2; R2 and I 2. While we have introduced them through de�ning
their squares, we shall henceforward address the square roots of the �rst two (H and R)
because we believe that clinicians are, in general, more familiar with standard deviations and
con�dence intervals than with variances. However, we present I 2 as it stands since the concept
of ‘proportion of variance (un)explained’ is widely familiar.

4.1. The H statistic

The statistic H in (6) describes the relative excess in Q over its degrees of freedom. The
ratio of Q to its degrees of freedom has been suggested previously as a measure of the extent
of heterogeneity [13]. Since E[Q]=k − 1 in the absence of heterogeneity, H=1 indicates
homogeneity of treatment e�ects. An appealing interpretation for H may be achieved through
consideration of the radial plot of Galbraith [14; 15] of the standardized treatment e�ect

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1539–1558
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Figure 2. Values of H (out of 1000) from simulated meta-analysis data sets for increasing num-
bers of studies from 2 to 30, and with di�erent values of within-study precision (w) and be-
tween-study variance (�2). (a) w=1, �2 = 0; (b) variable w (between 0.1 and 1.9, average 1),
�2 = 0; (c) w = 1, �2 = 0:25; (d) variable w, �2 = 0:5; (e) w=1, �2 = 1; (f) variable w,
�2 = 1. ——, median of H ; - - - - - -, mean of H ; -·-·-, 95 per cent reference range for H ; .........,

true value of H (known for cases (a), (c) and (e)).

estimates yi
√
wi against

√
wi. The slope of the unweighted least squares regression line though

the origin on such a plot is given by �̂F=
∑
wiyi=

∑
wi, that is, the traditional �xed e�ect

meta-analytic pooled estimate. The estimated residual standard deviation from this regression
is given by

√{∑
(yi

√
wi − �̂F

√
wi)2

k − 1
}
=
√(

Q
k − 1

)

which is our de�nition of H .
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Figure 3. The mathematical relationship between H and the number of studies in a meta-analysis for
three �xed p-values from the heterogeneity test (p=0:1, p=0:05 and p=0:01).

The consistency of the statistic H across di�erent sizes of meta-analysis is illustrated from
simulations in Figure 2. The value of H does not intrinsically depend on the number of
studies (unlike Q), and increases appropriately as �2 increases. There is a slight average bias
for small numbers of studies (say less than eight). Variability in H is large for small numbers
of studies, so it will be di�cult in practice for moderate heterogeneity to be distinguished from
chance. The variability is slow to reduce as the number of studies increases. The behaviour
of H is similar when precisions vary to when they do not.
Figure 3 illustrates the mathematical relationship between the statistical test for heterogeneity

(based on Q) and the value of H over varying numbers of studies. With a small number
of studies, statistically signi�cant heterogeneity would be evident only when the impact of
heterogeneity, as measured by the H statistic, is high. This explicitly highlights the poor
properties of the test when there are few studies. The graph may also be used as an aid to
the interpretation of H in relation to the more familiar test result.

4.1.1. Calculation and uncertainty. Calculation of H is straightforward, and possible from
the majority of published metaanalyses, where either the Q-statistic or its p-value is presented
(since the number of studies is generally known). We choose to present the maximum out of H
and 1, though we recognize that this will prevent identi�cation of excessive homogeneity –
that is less variability than would be expected by chance – perhaps due to studies being
replicated within a meta-analytic data set.
One possible complication in practice is that the Q-statistic is not always calculated using

the inverse-variance weighted average �̂F. For example, the software MetaView used in the
Cochrane Database of Systematic Reviews [16] makes use of the Mantel–Haenszel �xed e�ect
summary estimate in place of �̂F for dichotomous outcome data. The di�erence between the
results using these two methods is however usually small.

Copyright ? 2002 John Wiley & Sons, Ltd. Statist. Med. 2002; 21:1539–1558
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In the Appendix we discuss eight methods of calculating con�dence intervals for H and
report brief results of a Monte Carlo investigation of their performance. We prefer to interpret
these as reference intervals for H since we do not consider H to be estimating an intuitive
parameter. The intervals describe the variability associated with the value of H for studies with
precisions identical to those observed in the current meta-analysis. They re�ect uncertainty in
the extent of heterogeneity. For practical application, we recommend a simple construction for
an interval (method III in the Appendix) involving only Q and k, derived from a test-based
standard error for ln(Q). Intervals are of the form

exp(lnH ±Z�×SE[ln(H)])
where Z� is the (1− �=2) quantile of the standard normal distribution and

SE[ln(H)] =
1
2
ln(Q)− ln(k − 1)√
(2Q)−√

(2k − 3) if Q¿k

√{
1

2(k − 2)
(
1− 1

3(k − 2)2
)}

if Q6k

In the examples that follow we also consider, for comparison, some alternative methods: a
bootstrap interval (method VIII); a maximum likelihood method (method IV), and a Bayesian
approach (method VII). The last two arise from viewing H as an estimate of

�=
√{

(
∑
wi −

∑
w2i =

∑
wi)�2

k − 1 + 1
}

(11)

as discussed at greater length in the Appendix.

4.1.2. Application. Table I lists values for H for our �ve examples. The homogenous albumin
trials give a value of Q=(k − 1) below 1, which we replace by H=1. In such situations we
calculate a con�dence interval from the standard error of ln(Q=(k − 1)) under homogeneity,
giving an upper limit of 1.34. Too few of the bootstrap samples yielded values for H greater
than 1, resulting in both the lower and upper limits of a 95 per cent interval being 1. The
upper end of the Bayesian credible interval was 1.26, supporting a conclusion that there is
minimal between-study variability in this data set.
A value of H=1:19 for the adjuvant chemotherapy trials indicates the presence of some

heterogeneity. All 95 per cent intervals include 1, and upper bounds range from 1.46 for the
ML interval to 2.31 for the Bayesian interval. In this and subsequent examples, the Bayesian
interval has a noticeably larger upper limit than the other intervals. This arises since the
method places no restrictions on the distribution of �̂2.
The heterogeneous sclerotherapy trials give a value of H of 2.13. This indicates that the

residual standard deviation on the Galbraith plot is just over twice the value than if the
studies had been homogenous. All intervals of uncertainty exclude 1, providing strong evidence
that the heterogeneity is real. The test-based interval is the narrowest interval. The bootstrap
interval is slightly wider, and the ML interval wider still. ML intervals will tend to be wider
since they are based on symmetric con�dence intervals for �2, which has a highly skewed
distribution. The Bayesian version of H again has the widest uncertainty interval.
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The H statistic for the CDP-choline data set is 2.63, with a 95 per cent test-based con�dence
interval from 1.90 to 3.65, indicating strong evidence of genuine heterogeneity. The ML and
bootstrap con�dence intervals have a lower limit of 1. It is clear that the bootstrap approach
will produce misleading results for data sets such as this one, which has a single outlying
trial. Sampling with replacement from the 7 trials, 34 per cent of samples will not include
the outlying trial, and will therefore yield small values for H (the value of H for the 6 trials
excluding the outlier is 1). The Bayesian interval is much the widest, although it excludes 1,
re�ecting the considerable uncertainty around the value of the between-trial variance in this
peculiar data set.
The three con�icting trials of gamma nails versus sliding hip screws give a huge value

of H=8:07 (95 per cent test based interval from 6.08 to 10.72). The ML and bootstrap
intervals again both begin at 1, and are not realistic summaries of uncertainty in the impact
of heterogeneity in this meta-analysis. The Bayesian interval stretches from 3.88 to 51.5,
re�ecting the high uncertainty surrounding estimation of �2 from only three trials.

4.2. The R statistic

Interpretation of the square of R, as de�ned in (7), may be made in a similar manner to
that of a design e�ect in cluster sampling [17]. It describes the in�ation in the con�dence
interval for a single summary estimate under a random e�ects model compared with a �xed
e�ect model. A value of 1 indicates identical inferences under the two models, that is when
treatment e�ects are homogenous and the �xed e�ect model is su�cient. Consistency of R
over various scenarios is very similar to that for H illustrated in Figure 2.

4.2.1. Calculation and uncertainty. A value for R may be obtained using any method of
obtaining the appropriate variances. We concentrate on the computationally straightforward
calculation [1; 3]

R=
√{∑

wi∑
w∗
i

}
=
√{ ∑

wi∑
(w−1
i + �̂2)−1

}
(12)

We may thus view R as an estimate of a function of �2 alone (since the wi are assumed
known). This leads to the selection of estimates and approximate con�dence intervals based
on methods for estimating �2, as described for H in the Appendix. A Bayesian interval and
a bootstrap con�dence interval are also available.

4.2.2. Application. Table I lists values for R for our �ve examples. A test-based interval
such as that based on the signi�cance test for Q is not available for R. Both values of R
and con�dence intervals are very similar to those for H . This is to be expected in many
circumstances since H and R coincide when all estimates have equal precision. The gamma
nail trials yield values substantially larger than for H , again with wide 95 per cent intervals
re�ecting the uncertainty associated with the small number of trials.

4.3. The I 2 statistic

The denominator of the right-hand side of (8) is the unconditional variance of the yi, which
comprises additive components due to within-study variation (usually between-patient vari-
ation) and between-study variation (heterogeneity). The quantity therefore has an appealing
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interpretation as the proportion of total variation in the estimates of treatment e�ect that is
due to heterogeneity between studies. It is similar in concept to the intraclass correlation co-
e�cient in cluster sampling. This interpretation may be made approximately for the statistic
I 2 in the general case.

4.3.1. Calculation and uncertainty. We de�ne I 2 in terms of H using equation (10). This
allows us to express inferences made on H in terms of I 2. Con�dence limits for I 2 are therefore
readily available from con�dence limits for H as discussed above and in the Appendix.

4.3.2. Application. Values for I 2 expressed as a percentage are included in Table I for the
�ve examples. There is a direct correspondence between these and results for H . The change
of scale, however, reveals new interpretations for the �ndings. We focus here on the point
values alone. An I 2 of 0 per cent for the albumin trials indicates that all variability in e�ect
estimates is due to sampling error within trials, and that none is due to heterogeneity. On the
other hand, despite a non-signi�cant heterogeneity test result (p=0:17), some 20 per cent of
variability in the adjuvant chemotherapy trials may be attributable to between-study variation.
For the sclerotherapy, CDP-choline and gamma nail examples, values for I 2 are 78, 86 and
98 per cent, respectively.

5. DISCUSSION

We have developed three measures, H; R and I 2, for quantifying the impact of heterogeneity
in a meta-analysis. The measures H and R are identical if all studies have identical precisions,
and will be similar in most other situations. The measure I 2 is a transformation of H that has
a di�erent, yet intuitive, interpretation. Our measures are more relevant than the result of the
test for heterogeneity that is commonly presented in a meta-analysis. The test has poor power
with few studies and inappropriately high power with many studies, and it can therefore be
di�cult to decide either whether heterogeneity is present or whether it is clinically important.
H; R and I 2 do not depend on the number of studies. We recommend that one of these be
presented in place of the test.
Our measures quantify the impact rather than the extent of heterogeneity in a meta-analysis.

The impact depends on the precisions of the study-speci�c estimates, which a measure of
extent should not. The between-study variance measures extent of heterogeneity and is an im-
portant parameter in its own right, but it is speci�c to a particular treatment e�ect metric. A
measure that compares the extent of heterogeneity across di�erent scales would be useful. One
approach might be to measure treatment e�ects in a consistent way across studies, irrespective
of the data type measured on individuals [18]. However, this would involve a di�erent ap-
proach to the meta-analysis, and would not lead to a measure that is simple to calculate from
published reviews. In common with Q or its p-value [19], our measures can be compared
across di�erent treatment e�ect metrics. For example, values of H for the sclerotherapy data
(Figure 1(c)) are 2.13 if the log-odds ratio is used, compared to 1.92 for the log relative risk
and 2.60 for the risk di�erence scales. An analysis focusing on relative risks would therefore
su�er from the least impact of heterogeneity. The principal advantage of H; R and I 2 over Q
is that comparisons can also be made across meta-analyses of di�erent sizes.
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How should particular values for H; R and I 2 and their con�dence intervals be interpreted
in practice? Some indications for H are given by Figure 3. For ten studies, statistically
signi�cant heterogeneity at p=0:1; p=0:05 and p=0:01 would be identi�ed from the test
when H=1:28; H=1:37 and H=1:55, respectively. For 30 studies, heterogeneity would
be identi�ed when H=1:16; H=1:21 and H=1:31, respectively. No universal rule could
cover de�nitions for ‘mild’, ‘moderate’ or ‘severe’ heterogeneity, but it would seem that
values exceeding 1.5 might induce considerable caution and values below 1.2 might cause
little concern. These correspond to values of I 2 of 56 per cent and 31 per cent. Thus, mild
heterogeneity might account for less than 30 per cent of the variability in point estimates,
and notable heterogeneity substantially more than 50 per cent. However, these suggestions
are tentative, not least because the practical impact of heterogeneity in a meta-analysis also
depends on the size and direction of treatment e�ects. The interpretation of heterogeneity in
a systematic review will depend critically on these, as well as on considerations of clinical
and methodological diversity in the studies.
Our measures may be used to give an indication of the contribution of individual studies [20]

and covariates [21] to the impact of heterogeneity. Derivation of a Bayesian interval for the
di�erence between the measures with and without particular studies is possible in BUGS
[22]. By replacing �̂F in the de�nition of Q with the �tted value from a regression equation,
a version of H (and therefore I 2) is de�ned for the impact of heterogeneity in a meta-
regression. Similarly, by taking the ratio of the standard errors of slopes from �xed e�ect and
random e�ects meta-regressions, a version of R is de�ned for univariate meta-regression.
Approximate con�dence intervals are available for all three measures, but a test-based in-

terval for H (or I 2) is particularly easy to calculate, being based only on the values of Q and
k, and has reasonable coverage. We have not found a good, simple interval for R. Bayesian
intervals for all statistics are available and might be considered the gold standard. How-
ever, they require computer-intensive methods and software expertise to calculate them, and
can be sensitive to prior distributions, especially when there is little information concerning
the heterogeneity variance as in the gamma nail example. A bootstrap-generated interval
provides a reasonable interval when there are many studies and heterogeneity permeates the
whole data set (rather than being due to a small number of outlying studies), but is poor
otherwise.
In conclusion, we propose H and I 2 as our favoured measures for quantifying heterogeneity

in a meta-analysis. H may be interpreted approximately as the ratio of con�dence interval
widths for single summary estimates from random e�ects and �xed e�ect meta-analyses (that
is, is approximately equal to R). I 2 describes the percentage of variability in point estimates
that is due to heterogeneity rather than sampling error. Both may be readily calculated from
most published meta-analyses, and a closed form uncertainty interval is available.

APPENDIX

We outline four approaches to calculating uncertainty intervals for H , leading to eight distinct
methods. The approaches are (i) based on the distribution of Q; (ii) based on the statistical
signi�cance of Q, (iii) based on the estimation of �2, and (iv) using a non-parametric bootstrap
procedure.
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A1. (i) Intervals based on the distribution of Q

Biggersta� and Tweedie [23] discuss the distribution of Q. If the �xed e�ect model is true
then Q has a �2 distribution with k−1 degrees of freedom. Otherwise it has a non-central �2
distribution. Biggersta� and Tweedie approximate the general distribution of Q by a gamma
distribution with mean and variance equal to the mean and variance of Q, which they derive.

Method I. A symmetric Wald-type uncertainty interval for H may be based on the variance
of Q given in equation (7) of Biggersta� and Tweedie [23]. A 95 per cent uncertainty
interval for H may be calculated as√{

1
k − 1 (Q± 1:96√var(Q))

}

Method II. The gamma approximation to the distribution of Q, as described by Big-
gersta� and Tweedie, provides a more appropriate interval. This requires evaluation of
quantiles from the cumulative distribution function of the gamma distribution, requiring
more advanced software than method I.

A2. (ii) Intervals based on the statistical signi�cance of Q

Method III. Test-based methods [24] provide a second approach to calculating con�dence
intervals for Q, and hence for H . We base these on ln(Q) in order to remove some of
the skew inherent in the distribution of Q. One approach, which can be calculated without
the use of statistical tables or computer software, is based on a normal approximation to the
�2 distribution for large degrees of freedom: Z=

√
(2Q)−√

(2k − 3) has approximately a
standard normal distribution (formula 26.4.13 in Abranowitz and Stegun [25]) so, equating
Z with (ln(Q)− ln(k − 1))=SE[ln(Q)], we can estimate a standard error for ln(Q) using

SE[ln(Q)]=
ln(Q)− ln(k − 1)√
(2Q)−√

(2k − 3)

Now, since Q=(k − 1)H 2, and k is a constant, we have var[ln(Q)]=4 var[ln(H)] and
hence a test-based standard error for ln(H) is

SE1[ln(H)]=
1
2
ln(Q)− ln(k − 1)√
(2Q)−√

(2k − 3)

A drawback to the test-based standard error is that it approaches zero as H approaches 1,
whereas we de�ne H to be 1 whenever Q6k−1. To overcome this, for small H , we take
a standard error based on the approximate variance of ln(Q=(k − 1))=2 ln(H) when Q
truly has a �2 distribution with k − 1 degrees of freedom (formula 26.4.36 in Abranowitz
and Stegun [25]):

SE0[ln(H)]=
√{

1
2(k − 2)

(
1− 1

3(k − 2)2
)}
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Using one or other of these standard errors, a 95 per cent uncertainty interval for H
follows as

exp(lnH ± 1:96×SE[ln(H)])
Note that since SE1[ln(H)] approaches 0 as H approaches 1 (with equality at H=1, that
is when Q6k − 1), we do not advocate switching to SE0[ln(H)] exactly at this point.
Empirical examination of the behaviour of SE1[ln(H)] in the range k=2; : : : ; 100 suggests
than SE0[ln(H)] should be used whenever Q6k, and this is the policy we follow.

A3. (iii) Intervals based on the estimation of �2

Using (2) we may view H as an estimate of � in (11). Thus a third approach to the calculation
of H and uncertainty intervals for H is to base them on estimates and uncertainty intervals
for �2, since all quantities in � other than �2 are assumed known. Various approaches to
estimating �2 with associated uncertainty are available. Biggersta� describes several approaches
(unpublished data). We consider three of them here:

Method IV. A maximum likelihood (ML) method based on an iterative estimate of �2

and a closed-form con�dence interval.
Method V. A restricted maximum likelihood (REML) method based on an iterative esti-
mate of �2 and a closed-form con�dence interval.
Method VI. A closer approximation than the gamma distribution of Biggersta� and Tweedie
to the distribution of Q is a Pearson type III distribution based on equating the mean, vari-
ance and skewness. Appropriate quantiles, giving rise to an approximate
95 per cent con�dence interval for Q, may be determined from the cumulative distri-
bution function of the Pearson distribution and converted to a 95 per cent con�dence
interval for �2.

Further approaches to estimating �2 with con�dence intervals are available, for example the
likelihood approach described by Hardy and Thompson [26]. We do not include this approach
here. However, we do consider a Bayesian approach:

Method VII. The expression (11) also allows us to compute a Bayesian estimate of �
(as a version of H), for example by adding this calculation into BUGS [22] code for a
simple random e�ects meta-analysis with non-informative priors [27]. In our analyses we
use locally non-informative N(0,1000) prior distributions for � and Uniform(0,1000) prior
distributions for �.

A4. (iv) Bootstrap intervals

Method VIII. Finally, a bootstrap interval for H may be obtained by taking samples of
size k with replacement from the pairs {yi; wi} and calculating quantiles for the H statistic
over repeated samples.

A5. Simulation study

We compared the eight methods of obtaining con�dence intervals for H described above by
simulation. We assessed the coverage of a 95 per cent con�dence interval for a variety of
simulated data sets in which (i) the number of studies, (ii) the relative study weights, (iii)
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the amount of heterogeneity and (iv) the symmetry of the distribution of true study e�ects were
varied. Some results are given in Table A1. The Bayesian approach was found to have good
coverage, and might be considered the gold standard as it assumes no particular distribution
for the between-study variance. The intervals based on symmetric intervals for Q or �2 had
excessive coverage. The Pearson type III approximation worked well in all situations, though
it is complicated to calculate. The bootstrap con�dence interval had poor coverage. The test-
based con�dence interval also performed well in all but the most extreme situations. We
recommend this one for its ease of calculation.
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