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The results of some highly accurate non-empirical ro-vibrational calculations on H,D* are reported including some for
J = 30 which are the first calculations to describe such a highly rotationally excited state. These results are obtained using an
improved version of our algorithm. The method used is a variational one and is well adapted to execution on supercomputers.
The computational characteristics of the performance the method on the CRAY 1s and the CRAY XMP 48 are given.

1. Introduction

Developments in electronic structure calculations have made possible the construction of accurate
potentials, at least for small molecules, and thus opened the way for a variety of fully non-empirical
nuclear-motion calculations to which this issue is a testimony. One such problem is the variational
calculation of molecular vibration—rotation spectra. Early work in this area was performed using the
Eckart—Watson Hamiltonian. Pioneers in these developments were Carney and Porter (for a review, see
Carney et al. [1]), and Handy and Whitehead [2]. The work to be described here is a development of that
variational approach.

Central to the construction of the body-fixed frame in which much of the pioneering work was
performed is the assumption of an equilibrium molecular geometry. It has long been recognised (see e.g.
Sayvetz [3]) that there are problems when describing large amplitude internal nuclear motions within this
assumption. Generally speaking these problems have been addressed only in circumstances where the
potential is known to have a very shallow minimum in some direction (as in, for example, free rotation
about a single bond). But the problems must become ubiquitous for sufficiently high energy. Modern
spectroscopic investigations (see e.g. refs. {4,5]) can probe these regions of high energy. It is therefore
clearly important to develop a method of calculating the spectrum which is capable of giving good results
both at lower energies where the Eckart-Watson Hamiltonian is usually effective, and at higher energies,
where it is liable not to be. There are obvious advantages to formulating a method in terms of a single
Hamiltonian, independent of any assumptions about equilibrium geometry, which is effective over the
complete range of energies and is adaptable to the details of the potential as revealed by calculation.

Such a Hamiltonian for a triatomic system is described in what follows. An account is given of its use in
describing the highly excited rotation—vibration spectrum of H,D™*.

The states of concern are those for which a clear separation between rotational and vibrational motion
is not possible because of the progressive overlap of rotational manifolds belonging to different vibrational
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states. The states are those, therefore, that would probably not be well described in terms of solutions to
the Eckart—Watson hamiltonian and our traditional ideas of molecular spectroscopy.

Indeed an initial study [6] for J < 20 suggests that at J of about 25 for H,D™ the lowest vibrational
excitation should be at a lower energy than the first rotational excitation! It is in order to probe this
potentially interesting and unexplored region of the spectrum that we have developed the refined
algorithm presented here.

We are thus able to give the first ab initio results for a fully coupled triatomic system with J = 30.

2. The Hamiltonian

Recently some rather general methods for the construction of Hamiltonians in body-fixed coordinates
have been developed [7,8] and in a recent paper [9] it has been shown how to construct a body-fixed
Hamiltonian with the desirable properties outlined above for a triatomic molecule, on the basis of these
methods.

In order to establish the notation a brief summary of that Hamiltonian will be given here. More details
may be found in ref. [9].

A pair of translation-free internal coordinates t;,, i=1, 2 are constructed in terms of the lab-fixed
coordinates x;, i =1, 2, 3 of the three particles as

h=x3—x,, t,=x,—gx,+(g-1)x;, O<g<l (1)

Among the translation-free coordinate sets that have such a form is one in which ¢, is the bond-length
vector from particle 2 to particle 1, obtained by setting g=1. Also possible is the collision- or
scattering-coordinate set in which ¢z, is the vector from the centre-of-mass of the diatomic 2-3 (t,) to
particle 1. In this case

g=m2mgl, Mg =M, + m; (2)

but many more forms are possible.

Whatever the precise choice made for g, a suitable set of rotation-free internal coordinates is »; the
length of t,, r, the length of ¢, and 6 the angle between ¢; and ¢,. The body-fixed frame may be defined
by placing the z-axis along #, (or t,), and requiring the other coordinate to remain in the positive x-half on
the x—z plane defined by the three particles. The body-fixed axis system is chosen to be right-handed.
Making such choices the body-fixed Hamiltonian may be written down and its form is given in full in ref.
[9]. On both physical and computational grounds it is appropriate to regard this Hamiltonian as working
on a manifold of function of the form:

rl‘lrz_]q'rinkj(rl’ r2)@jk(0) | JMk). (3)

Here | JMk) is a standard angular momentum eigenfunction in the Euler angles for the rotation of the
molecule as a whole and ©,,(6) is an associated Legendre polynomial in the Condon and Shortley phase
convention [10]. The total energy of the system does not depend on M, the component of total angular
momentum along the space-fixed z-axis. So without loss of generality one can consider only the ordinary
angular eigenfunctions | Jk).

The body-fixed Hamiltonian is allowed to operate on functions of the form (3) and the results are
multiplied from the left by (0, | Jk"))* followed by integrations over the Euler angles and 6. This leads
to an effective Hamiltonian which determines ¥;,,, (r,, ;). The choice of form made for the radial
functions in (3) is equivalent to incorporating the radial part of the Jacobian into the operator so that
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subsequent radial integrations are over dr;, dr,. It results in an effective Hamiltonian which is manifestly
Hermitian. The form of the Hamiltonian is

A=RP+KP+KR+KR+V, (4)
where
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V is the full potential, if it is expressed by means of the Legendre expansion

V(rl’ 7y, 0)=ZV>\(I‘1, rZ)P}\(COS 0) (9)
A
then integrating over 8 gives
V=2 8wwar(J’, J, k)Vi(r1, 1), (10)
AJj

where the Gaunt coefficient in (10) is

A . .7 A >
 k D@ + 1)@ +1 1/2( J)(J f) 11
s g = (DM e+ e+ 2L S NS (1)
using the conventional notation [11] for the 3-j symbols.
In the above expressions the embedding is for z along #,. To obtain the expressions for z along ¢, it is
simply necessary to interchange r, and r, and g, and p,. The auxilliary quantities are defined as follows

da=[(j—k+ DG +k+1)/2j+1)(2j+3)]"7 (12)
ap=[(j+k+1)(j+k+2)/2j+1)2j+3)]"7 - (13)
b=~ K)i-k=1) /(4= 1)), (14)

=i+ —k(k£1))” (15)

The effective operator is diagonal in J and no explicit reference is made to this. Otherwise the
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Kronecker deltas show the coupling within the rotational and the angular manifolds. The reduced masses
in the expressions are given by

_ _ _ _ _ _ 2 - _ _ _
prl=mat e myt, prt=mit A gtmy (1 —-g) my u121=g(m21+m31)—m31, (16)

and it is easily seen that when collision coordinates are chosen p;' becomes zero and thus K ) and K @
vanish.

It should be noticed that the form of the Hamiltonian (4) is such that no singularities arise when ¢ =0
or m so that linear configurations of the particles are accommodated for all g without special provision.

3. The method

Previous experience [12-18] has shown that the trial functions ¥ , ; can be very effectively chosen as
products of ortho-normal Morse-oscillator-like functions, H,(r,). If the parameters of these functions are
optimised then it does not prove necessary to allow for any dependence on .J, k or j. Details of the choice
of these functions and of the analysis for the calculation of their matrix elements over the effective
Hamiltonian can be found in ref. [9]. Details of the actual computational schemes used in matrix element
evaluation can be found in refs. [19,20].

The complete trial wave function is taken to be a linear combination of functions like (3), with the
radial functions ¥ . , realised as products H,(ry) H,,(r,). If, however, such a trial function is used directly
with the complete Hamiltonian to perform fully coupled rotation-vibration calculations, the problem
rapidly becomes intractable for large J, since every function of the internal coordinates must, in principle,
be associated with 2J + 1 rotational functions.

~ Actually, the increase is not quite so fast as this in a triatomic since planar symmetry can be used to
separate the problem into two parts each of dimension J + p where p=0 and 1. The p =0 states are
conventionally designated e and while the p =1 are called f. The parity of each of these parts is given by
(—1)’*?. Even so the rapid increase of problem size with J has limited calculations of this type to J
values of 4 or less.

Recently, however, the authors have developed a two-step approach [6,9,21] involving a second
variational step. This seems to be very effective in achieving high accuracy for high J states while keeping
the problem tractable.

The procedure is similar to the one used by Chen et al. [22] in calculations on H,O using the
Eckart—Watson Hamiltonian. It is based on the observation that for many systems the potential is such
that an internal coordinate system can be chosen in such a way that k (the projection of J along the
body-fixed z-axis) is nearly conserved. It is thus possible to obtain reasonable approximate solutions to the
full problem simply by solving the problem specified by

A =KP+R®P+8,, KR+V (17)

for each k value of interest.

In (17) 8, K signifies the first term in (7). It is often said that H, is formed by the neglect of
off-diagonal Coriolis interactions. The solutions to the full problem are then expressed in terms of the
solutions to the problems specified by (17).

The method can lead to savings if not all the solutions are required to converge the low lying states of
the full problem. In addition the resulting full secular problem has a sparse structure which can be utilised
computationally.
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The linear variational solution to I;(k with eigenvalue €, for fixed J can be written (cf. (3)) as

| kiy = Z ij,’ﬁlian("l)Hm(rz)@jk(a)|Jk> (18)

Jj.m.n
and the matrix elements of the full Hamiltonian are then

GV IL TR T T T T ¢ 0

ER+RR|k, i), (19)

where K (1 consists of the remaining terms of (7) not used in (17). The off-diagonal matrix elements that
form the second term in (19) can be evaluated by transforming matrix elements over the original basis
functions.

The first step in the calculation is the solution of a series of secular problems specified by the ﬁk. This
is, technically, the same process as solving a pure J = 0 vibrational problem but in the present case, the
terms from K {3 in H . effectively modify the pure potential so that it depends on J and k. For a given J
it s sufficient to solve J + 1 such problems (rather than 2./ + 1) because ﬁk contains terms only in k7.

A appropriate sub-set of these solutions may then be used in the secondary variational step. To form
the full matrix elements it is simply necessary to perform a two-index transformation with the coefficients
of (18) over the original matrix elements and the secular problem may then be solved.

As is seen from the form of (19), the secondary secular equation can be stored as a vector of diagonal
elements ¢,,; and a rectangular matrix O of off-diagonal elements. If the N lowest eigenfunctions of ﬁk
are used for each k then O* contains the N* dimensional block linking | ki) to |k+1, i’). There are
J — p such blocks so the storage is approximately a factor J less than that of storing the full matrix.

In the present calculations on H,D™ scattering coordinates with z along the scattering (r,) axis are an
appropriate choice for the potential expansion. Such a coordinate choice also provides an extra element of
symmetry in any AB, system because here the Gaunt coefficients in the Legendre expansion (10) vanish
unless j+ '+ A is even. This decouples the j-odd (o or ortho) and j-even (e or para) functions.

In scattering coordinates K vanishes and K{} simplifies so that

1
2

2p,1;

Oil'(i= CJ+,/< Z Z C}-ltaj'jsm'm<Hn'

. s
J.m,n j .m.n

Jki Jk+1i
Hn> CimnCimn’ - (20)

The expression like (20) in the case of an arbitrary choice of g is not quite so simple, for it contains
extra loops that arise as a consequence of matrix elements off-diagonal in j and m as well as n. It is
nevertheless, like (20), a form ideally suited to vectorisation with the innermost loops over i and i’

The programs to realise the method are written for a CRAY machine and designed to take maximum
advantage of its vector capabilities. More technical details of the implementation may be found in the
published program suite [20] and in ref. [21].

In the present work attention will be concentration on a strategy for effective choice of an appropriate
sub-set of solutions to H, for the solution of the full problem in the large J case. This problem is
important as calculations of the highest J discussed here lie on the edge of what is achievable with present
day supercomputers.

4. The calculations
The potential used in the calculations on H,D™ was that of Meyer et al. [23]. This potential was

obtained by means of a sequence of full CI calculations with an extensive Gaussian basis set and is the
most accurate non-empirical potential currently available.
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Table 1
Computational characteristics of one- and two-step calculations on a CRAY XMP-48 of the 20 lowest ro—vibrational states of H,D*
(J=4, p=0, jeven)

One-step Two-step
first step second step
Dimension of largest secular problem 1500 300 1500
Storage required (words) 2377979 211979 543372
Matrix construction time (cpu s) 1.80 1.16 24.30
Matrix diagonalisation time (cpu s) 241.37 13.40 4226
Total time (cpu s) 243.17 81.12
Maximum storage (words) 2377979 543372

To establish the utility of the two-step variational procedure and to provide a computational context,
some timings and storage requirements are shown in table 1. The calculations to which the table refers are
for the 20 lowest ro—vibrational states of H,D* with J = 4 for the symmetry block ( p =0, j even).

Table 2
Rotational term values for H,D* in cm™!
Level Ground state v,y vy vy
exp. theory exp. theory exp. theory exp. theory
[25] this f16] [24] [23) this [16] 23] this [16] 3 this
work work work work
1n 4570 4568 4563  45.80 40.82 40.77 40.6 48.53 48.53 48.6 45.69 45.66
14 60.03 6002 5996  60.19 52.92 52.89 52.6 67.36 67.37 67.8 58.02 57.97
10 72.46 7243 72.37 72.62 72.55 72.52 725 73.88 73.87 74.0 70.82 70.77

202 131.66 131.59 13146 131.97 112.49 112.37 111.9 142.33 142.30 142.6 130.82 130.76
25 138.86 13881 138.67 139.22 116.87 116.75 116.1 155.61 155.63 156.4 136.39 136.31
213 17594 17586 175.70 176.36 173.50 173.37 1733 177.04 176.98 177.0 174.65 174.53
25 218.66 218.62 218.42 219.29 209.59 209.52 209.2 233.03 233.03 2339 211.36 211.29
259 223.86 22381 223.61 224.50 221.19 221.13 2211 234.14 234.12 234.8 217.33 217.15

303 251.42 25132 251.06 25207 209.42 208.8 275.29 275.24 275.8 248.81 248.70
313 25407 253.97 253.69 25473 210.82 210.60 209.7 283.15 283.12 284.2 250.46 250.46
312 32617 32601 32571 327.00 314.20 314.0 328.82 328.68 3286 324.58 324.41
35 35478 354.68 354.34 355.81 333.41 3329 374.83 374.78 375.7 178.82 347.23

30 376.34 37620 375.87 378.32 374.40 374.19 3743 381.89 381.78 382.0 291.49 371.25
33 458.35 45823 457.84 459.89 445.58 445.47 445.1 485.38 485.38 487.1 442.41 442.26

33 459.84 45976 459.32  461.37 450.33 450.1 485.35 485.35 487.0 444.35 44420
404 40231 402.31 333.99 3334 441.90 441.80 442.6 398.12 397.97
4y, 403.69 403.53 403.08 334.32 334.28 3342 439.93 440.09 4420 398.59 398.40
413 516.16 51593 515.44 484.92 484.56 484.0 525.04 524.79 524.6 512.65 512.40
4,5 531.16  530.65 49222 491.8 559.03 558.89 560.1 523.05
4y 581.39 58124 580.70 582.74 582.12 582.0 580.19 579.9 577.55
45, 64541 644.78 624.63 624.4 673.52 675.0 629.91
44 654.32  653.70 624.63 624.4 674.28 675.4 641.22
4, 778.59 777.80 759.31 758.9 823.25 826.0 750.45
440 778.93 778.14 760.80 760.3 823.19 825.9 750.95
Band origin 2205.88  2206.25 2207.9 233544 233499 23350 2737.00 2992.96

2 Inferred from table 1 of ref. [27] using the », levels of ref. [25].
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In the first column are presented the results of solving the full 1500 dimensional secular problem
directly for the lowest 20 eigenvalues. The second two columns give the results of the two-step method to
accomplish the same end, that is a/l the intermediate functions generated in the first step were used in the
second. The results of the two processes should therefore be the same and in fact are, to within the
tolerance of the iterative diagonalizer used in the second step.

It is seen that not only does the two-step procedure require much less store but that it is also quicker
than the one-step procedure. Much bigger savings are made if fewer functions are used in the second step.
The same results can in fact be obtained in the example shown in table 1 with only 800 functions chosen in
the second step, with a consequent saving of about half the store and a drop in total time to 28.76 s.

In the calculations whose characteristics are shown in table 1, 300 basis functions were used in the
solution of the H, problem for all values of k.

14450 | a: J=30 . b: J= 30“
Level 1°¢ Level 20

| 19000

14400 ]
Wiem™) ] 18900

14350 W,qlem)

i 18800
143004

4 18700
14250 |

] 118600

2000 N 400 " 6000 2000 N 4000 6000

Fig. 1. The convergence of the energy levels 1°° and 20°° for the J = 30 state of H,D" as a function of the total number of basis

functions N used in the second step of two-step calculation. The points ® represent calculations carried out selecting equal numbers,

N, of basis functions for each & level. The points B represent calculations which select the basis functions for the second step on the
criterion of lowest energy (energy selection).
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It should be noted that, although it is not of central concern here, this present approach gives results as
good as, if not superior to the Eckart—Watson approach in such low J calculations. This is evidenced by
the quality of the rotational constants obtained in earlier work [16] on H,D™", and in the material
presented in table 2.

The central computational problem for the high J case is how to choose a suitable set of functions from
the first variational step to yield a tractable secular problem in the second step. If it is assumed that
solutions from all the J + 1 Hamiltonians H, are going to contribute equally to the solution of the full
problem then it is natural to choose the lowest N solutions from each problem ordered accordingly to
increasing €, ;, i =1, 2,..., N. If this is done then the dimension of the secular problem in the second step
is (/ +1— p)N. In a typical calculation the basis set size for the first step is of order 200 to 700 and the
size N is of order 10 to 300.

Sufficient solutions are taken of the second variational step to cover the rotational manifold of the first
three or four vibrational states, the position of the vibrational states being determined by J=0
calculations.

Table 3
Energies ¥ for J = 30 levels 1°° to 20%°
Level Selection on N, = 220 Selection on lowest 6650 Selection on lowest 9300
6820 basis functions basis functions from full basis functions from full
CRAY 1s 1st step CRAY 1s 1st step CRAY-XMP 48
1 14217.74 14209.93 14195.41
2 15243.77 15217.67 15161.05
3 15879.00 15874.32 15853.41
4 16154.82 16109.94 16033.34
5 16499.08 16483.84 16464.54
6 16790.24 16764.59 16678.90
7 16942.48 16890.59 16833.93
8 17166.17 17144.37 17116.07
9 17381.84 17347.99 17251.24
10 17583.72 17523.16 17463.74
11 17678.46 17673.65 17644.02
12 17789.63 17746.25 17691.96
13 18044.75 18005.52 17884.08
14 18075.24 18045.52 18012.66
15 18116.05 18081.25 18032.07
16 18259.05 18206.86 18163.53
17 18471.65 18423.94 18365.71
18 18481.83 18467.65 18386.08
19 18629.05 18560.99 18499.32
20 18644.39 18623.52 18548.50
T. (s) 749.73 717.79 419.44
Ty 9 (s) 773.66 502.27 1736.85
Tror (8) 1523.39 1222.06 2156.29
STORE (words) 1740158 1714641 3304118

@ Energies in cm ™ ! relative to ground state of J = 0°.

® T.: computer time required to construct secular matrix.
9 T,: computer time required to diagonalise matrix and obtain lowest 20 eigenvalues, for CRAY 1s runs, and lowest 47 eigenvalues,
for CRAY-XMP 48 run.
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An alternative mode of selection is however possible. In this the maximum size of the secondary secular
problem is determined in advance and the functions selected from the solutions of the first step as a whole,
without reference to their k value, in order of increasing energy. The block structure on k arising from
(19) is, of course, kept for computational efficiency and the choice means that the blocks will now be
rectangles of varying sizes.

Table 3 compares results obtained using both methods of selection in the Cray 1s computer at ULCC,
using maximum allowed storage of 1.8 million words. Column 3 contains our “best” results, calculated on
the Cray XMP 48 at the Rutherford-Atlas Laboratory, using the second method of basis function
selection. Fig. 1 shows graphically the convergence of two particular energy of levels (1 and 20) to their
“true” value as the size of the secondary secular problem is increased, using both methods of basis set
selection.

It is seen that it is more economical to use the energy selection from the first step as a whole. Although
fewer (6650 as against 6820) basis functions are used in the comparable Cray 1s runs, the method which
selects from the first step as a whole consistently gives results closer to the best results available from the
Cray-XMP 48. We note that the procedures used by Chen et al. [22] and others (e.g. ref. [24]) are not easily
adapted to this energy selection criterion as their expansion functions used in the second step are
degenerate on k.

The results given in table 3 represent the first fully coupled calculations on a system with J as high as
30. These calculations are thus approaching the challenging domain (J = 30-45) which appears to be
probed by the remarkable, but still poorly understood, experiments of Carrington and co-workers [4,5].
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