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Theresultsof somehighly accuratenon-empiricalro—vibrationalcalculationson H
2D~are reportedincluding somefor

J 30 which arethefirst calculationsto describesucha highly rotationally excitedstate.Theseresultsareobtainedusing an
improvedversionof our algorithm.Themethodusedis a variationaloneand is well adaptedto executionon supercomputers.
The computationalcharacteristicsof theperformancethemethod on the CRAY Is andtheCRAY XMP 48 aregiven.

1. Introduction

Developmentsin electronic structurecalculationshave made possiblethe constructionof accurate
potentials,at least for small molecules,and thus openedthe way for a variety of fully non-empirical
nuclear-motion calculationsto which this issue is a testimony. One such problem is the variational
calculation of molecular vibration—rotationspectra.Early work in this areawas performedusing the
Eckart—WatsonHamiltonian. Pioneersin thesedevelopmentswere Carneyand Porter (for a review, see
Carneyet al. [1]), andHandy andWhitehead[2]. The work to be describedhereis a developmentof that
variationalapproach.

Central to the constructionof the body-fixed frame in which much of the pioneeringwork was
performedis the assumptionof an equilibrium moleculargeometry.It has long beenrecognised(seee.g.
Sayvetz[3]) that thereare problemswhendescribinglarge amplitudeinternalnuclearmotionswithin this
assumption.Generallyspeakingtheseproblemshavebeenaddressedonly in circumstanceswhere the
potential is known to havea very shallow minimum in some direction (as in, for example,free rotation
abouta single bond). But the problemsmust becomeubiquitous for sufficiently high energy. Modem
spectroscopicinvestigations(see e.g. refs. [4,5]) can probe theseregionsof high energy. It is therefore
clearly importantto developa methodof calculatingthe spectrumwhich is capableof giving good results
both at lower energieswherethe Eckart—WatsonHamiltonian is usuallyeffective,and at higher energies,
whereit is liable not to be.There are obvious advantagesto formulating a method in terms of a single
Hamiltonian, independentof any assumptionsabout equilibrium geometry, which is effective over the
completerangeof energiesandis adaptableto the detailsof the potentialas revealedby calculation.

Sucha Hamiltonianfor a triatomicsystemis describedin what follows. An accountis given of its usein
describingthe highly excitedrotation—vibrationspectrumof H2D~.

The statesof concernare thosefor which a clearseparationbetweenrotationalandvibrationalmotion
is not possiblebecauseof theprogressiveoverlapof rotationalmanifoldsbelongingto different vibrational

OO1O-4655/88/$03.50© ElsevierSciencePublishersB.V.
(North-HollandPhysicsPublishingDivision)



74 B.T. Sutcliffeet al. / Vibration— rotation spectraof triatomic molecules

states.The statesare those,therefore,that would probably notbe well describedin termsof solutionsto
the Eckart—Watsonhamiltonianandour traditional ideasof molecularspectroscopy.

Indeedan initial study[6] for J ~ 20 suggeststhat at J of about25 for H2D~the lowest vibrational
excitation shouldbe at a lower energy than the first rotational excitation! It is in order to probe this
potentially interesting and unexplored region of the spectrumthat we have developed the refined
algorithm presentedhere.

We are thusable to give the first ab initio resultsfor a fully coupledtnatomicsystemwith J = 30.

2. The Hamiltonian

Recentlysomerather generalmethodsfor the constructionof Hamiltoniansin body-fixedcoordinates
havebeen developed[7,8] and in a recentpaper [9] it has beenshown how to constructa body-fixed
Hamiltonian with the desirablepropertiesoutlinedabove for a triatomic molecule,on the basis of these
methods.

In order to establishthe notationa brief summaryof that Hamiltonianwill be givenhere.More details
may be found in ref. [91.

A pair of translation-freeinternal coordinates1,, i = 1, 2 are constructedin terms of the lab-fixed
coordinatesx1, i = 1, 2, 3 of the threeparticlesas

15=x3—x2, t2=x5—gx2+(g—1)x3, O~g~1. (1)

Among the translation-freecoordinatesetsthat havesucha form is onein which 12 is the bond-length
vector from particle 2 to particle 1, obtained by setting g = 1. Also possible is the collision- or
scattering-coordinateset in which 12 is the vector from the centre-of-massof the diatomic 2—3 (11) to
particle 1. In this case

g—m2m~’, md=m2+m3 (2)

but many moreforms are possible.
Whateverthe precisechoice made for g, a suitable set of rotation-freeinternal coordinatesis r1 the

length of 1~,r2 the length of 12 and 8 the anglebetweent~and 12. The body-fixedframemay be defined
by placing the z-axisalong ~1 (or 12), andrequiringtheothercoordinateto remainin thepositivex-half on
the x—z planedefinedby the threeparticles.The body-fixed axis systemis chosento be right-handed.
Making suchchoicesthe body-fixedHamiltonian maybewritten down andits form is given in full in ref.
[9]. On bothphysicalandcomputationalgroundsit is appropriateto regardthis Hamiltonian as working
on a manifold of function of the form:

rir2’I’rnnki(rl, r2)�IJk(O) JMk). (3)

Here JMk) is a standardangularmomentumeigenfunctionin the Euleranglesfor the rotation of the
moleculeas a wholeand efk (0) is an associatedLegendrepolynomial in the CondonandShortleyphase
convention[101.The total energyof the systemdoesnot dependon M, the componentof total angular
momentumalong the space-fixedz-axis. So without loss of generalityonecan consideronly the ordinary
angulareigenfunctions Jk).

The body-fixed Hamiltonian is allowed to operateon functions of the form (3) and the results are
multiplied from the left by (�~‘k’ I Jk‘)) * followed by integrationsoverthe Euler anglesand0. This leads
to an effective Hamiltonian which determines‘Iç~kj (r1, r2). The choice of form made for the radial
functionsin (3) is equivalentto incorporatingthe radial part of the Jacobianinto the operatorso that
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subsequentradial integrationsare overdr1, dr2. It resultsin an effectiveHamiltonian which is manifestly
Hermitian. The form of the Hamiltonian is

(4)

where

n
2 a2 h a2 h2 1 i 1
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V is the full potential,if it is expressedby meansof the Legendreexpansion

V(r1, r2, 9) = ~ V~(r1,r2)P~(cos0) (9)
x

thenintegratingover 0 gives

V= ~8~’g~,(j’, j, k)V~(r1,r2), (10)
xj

wherethe Gauntcoefficientin (10) is

gx(j’, j, k)=(_l)k[(2f~+l)(2j+1)]1/2(3 A 1)/ i’ A i\~0 0 0k—k 0 k) (11)

usingthe conventionalnotation[11] for the 3-f symbols.
In the aboveexpressionsthe embeddingis for z along 11. To obtainthe expressionsfor z along 12 it is

simply necessaryto interchanger1 and r2 and p~and ,.t2. The auxilliary quantitiesare definedas follows

dlk= [(j— k+ 1)(j+ k+ 1)/(2j+ 1)(2j+ 3)]1/2 (12)

aJk[(f+/c+1)(j+/c-f-2)/(2f+1)(2j+3)1, (13)

~k [(i_k)(i_k_1)/(4i2_1)J, (14)

c~= (j(j + 1) — k(k ±1))l/2. (15)

The effective operator is diagonal in J and no explicit referenceis made to this. Otherwise the
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Kroneckerdeltasshow the coupling within the rotational andthe angularmanifolds.The reducedmasses
in the expressionsare given by

= m~’+ ~ ~ = m~1+g2m~+ (1 —g)2m~’, ~ =g(m~’ + m~1)— m~1, (16)

andit is easily seenthat whencollision coordinatesare chosenP~2’ becomeszeroandthusI~ and ~
vanish.

It shouldbe noticedthat the form of the Hamiltonian (4) is suchthat no singularitiesarisewhen8 = 0
or ‘ir so that linear configurationsof theparticlesare accommodatedfor all g without specialprovision.

3. The method

Previousexperience[12—18]hasshownthat the trial functions ‘I’~flkJcanbe veryeffectively chosenas
productsof ortho-normalMorse-oscillator-likefunctions, H~(r

1). If the parametersof thesefunctionsare
optimisedthenit doesnot provenecessaryto allow for any dependenceon J, k or f. Detailsof the choice
of thesefunctions and of the analysis for the calculation of their matrix elementsover the effective
Hamiltoniancanbe found in ref. [9]. Details of the actualcomputationalschemesusedin matrix element
evaluationcanbe foundin refs. [19,20].

The completetrial wave function is takento be a linear combinationof functions like (3), with the
radialfunctions ‘I’~nkjrealisedasproductsH~( r1 )Hm( r2). If, however,sucha trial functionis useddirectly
with the completeHamiltonian to perform fully coupled rotation—vibrationcalculations, the problem
rapidly becomesintractablefor largeJ, sinceevery function of the internalcoordinatesmust,in principle,
beassociatedwith 2J+ 1 rotationalfunctions.

Actually, the increaseis not quite so fast as this in a triatomic sinceplanarsymmetry canbe usedto
separatethe probleminto two partseachof dimensionJ +p where p = 0 and 1. The p = 0 statesare
conventionallydesignatede andwhile the p = 1 are called f. The parity of eachof thesepartsis givenby
(— 1)’~’. Even so the rapid increaseof problem size with J haslimited calculationsof this type to J
valuesof 4 or less.

Recently, however, the authors have developed a two-step approach[6,9,21] involving a second
variationalstep.This seemsto beveryeffectivein achievinghigh accuracyfor high J stateswhile keeping
the problemtractable.

The procedureis similar to the one used by Chen et a!. [22] in calculations on H20 using the
Eckart—WatsonHamiltonian.It is basedon the observationthat for many systemsthe potential is such
that an internal coordinatesystemcan be chosenin such a way that k (the projection of J along the
body-fixed z-axis)is nearlyconserved.It is thuspossibleto obtain reasonableapproximatesolutionsto the
full problemsimply by solving theproblemspecifiedby

1T1k = + + ~ + V (17)

for eachk valueof interest.
In (17) ~k’kK~JI~. signifies the first term in (7). It is often said that Hk is formed by the neglectof

off-diagonal Coriolis interactions.The solutions to the full problem are then expressedin terms of the
solutionsto the problemsspecifiedby (17).

Themethodcanleadto savingsif notall the solutionsare requiredto convergethelow lying statesof
the full problem.In additiontheresultingfull secularproblemhasasparsestructurewhich canbeutilised
computationally.
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Thelinear variationalsolution to ~k with eigenvalue kj for fixed Jcan bewritten (cf. (3)) as

J,k,i I \ f
— Cjmn ~krl) m~r2) jk

j.m,n

andthe matrix elementsof the full Hamiltonian are then

(k’, i’ I 1k, i) =
6k’k8 a’IEk! + ~k’,k ±~(k’, i’I.~j~+ ~ ~), (19)

where~ consistsof the remainingtermsof (7) not usedin (17). The off-diagonalmatrix elementsthat
form the secondterm in (19) can be evaluatedby transformingmatrix elementsover the original basis
functions.

The first stepin the calculationis the solution of a seriesof secularproblemsspecifiedby the Hk. This
is, technically, the sameprocessas solving apureJ = 0 vibrationalproblembut in the presentcase,the
termsfrom ~ in Hk effectively modify thepurepotentialso that it dependson J and k. For a given J
it is sufficient to solve J + 1 suchproblems(ratherthan 2J+ 1) becauseHk containsterms only in k2~

A appropriatesub-setof thesesolutionsmay thenbe usedin the secondaryvariationalstep.To form
the full matrix elementsit is simply necessaryto perform a two-indextransformationwith the coefficients
of (18) over the original matrix elementsandthe secularproblemmay thenbe solved.

As is seenfrom the form of (19), the secondarysecularequationcan be storedasavector of diagonal
elementsEki and a rectangularmatrix 0” of off-diagonalelements.If the N lowest eigenfunctionsof Hk
are used for each k then0” containsthe N2 dimensionalblock linking I ki) to I k + 1, i /)~There are
J — p suchblocks so the storageis approximatelya factor J less than that of storingthe full matrix.

In the presentcalculationson H
2D~scatteringcoordinateswith z along the scattering(r2) axis are an

appropriatechoiceIor the potential expansion.Sucha coordinatechoice also providesan extraelementof
symmetryin any AB2 systembecauseherethe Gauntcoefficientsin the Legendreexpansion(10) vanish
unless j + j’ + X is even.This decouplestheI-odd (o or ortho) and f-even(e or para)functions.

In scatteringcoordinatesK~ vanishesand K~JJ~simplifies so that

Ok \ Jki
i’i J,k jk iii ni’,n~ n’ 2 1 ~inin~i~nn~

j,m,n j’,m’,n’ 2.t2r2 /
The expressionlike (20) in the caseof an arbitrarychoiceof g is not quite so simple, for it contains

extraloops that ariseas a consequenceof matrix elementsoff-diagonalin j and m as well as n. It is
nevertheless,like (20), a form ideally suited to vectorisationwith the innermostloops over i and i’.

Theprogramsto realisethe methodare written for aCRAY machineanddesignedto takemaximum
advantageof its vector capabilities.More technical details of the implementationmay be found in the
publishedprogramsuite[20] andin ref. [21].

In the presentwork attentionwill be concentrationon a strategyfor effective choiceof an appropriate
sub-setof solutions to Hk for the solution of the full problem in the largeJ case.This problem is
importantas calculationsof the highestJ discussedherelie on the edgeof what is achievablewith present
daysupercomputers.

4. The calculations

The potential used in the calculationson H2D~was that of Meyer et a!. [23]. This potential was
obtainedby meansof a sequenceof full CI calculationswith an extensiveGaussianbasisset andis the
mostaccuratenon-empiricalpotentialcurrentlyavailable.
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Table1
Computationalcharacteristicsof one- andtwo-stepcalculationson a CRAY XMP-48 of the20 lowestro—vibrationalstatesof H

2D~
(J=4, p—U, jeven)

One-step Two-step

first step secondstep

Dimensionof largestsecularproblem 1500 300 1500
Storagerequired(words) 2377979 211979 543372
Matrix constructiontime(Cpu s) 1.80 1.16 24.30
Matrix diagonalisationtime (cpu s) 241.37 13.40 42.26

Total time (cpu s) 243.17 81.12
Maximum storage(words) 2377979 543372

To establishthe utility of the two-stepvariationalprocedureand to provide a computationalcontext,
sometimings andstoragerequirementsare shownin table1. Thecalculationsto which the tablerefersare
for the 20 lowest ro—vibrational statesof H2 D + with J = 4 for the symmetryblock (p = 0, f even).

Table 2
Rotationaltermvaluesfor H2D

4 in cm1

Level Groundstate p

3 p1

exp. theory exp. theory exp. theory exp. theory

[25] this [16] [24] [23] this [16] [231 this [16] a) this
work work work work

101 45.70 45.68 45.63 45.80 40.82 40.77 40.6 48.53 48.53 48.6 45.69 45.66
in 60.03 60.02 59.96 60.19 52.92 52.89 52.6 67.36 67.37 67.8 58.02 57.97
1~ 72.46 72.43 72.37 72.62 72.55 72.52 72.5 73.88 73.87 74.0 70.82 70.77

202 131.66 131.59 131.46 131.97 112.49 112.37 111.9 142.33 142.30 142.6 130.82 130.76
212 138.86 138.81 138.67 139.22 116.87 116.75 116.1 155.61 155.63 156.4 136.39 136.31
2~3 175.94 175.86 175.70 176.36 173.50 173.37 173.3 177.04 176.98 177.0 174.65 174.53
221 218.66 218.62 218.42 219.29 209.59 209.52 209.2 233.03 233.03 233.9 211.36 211.29
220 223.86 223.81 223.61 224.50 221.19 221.13 221.1 234.14 234.12 234.8 217.33 217.15

~03 251.42 251.32 251.06 252.07 209.42 208.8 275.29 275.24 275.8 248.81 248.70

~13 254.07 253.97 253.69 254.73 210.82 210.60 209.7 283.15 283.12 284.2 250.46 250.46
~12 326.17 326.01 325.71 327.00 314.20 314.0 328.82 328.68 328.6 324.58 324.41
~22 354.78 354.68 354.34 355.81 333.41 332.9 374.83 374.78 375.7 178.82 347.23
321 376.34 376.20 375.87 378.32 374.40 374.19 374.3 381.89 381.78 382.0 291.49 371.25
331 458.35 458.23 457.84 459.89 445.58 445.47 445.1 485.38 485.38 487.1 442.41 442.26
~30 459.84 459.76 459.32 461.37 450.33 450.1 485.35 485.35 487.0 444.35 444.20

4~ 402.31 402.31 333.99 333.4 441.90 441.80 442.6 398.12 397.97

~14 403.69 403.53 403.08 334.32 334.28 334.2 439.93 440.09 442.0 398.59 398.40
~13 516.16 515.93 515.44 484.92 484.56 484.0 525.04 524.79 524.6 512.65 512.40
~23 531.16 530.65 492.22 491.8 559.03 558.89 560.1 523.05
~22 581.39 581.24 580.70 582.74 582.12 582.0 580.19 579.9 577.55
~32 645.41 644.78 624.63 624.4 673.52 675.0 629.91
~31 654.32 653.70 624.63 624.4 674.28 675.4 641.22
44~ 778.59 777.80 759.31 758.9 823.25 826.0 750.45
4~ 778.93 778.14 760.80 760.3 823.19 825.9 750.95

Bandorigin 2205.88 2206.25 2207.9 2335.44 2334.99 2335.0 2737.00 2992.96
a) Inferred from table 1 of ref. [27] usingthe v0 levels of ref. [25].
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In the first colunm are presentedthe resultsof solving the full 1500 dimensionalsecularproblem
directly for the lowest 20 eigenvalues.The secondtwo columnsgive the resultsof the two-stepmethodto
accomplishthesameend,that is all the intermediatefunctionsgeneratedin the first stepwereusedin the
second.The results of the two processesshould thereforebe the sameand in fact are, to within the
toleranceof the iterativediagonalizerusedin the secondstep.

It is seenthat not only doesthe two-stepprocedurerequiremuch less storebut that it is also quicker
than the one-stepprocedure.Much biggersavingsare madeif fewer functionsare usedin the secondstep.
Thesameresultscanin fact beobtainedin theexampleshownin table1 with only 800 functionschosenin
the secondstep,with a consequentsavingof abouthalf the store anda drop in total time to 28.76s.

In the calculationswhosecharacteristicsare shown in table 1, 300 basis functions were used in the
solution of theHk problemfor all valuesof k.

14450 a: J30 b: J=30
Level iee I Level 20~

19000

14400.

LU,(cm1 .18900

14350 W20 (cm’)

i .

.18600

2000 4000 6000 2000 4000 6000

Fig. 1. Theconvergenceof theenergylevels l~ and20~for the J 30 stateof H2D÷ asa function of the total numberof basis
functionsN usedin thesecondstepof two-stepcalculation.Thepoints• representcalculationscarriedout selectingequalnumbers,
N, of basis functionsfor eachk level. Thepoints~ representcalculationswhich selectthebasis functionsfor thesecondstepon the

criterionof lowestenergy(energyselection).
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It shouldbenotedthat, althoughit is not of centralconcernhere,this presentapproachgives resultsas
good as,if not superiorto the Eckart—Watsonapproachin suchlow J calculations.This is evidencedby
the quality of the rotational constantsobtained in earlier work [16] on H2D~,and in the material
presentedin table2.

The centralcomputationalproblemfor thehigh J caseis how to choosea suitableset of functionsfrom
the first variationalstep to yield a tractable secularproblem in the secondstep. If it is assumedthat
solutionsfrom all the J + 1 HamiltomansHk are going to contributeequally to the solution of the full
problem then it is natural to choosethe lowest N solutions from eachproblem orderedaccordingly to
increasing�k,, i = 1, 2,...,N. If this is donethen the dimensionof the secularproblemin the secondstep
is (J + 1 — p ) N. In a typical calculationthe basisset size for the first step is of order 200 to 700 and the
size N is of order 10 to 300.

Sufficient solutionsare takenof the secondvariationalstep to cover the rotationalmanifold of the first
three or four vibrational states, the position of the vibrational states being determined by J = 0
calculations.

Table 3
Energiesa) for J~30 levels1ee to 20~

Level Selectionon Nk = 220 Selectionon lowest6650 Selectionon lowest9300
6820basis functions basisfunctions from full basis functionsfrom full
CRAY is 1st stepCRAY Is 1st stepCRAY-XMP 48

1 14217.74 14209.93 14195.41
2 15243.77 15217.67 15161.05
3 15879.00 15874.32 15853.41
4 16154.82 16109.94 16033.34
5 16499.08 16483.84 16464.54

6 16790.24 16764.59 16678.90
7 16942.48 16890.59 16833.93
8 17166.17 17144.37 17116.07
9 17381.84 17347.99 17251.24

10 17583.72 17523.16 17463.74

ii 17678.46 17673.65 17644.02
12 17789.63 17746.25 17691.96
13 18044.75 18005.52 17884.08
14 18075.24 18045.52 18012.66
15 18116.05 18081.25 18032.07

16 18259.05 18206.86 18163.53
17 18471.65 18423.94 18365.71
18 18481.83 18467.65 18386.08
19 18629.05 18560.99 18499.32
20 18644.39 18623.52 18548.50

T b) (s) 749.73 717.79 419.44
Td ‘~ (s) 773.66 502.27 1736.85
TTOT (s) 1523.39 1222.06 2156.29
STORE(words) 1740158 1714641 3304118

a) Energiesin cm relativeto groundstateof J=

b) 7: computertime requiredto constructsecularmatrix.

‘~ Td: computertime requiredto diagonalisematrix andobtain lowest20 eigenvalues,for CRAY is runs,andlowest47 eigenvalues,
for CRAY-XMP 48 run.
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An alternativemodeof selectionis howeverpossible.In this the maximumsizeof the secondarysecular
problemis determinedin advanceandthe functionsselectedfrom the solutionsof the first stepas a whole,
without referenceto their k value, in order of increasingenergy.The block structureon k arising from
(19) is, of course,kept for computationalefficiency and the choice meansthat the blocks will now be
rectanglesof varying sizes.

Table3 comparesresultsobtainedusingboth methodsof selectionin the Cray is computerat ULCC,
usingmaximumallowedstorageof 1.8 million words.Column 3 containsour “best” results,calculatedon
the Cray XMP 48 at the Rutherford-Atlas Laboratory,using the secondmethod of basis function
selection. Fig. 1 showsgraphicallythe convergenceof two particular energyof levels (1 and20) to their
“true” value as the size of the secondarysecularproblem is increased,using bothmethodsof basis set
selection.

It is seenthat it is moreeconomicalto usethe energyselectionfrom the first stepas a whole.Although
fewer (6650 as against6820)basisfunctionsare usedin the comparableCray is runs, themethodwhich
selectsfrom the first step as a wholeconsistentlygives resultscloserto the bestresultsavailablefrom the
Cray-XMP 48. We notethat theproceduresusedby Chenet a!. [22] andothers(e.g.ref. [24]) are noteasily
adaptedto this energy selection criterion as their expansionfunctions used in the second step are
degenerateon k.

The resultsgiven in table3 representthe first fully coupledcalculationson a systemwith J as high as
30. Thesecalculationsare thus approachingthe challengingdomain (J = 30—45) which appearsto be
probedby the remarkable,but still poorly understood,experimentsof Carringtonand co-workers[4,5].
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