ExoMol line lists – XV. A new hot line list for hydrogen peroxide

Ahmed F. Al-Refaie,1 Oleg L. Polyansky,1,2 Roman I. Ovsyannikov,2 Jonathan Tennyson1† and Sergei N. Yurchenko1
1Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
2Institute of Applied Physics, Russian Academy of Sciences, Ulyanov Street 46, Nizhny Novgorod 603950, Russia

Accepted 2016 May 26. Received 2016 May 24; in original form 2016 March 28

ABSTRACT

A computed line list for hydrogen peroxide, H2O2, applicable to temperatures up to \(T = 1250 \) K is presented. A semi-empirical high-accuracy potential energy surface is constructed and used with an \textit{ab initio} dipole moment surface as input \textsc{trove} to compute 7.5 million rotational-vibrational states and around 20 billion transitions with associated Einstein-A coefficients for rotational excitations up to \(J = 85 \). The resulting APTY line list is complete for wavenumbers below 6000 cm\(^{-1}\) (\(\lambda < 1.67 \) \(\mu \)m) and temperatures up to 1250 K. Room-temperature spectra are compared with laboratory measurements and data currently available in the HITRAN data base and literature. Our rms with line positions from the literature is 0.152 cm\(^{-1}\) and our absolute intensities agree better than 10 per cent. The full line list is available from the CDS data base as well as at \texttt{www.exomol.com}.

Key words: molecular data – opacity – astronomical data bases: miscellaneous – planets and satellites: atmospheres.

1 INTRODUCTION

Terrestrial hydrogen peroxide exists as a trace molecule in the Earth’s atmosphere and contributes to the atmospheres oxidizing budget as well as ozone production and water chemistry (Davis 1974; Chance et al. 1991; Allen et al. 2013; Zins & Krüm 2014) and its concentration is now being routinely observed (Allen et al. 2013). Astrophysically there have been multiple detections of H2O2 in the atmosphere of Mars (Clancy, Sandor & Moriarty-Schieven 2004; Encrenaz et al. 2004, 2012; Aoki et al. 2015) with seasonal variation, possibly formed by triboelectricity in dust devils and dust storms (Encrenaz et al. 2012) and may well act as an agent in the oxidization of the Martian surface. Hydrogen peroxide has also been detected in the atmosphere of Europa (Hand & Brown 2013) in the 3.5 \(\mu \)m region. The first detection of interstellar H2O2 was made by Bergman et al. (2011) and is believed to play an important role in astrophysical water chemistry similar to that on Earth. Du, Parise & Bergman (2012) suggest that H2O2 is produced on dust-grains via the hydrogenation of grain HO2 and released into the gas-phase through surface reactions. On the dust-grain, H2O2 acts as an intermediate in the formation of water and aids in the production of other species such as H2CO, CH3OH, and O2.

Hydrogen peroxide belongs to the peroxide group of molecules with an HO-OH bond dissociation enthalpy of 17050 cm\(^{-1}\) (Bach, Ayala & Schlegel 1996) at 0 K. H2O2 is an asymmetric prolate rotor molecule and is the simplest molecule that exhibits internal rotation. This torsional motion gives rise to a double minimum potential curve with respect to its internal rotation coordinates as well as two alignments of the O-H bonds: cis and trans. The consequence of this motion means that there are four sub-levels for each torsional excitation which are characterized by their symmetry. This necessitates the use of an additional quantum number, \(\tau \), to unambiguously describe its motion. The molecular states can be classified using the \textit{C}\(^{2h}\)(M) symmetry group which best describes the torsional splitting caused by the cis and trans tunnelling (Hougen 1984). H2O2 has six vibrational modes: \(\nu_1 \) and \(\nu_3 \) represent the symmetric and asymmetric O-H stretching, respectively, \(\nu_3 \) and \(\nu_6 \) represent the O-H bending modes, \(\nu_3 \) represents the O-O stretch and the \(\nu_4 \) mode represents the torsional excitation with the more common notation of \(n \).

Experimental studies of ro-vibrational H2O2 spectra have mostly probed the torsional motion in the ground (Olson et al. 1988), the \(\nu_3 \) (Camy-Peyret et al. 1992) and \(\nu_6 \) (Perrin et al. 1990, 1995) vibrational modes. Conversely, the higher lying O-H stretching modes, \(\nu_1 \) and \(\nu_5 \), are poorly studied using high-resolution techniques. The difference between the two stretching bands is about 8–10 cm\(^{-1}\) and torsional splitting from the double minimum of the potential gives rise to doubling (Giguere & Srinivasan 1974) in the form of ‘quasi’-degenerate states (Rauhut, Knizia & Werner 2009) that are difficult to resolve with a degree of accuracy. Olson et al. (1988) give an estimate of 3610–3618 cm\(^{-1}\) for \(\nu_3 \) and 3601–3617 cm\(^{-1}\).
for ν_1, whilst a Raman study gives a lower value of 3607 cm$^{-1}$ for the ν_1 band-centre (Giguere & Srinivasan 1974) but determining the accuracy to better than 0.1 cm$^{-1}$ is difficult.

H$_2$O$_2$ has been a benchmark system for developing methods aiming to treat large amplitude motion (Luckhaus 2000; Mladenovic 2002; Yu & Muckerman 2002; Carter, Handy & Bowman 2009). Recent calculations on the ro-vibrational states for H$_2$O$_2$ include the \textit{ab initio} computation using CCSD(T)-F12 electronic structure calculations of band frequencies accurate to about 4.0 cm$^{-1}$ by Rauhut et al. (2009), models of the peroxide stretches by Bacelo & Binning (2005), a discrete variable representation calculation for levels up to 6000 cm$^{-1}$ by Chen, Ma & Guo (2001), Lin & Guo (2003) and finally, a potential energy surface (PES) calculations by Koput, Carter & Handy (1998) and Kuhn et al. (1999). Calculation which also consider transition intensities are rather rarer but a recent example is provided by Carter, Sharma & Bowman (2011). The peroxide system was used to benchmark the large amplitude calculations of MULTIMODE (Bowman, Carter, & Huang 2003) up to $J = 20$ and showed good agreement against HITRAN line intensities but the PES used had a root mean square (rms) of ≈ 20 cm$^{-1}$ against experimental band centred. However, this PES has been superceded by the higher accuracy \textit{ab initio} PES of Małyszek & Koput (2011) which was further modified by Polanyak et al. (2013). This modified PES was used for our room-temperature line list (Al-Refaie et al. 2015a) and provides the starting point for the refinements performed here.

Experimental transitions frequencies and intensities for H$_2$O$_2$ are available in the HITRAN 2012 data base (Rothman et al. 2013) but only for room-temperature modelling up to 1800 cm$^{-1}$. This region covers the torsional, O-H bending modes and O-O stretch but misses the O-H stretches in the 3750 cm$^{-1}$ region. Only a few studies deal with absolute intensities of H$_2$O$_2$ in the far-infrared (Zumwalt & Giguere 1941; Perrin et al. 1995, 1996) with only PNNL-IR (Sharpe et al. 2004) data providing integrated intensities in the mid-infrared region (Johnson et al. 2009). The thermal decomposition of hydrogen peroxide at 423 K makes it difficult and dangerous to study at higher temperatures.

Theoretical line lists can be used to fill in gaps in the experimental data both in terms of wavelength and temperature coverage. The ExoMol project (Tennyson & Yurchenko 2012) aims to produce comprehensive theoretical molecular line lists to aid in studies of the atmospheres of exoplanets, cool stars and other (hot) bodies. A room-temperature line list for H$_2$O$_2$ was previously computed by us (Al-Refaie et al. 2015a) using the PES of Polanyak et al. (2013) and a new \textit{ab initio} dipole moment surface (DMS). It provides about 1 billion transitions at up to 8000 cm$^{-1}$. However it is limited as the rotational excitation of $J = 40$ makes it inadequate for high temperature modelling and the lower energy cutoff means that coverage above 4000 cm$^{-1}$ rapidly becomes incomplete. This work aims to build upon this line list by refining the PES towards spectroscopic accuracy and extending the temperature and frequency range for which the resulting line list is applicable.

2 METHOD

2.1 PES refinement

Our previous room-temperature H$_2$O$_2$ line list (Al-Refaie et al. 2015a) was computed using the \textit{ab initio} PES of Małyszek & Koput (2013) with the small adjustment of the \textit{ab initio} equilibrium geometry and height of the torsional barrier proposed by Polanyak et al. (2013). This PES reproduces the known empirical energy levels with an rms of about 1–2 cm$^{-1}$. However, by utilizing empirical band-centre shifting (Yurchenko et al. 2009) during the computation of the Hamiltonian, this was significantly reduced to 0.001–0.1 cm$^{-1}$ in the room-temperature line list. The empirical shifting can be thought of as an addition to the \textit{ab initio} PES producing an ‘ad hoc’ PES which we will refer to as ‘H2O2-2015’ in comparisons below. Whilst band-centre shifting can reproduce experimental energies simply, its accuracy and predictive ability is limited to vibrational bands whose band-centre positions are already experimentally characterized. A more robust method of correcting the PES is through fitting or refining to experimental energies. The Theoretical ROVibrational Energies (\textsc{trove}) nuclear motion program used by us here, see below, provides PES refinement capabilities and has been successful in producing accurate PES for molecules such as H$_2$CO (Yachmenev et al. 2011), NH$_3$ (Yurchenko, Barber & Tennyson 2011b), SO$_3$ (Underwood et al. 2014), PH$_3$ (Sousa-Silva et al. 2015) and CH$_4$ (Yurchenko & Tennyson 2014).

The procedure implemented in \textsc{trove} describes a correction surface ΔV to the initial (\textit{ab initio}) surface V. The new refined surface V can therefore be written as $V' = V + \Delta V$ and the new Hamiltonian as $H' = H + \Delta V$, where H is the Hamiltonian of the starting point for the refinement. The wavefunctions from H' are used as basisfunctions for H'. ΔV is expanded in Taylor series and the expansion coefficients, Δf_{kl}, are obtained in a variational least-squares fit to spectroscopic data via the objective function F:

$$F = \sum_i^N w_i (E_i^{\text{obs}} - E_i) ^2 = 0,$$

where N is the number of observed energies E_i^{obs}, E_i are the calculated energies and w_i are the weights.

Here the original 282 expansion coefficients of the \textit{ab initio} PES are reduced to 163 by removing the symmetry-related O-H stretching (ij) and bending (kl) terms from the input PES and simply linking them in the computation of potential energy terms in the Hamiltonian. This ensures that the symmetry of these terms is preserved during the fitting process. The quality of the fit is determined by the quality and vibrational diversity of the input data set. Two sources of experimental data come from line-positions provided in the literature and transitions from HITRAN. The HITRAN data set sources come from observations by Perrin et al. (1995), Perrin et al. (1996), Perrin et al. (1990) and Klee et al. (1999) with literature line-positions from Fland et al. (1989), Olson et al. (1988) Giguere (1950), Zumwalt & Giguere (1941) and Camy-Peyret et al. (1992). This empirical data set provides the ν_1, ν_3, ν_4, ν_5 and ν_6 vibrational terms. Unfortunately there is little to no reliable data on the ν_1 and ν_5 energy levels, their reported band-centre values vary significantly in literature making them unsuitable for the refinement. This hampers the vibrational diversity that would aid in construction of an extensive fitted PES. However, these terms can be indirectly improved by including higher J values from other vibrational states.

Our input data set includes all energies for $J \leq 4$ up to 4000 cm$^{-1}$. The weights w_i used have an arbitrary range of values that are normalized in the fit. The energies given in literature are the simplest to include in the refinement process and are given the highest weighting. Here the pure torsional band at $J > 0$ from Camy-Peyret et al. (1992) and Olson et al. (1988) are given the highest weighting of $w_i = 100$. The ν_2, ν_3, ν_6, $\nu_3 + \nu_4$, $\nu_4 + \nu_6$ energies and H$_2$O$_2$ band centres (except for ν_1 and ν_3) from Camy-Peyret et al. (1992),
Giguere (1950), Perrin et al. (1990), Flaud et al. (1989) and Zumwalt & Giguere (1941) are given weights 10 ≤ w ≤ 20. Transitions from HITRAN require additional work. In order to determine the upper state of a transition requires the assignment of the lower state energy. Fortunately, HITRAN provides the lower state energy for all transitions in the database. However, the lower state energies require corroboration from literature data and/or the ab initio energies for the upper state energies to be included in the fit with 1 ≤ w ≤ 9 based on confidence of the datum. Each input datum must be correlated with a theoretically computed energy level which, in this work, was straightforward due to the good agreement given by the initial ab initio PES.

Special measures must be taken in order to ensure that the refinement process does not lead to unphysical shapes for the new PES due to a limited sampling of the experimental data not covering all the complexity of the PES of HOOH. For example, the high stretching or bending overtones are poorly represented in the experimental basis functions φn,ζ in the molecular symmetry group (Bunker & Jensen 1998) which is isomorphic to the C(h(M) symmetry group. This has the benefit of factorizing the Hamiltonian into smaller independent blocks for diagonalization. The irreducible representations of this group are A1, A2, B1g, B1u, B2g, B3g, B3u, B4u. However, the states corresponding to B1g, B2u, B4g and B4u have zero nuclear statistical weight and therefore these matrix blocks are not needed for J > 6. The corresponding J = 0 energies from these representations are also unphysical, but computed and kept as vibrational band centers for reference purposes.

A symmetry-adapted basis-set is constructed by a multistep construction scheme by solving the 1D Schrödinger equation via the Numerov–Cooley method (Noumerov 1924; Cooley 1961) for the basis-functions φn,ζ(i = 1, 2, . . . , 6), where ζ represents the O–O stretching coordinate, ζ2 and ζ3 represent the O–H stretching coordinates, ζ4 and ζ5 represent the O–H bending modes and ζ6 represents the torsional mode. ni is the local mode quantum number assigned by TROVE. The basis functions φn,ζ are then used to define a product-type basis set, which is truncated by the polyad number P:

\[P = 4n + 8(n_2 + n_3 + n_4 + n_5) + n_6 \leq P_{\text{max}}. \]

We use P_{\text{max}} = 42 as it was found to give good convergence (Polyansky et al. 2013). The second step requires computing a contracted basis set by reducing the six-dimensional coordinate system into four subspaces: (ζ5), (ζ3, ζ4), (ζ, ζ5) and (ζ6) based on their permutation properties. The reduced Hamiltonian is solved using the

<table>
<thead>
<tr>
<th>Weight</th>
<th>N</th>
<th>H2O2-2016 rms (cm⁻¹)</th>
<th>H2O2-2015 rms (cm⁻¹)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>43</td>
<td>0.001</td>
<td>0.000</td>
<td>J > 0 pure torsional states.</td>
</tr>
<tr>
<td>10–20</td>
<td>144</td>
<td>0.004</td>
<td>0.007</td>
<td>Band centres and ν3 + ν4, ν6 + ν4 states.</td>
</tr>
<tr>
<td>1–9</td>
<td>186</td>
<td>0.539</td>
<td>1.369</td>
<td>Upper state extracted from HITRAN with corroborated lower states.</td>
</tr>
</tbody>
</table>

Table 2. Comparison of N experimental data points in the fit and weighted root mean squared deviation of both H2O2-2016 (this work) and H2O2-2015 (Al-Refaie et al. 2015a).

<table>
<thead>
<tr>
<th>J</th>
<th>N</th>
<th>H2O2-2016 rms (cm⁻¹)</th>
<th>H2O2-2015 rms (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>34</td>
<td>0.238</td>
<td>0.254</td>
</tr>
<tr>
<td>1</td>
<td>47</td>
<td>0.079</td>
<td>0.320</td>
</tr>
<tr>
<td>2</td>
<td>81</td>
<td>0.096</td>
<td>0.345</td>
</tr>
<tr>
<td>3</td>
<td>116</td>
<td>0.183</td>
<td>0.404</td>
</tr>
<tr>
<td>4</td>
<td>132</td>
<td>0.154</td>
<td>0.287</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.150</td>
<td>0.321</td>
</tr>
</tbody>
</table>
primitives ϕ_n as basis functions to obtain the symmetrized vibrational eigenfunctions $\Phi_i(\zeta_1, \zeta_2, \zeta_3)$, $\Phi_i(\zeta_1, \zeta_2, \zeta_3)$ and $\Phi_i(\zeta_3)$. The vibrational contracted basis set is then formed from symmetrized products of these eigenfunctions which is also truncated via equation (2). A final contraction step is performed by solving the $J = 0$ problem and replacing the bulky primitive and contracted vibrational basis set with the more compact $J = 0$ wavefunctions $\Psi^{j=0}_{J,K,p}$ truncated at 12 000 \text{ cm}^{-1}. The benefit of this is that the computation of the Hamiltonian matrix elements for $J > 0$ is more efficient and reduces the size of the matrix. Whilst this form means we can replace the diagonal vibrational terms with experimental band centres, the low rms error of H2O2-2016 PES band centres makes this procedure unnecessary. Our final ro-vibrational wavefunction has the form:

$$\Psi^{j,\Gamma} = \sum_{i,K,p} c_{i,K,p} \Psi^{j=0}_{J,K,p}(J,K, p),$$

(3)

where $|J, K, p\rangle$ are rigid rotor functions with parity p defined by Yurchenko et al. (2005b) and $c_{i,K,p}$ are the eigenvector coefficients obtained by diagonalization of the Hamiltonian matrix. The
applied to para and ortho states, respectively. States with

\[B_{i,j,k,p} \]

An electric DMS is required in order to compute transition inten-

\[\text{DMS and intensities} \]

\[\text{DMS and intensities} \]

\[v = 4n + i, \]

\[\text{where } n \text{ is the excitation and } i \text{ is the symmetry where } i = 0, 1, 2, 3 \text{ is } A_x, B_{2u}, B_{3g} \text{ and } A_u, \text{ respectively. To retrieve } n \text{ and } \tau \text{ simply requires } \]

\[\tau = (v_4 \mod 4) + 1, \quad n = \left\lfloor \frac{v_4}{4} \right\rfloor. \]

\[2.3 \text{ DMS and intensities} \]

An electric DMS is required in order to compute transition intensities. The \textit{ab initio} DMS of Al-Refaie et al. (2015a) was utilized; this was computed at the CCSD(T)-f12b (Bartlett \\& Musial 2007) level of theory in the frozen-core approximation and is applicable to energies up to \(h\omega 12000 \text{ cm}^{-1}. \)

The eigenvectors, obtained by diagonalization, are used in con-

\[J' - J'' = 0, \pm 1, \quad J' + J'' \neq 0 \]

\[\text{and the symmetry selection rules:} \]

\[A_x \leftrightarrow A_u, \quad B_{1g} \leftrightarrow B_{1u} \]

\[\text{applied to para and ortho states, respectively. States with } B_{2s}, B_{2u}, B_{3g} \text{ and } B_{3u} \text{ symmetry are forbidden due their zero nuclear statistical weights.} \]

\[\text{The Einstein-A coefficient for a particular transition from the initial state } i \text{ to the final state } f \text{ is given by} \]

\[A_{if} = \frac{8\pi^2\tilde{v}_{ij}^3}{3h}(2J_i + 1) \sum_{A=X,Y,Z} |\langle\Psi_f^0|\bar{\mu}_A|\Psi_i^0\rangle|^2, \]

\[\text{where } J_i \text{ is the rotational quantum number for the initial state, } h \text{ is Planck constant, } \tilde{v}_{ij} \text{ is the transition frequency } (hc \tilde{v}_{ij} = E_f - E_i), \Psi^0_f \text{ and } \Psi^0_i \text{ represent the eigenfunctions of the final and initial states, respectively, } \bar{\mu}_A \text{ is the electronically averaged component of the dipole moment along the space-fixed axis } A = X, Y, Z \text{ (see also Yurchenko et al. 2005a). From this the absolute absorption intensity is determined by} \]

\[I(f \leftrightarrow i) = A_{if} \frac{8\pi c\tilde{v}_{ij}^3}{3h^2}g_m(2J_i + 1) \exp \left(-\frac{c_2\tilde{E}_i}{T} \right) \times \left[1 - \exp \left(-\frac{c_2\tilde{E}_i}{T} \right) \right] \]

\[\text{where } c_2 = hc/k \text{ is the second radiation constant, } \tilde{E}_i \text{ is the energy term value, } T \text{ the absolute temperature and } g_m \text{ is the nuclear spin statistical weight factor. } Q, \text{ the partition function, is given by} \]

\[Q = \sum_i g_i \exp \left(-\frac{c_2\tilde{E}_i}{T} \right), \]

\[\text{where } g_i \text{ is the degeneracy of a particular state } i \text{ with the energy term value } \tilde{E}_i. \text{ For } H_2O_2, \ g_i \text{ is } g_m(2J_i + 1) \text{ with } g_m = 1 \text{ for } A_g \text{ and } A_u \text{ symmetries and } g_m = 3 \text{ for } B_{1g} \text{ and } B_{1u} \text{ symmetries. The transitions were computed using the energy limits } hc 6 000 \text{ and } hc 12 000 \text{ cm}^{-1} \text{ for the lower and upper states, respectively, giving a complete coverage of the region } 0-6 000 \text{ cm}^{-1} (\lambda > 1.67 \mu m).} \]

The intensities were computed using an enhanced version of \textit{TROVE} that utilizes the nVidia graphics processing units (GPU) allowing for the computation of 5000–30 000 transitions per second on a single GPU. The GPUs utilized were the nVidia M2090, K20 and the K40 models. A paper discussing this

\[\text{Figure 1. Radiative lifetimes computed (Tennyson et al. 2016a) for } H_2O_2 \text{ states up to } 6000 \text{ cm}^{-1}.} \]
will be published elsewhere (Al-Refaie, Tennyson & Yurchenko 2016).

3 RESULTS

The final hot line list named APTY contains 7560 352 states and almost 20 billion transitions that completely cover the 0–6 000 cm$^{-1}$ region. An extended line list is provided which contains an additional 8 billion transitions in the 6000–8000 cm$^{-1}$ region with reduced completeness for higher temperature. Radiative lifetimes by Tennyson, Hill & Yurchenko (2013; Tennyson et al. 2016b) states and gives rise to long lived lower state energies with lifetimes that can reach up to 30 million years. Extract from the ExoMol-form (Tennyson, Hill & Yurchenko 2013; Tennyson et al. 2016b) states and transition files are given in Tables 4 and 5. Spectra at arbitrary temperatures can be computed using the Einstein-A coefficients from the transition files.

An estimate of the temperature applicability of the line list can be performed by checking the partition function convergence of equation (9), which is computed via explicit summation (Vidler & Tennyson 2000).

The convergence can be measured by computing τ via the methodology presented by Tennyson 2000. The convergence can be measured by computing $\tau(g)$ via the methodology presented by Tennyson 2000.

τ can be performed by checking the partition function convergence of $\Delta Q(D)$ states and $\Delta Q(D)$ states.

$\Delta Q(D)$ states and $\Delta Q(D)$ states.
Table 6. Comparisons of H$_2$O$_2$ partition functions as function of temperature for this work those used in HITRAN (Fischer et al. 2003).

<table>
<thead>
<tr>
<th>T/K</th>
<th>APTY</th>
<th>HITRAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>895.506</td>
<td>894.866</td>
</tr>
<tr>
<td>150</td>
<td>2815.866</td>
<td>2811.187</td>
</tr>
<tr>
<td>255</td>
<td>7360.598</td>
<td>7336.856</td>
</tr>
<tr>
<td>300</td>
<td>10 126.961</td>
<td>10 087.090</td>
</tr>
<tr>
<td>500</td>
<td>31 246.17</td>
<td>30 990.11</td>
</tr>
<tr>
<td>1000</td>
<td>232 439.8</td>
<td>226 152.5</td>
</tr>
<tr>
<td>1500</td>
<td>1031 673.6</td>
<td>993 983.8</td>
</tr>
<tr>
<td>3000</td>
<td>21 847 680</td>
<td>15 151 254</td>
</tr>
</tbody>
</table>

1250 K about 90 per cent of the population of states is represented by Q_{lim} but this falls to ≈ 80 per cent at 1500 K giving the upper temperature for which APTY is reasonably complete as 1250 K. Usage of the line list at higher temperatures runs the risk of losing opacity due to missing contributions. The ratio Q_{lim}/Q can be used to estimate this. However, the decomposition of H$_2$O$_2$ means that it is unlikely to be an important species above 1000 K. The partition function tabulated in steps of 1 K, alongside an associated cooling function, is given as Supplementary Information to this Paper.

Table 6 compares our partition function against HITRAN; we see that at temperatures less than 1000 K we agree better than 1 per cent. For temperatures 1000–1500 K, the APTY partition function is greater by 2–4 per cent suggesting that the explicit summation method gives higher, and probably better values, than the more approximate method used by HITRAN (Fischer et al. 2003). However, at 3000 K APTY’s Q is 30 per cent lower than the HITRAN value which can be attributed to the eigenvalue cutoff of 12 000 cm$^{-1}$ and $J = 85$. Studies on ammonia and phosphine have shown that considerably extended lists of energy levels are required to get converged partition sums at these elevated temperatures (Sousa-Silva et al. 2014).

Fig. 3 is a simulated spectrum of the APTY line list computed at $T = 296$ K. This highlights the coverage and sheer number and

Figure 3. Overview of our synthetic spectrum at $T = 296$ K against HITRAN data (Rothman et al. 2013).

Figure 4. The fundamental bands compared to the HITRAN data base (Rothman et al. 2013) at $T = 296$ K: (a) Torsional and (b) ν_6 bands.
Figure 5. The ν_1 and ν_3 band region with APTY against PNNL-IR data at 323.15 K (Sharpe et al. 2004) with HWHM = 0.300 cm$^{-1}$.

Figure 6. Cross-section comparison of peaks in the ν_1 and ν_5 band region with APTY (this work) and H2O2-2015 (Al-Refaie et al. 2015a) against PNNL-IR data at 323.15 K (Sharpe et al. 2004) with HWHM = 0.300 cm$^{-1}$.

Table 7. Band intensities, in 10^{-17} cm$^{-1}$/molecule cm$^{-2}$.

<table>
<thead>
<tr>
<th>Band</th>
<th>Frequency range (cm$^{-1}$)</th>
<th>Ref.</th>
<th>Obs</th>
<th>Calc</th>
<th>(O-C)/O (per cent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torsional</td>
<td>0–1427</td>
<td>Perrin et al. (1996)</td>
<td>4.0400</td>
<td>3.7450</td>
<td>7.3</td>
</tr>
<tr>
<td>ν_3</td>
<td>750–1100</td>
<td>Johnson et al. (2009)</td>
<td>0.0157</td>
<td>0.0165</td>
<td>5.43</td>
</tr>
<tr>
<td>ν_6</td>
<td>1135–1393</td>
<td>Johnson et al. (2009)</td>
<td>1.7458</td>
<td>1.7651</td>
<td>1.10</td>
</tr>
<tr>
<td>ν_6</td>
<td>1170–1380</td>
<td>Klee et al. (1999)</td>
<td>1.8500</td>
<td>1.7633</td>
<td>4.68</td>
</tr>
<tr>
<td>ν_6</td>
<td>1170–1380</td>
<td>Perrin et al. (1995)</td>
<td>1.0030</td>
<td>1.7633</td>
<td>75.80</td>
</tr>
<tr>
<td>$\nu_2 + \nu_6$</td>
<td>2300–2900</td>
<td>Johnson et al. (2009)</td>
<td>0.0830</td>
<td>0.055</td>
<td>33.78</td>
</tr>
<tr>
<td>Multiple bands</td>
<td>2300–2900</td>
<td>Johnson et al. (2009)</td>
<td>0.0830</td>
<td>0.0797</td>
<td>3.97</td>
</tr>
<tr>
<td>ν_1,ν_5 region</td>
<td>3300–3800</td>
<td>Johnson et al. (2009)</td>
<td>0.8356</td>
<td>0.8724</td>
<td>4.40</td>
</tr>
</tbody>
</table>
Figure 7. The 2.77 µm band of H$_2$O$_2$ at room temperature. Upper display: APTY cross-sections (296 K) generated using a Doppler profile; lower display: an uncalibrated Kitt Peak spectrum of H$_2$O$_2$ (archive name is 800628R0.002, Date is 28/06/1980; Range is 1599.010271–6421.422198 cm$^{-1}$, Observer is Hunt; 1.77 m cell).

Figure 8. Cross-sections using a Doppler profile for the APTY line list as a function of temperature. The depth of the minima (windows) decreases monotonically with temperature.

density of transitions available compared to the current edition of the HITRAN data base (Rothman et al. 2013). Fig. 4 compares our results with specific regions in the HITRAN data base, the torsional and v_6 bands. Comparisons of the two show excellent agreement in replicating both line position and intensities.

Our line list in the v_1 and v_5 band regions can be validated by simulating absorption cross-sections in the 2.7 µm region and comparing against PNNL-IR data (Sharpe et al. 2004); see Fig. 5. The structure and positions are in good agreement with the overall integrated intensity for APTY in this region being 3 per cent stronger than PNNL. The improvement given by the H2O2-2016 PES can be demonstrated by comparing with our previous room-temperature line list and with the PNNL-IR data; see Fig. 6. The wavelengths of the largest two peaks in this band at 2.738 and 2.736 µm are correctly reproduced by APTY but are shifted by about 0.001 µm for H2O2-2015, showing the improvement in this band due to use of the refined PES. Overall the integrated cross-sections for this band differs only by 3 per cent from PNNL; indeed the entire spectrum up to 6000 cm$^{-1}$ only differs by 3 per cent.
Band intensities can be computed by explicit summation of all transitions within a band and compared against available data. Table 7 shows that for the limit available empirical band intensities we agree with most regions to ± 7.3 per cent which is below the estimated experimental uncertainty of ± 10 per cent. Two discrepancies are with the v_6 band from Perrin et al. (1995) and the $v_2 + v_6$ band from Johnson et al. (2009). The former conflicts with other measurements due to Johnson et al. (2009) and Klee et al. (1999) where integrated absorption intensities were measured directly, whilst the band intensities of Perrin et al. (1995) were obtained by summing a synthetic spectrum of only 27 276 transitions. Our $v_2 + v_6$ band intensity is 33.78 per cent weaker than the experimentally derived value. Johnson et al. (2009) suggests that the assignment of this band is $v_2 + v_6$ compared to the $v_2 + v_3 + v_4$ assignment by Giguere (1950). This is based on a Q-branch peak observed at 2658.62 cm$^{-1}$. The assignments from APTY suggest that the peak observed is actually a convolution of Q-branches of the $(0, 4) \rightarrow v_2 + (0, 4), (0, 4) \rightarrow v_2 + (0, 2) + v_6, (0, 4) \rightarrow v_3 + (4, 4), (0, 4) \rightarrow v_3 + (2, 2), (0, 4) \rightarrow 2 v_3 + (2, 3)$ and $(0, 4) \rightarrow v_3 + (2, 2) + v_6$ transitions with an average separation between them at ± 0.02 cm$^{-1}$. Computing the band intensities of all of these bands in this region gives an answer that agrees with value given by Johnson et al. (2009) to 3.97 per cent.

The Kitt Peak Archive provides FTIR spectra of H$_2$O$_2$ covering the wavenumber region up to 6422 cm$^{-1}$, which is only partly assigned. Fig. 7 (lower display) shows an uncalibrated spectrum of H$_2$O$_2$ in the 1.78 μm region (800628R0.002) recorded by R. H. Hunt in 1980, which covers the v_1 and v_5 fundamental bands of the hydrogen peroxide. To the best our knowledge these two bands have not been spectroscopically analysed. The upper display of this figure presents our absorption spectrum at 296 K simulated using the Doppler line profile. Our synthetic spectrum resembles all the main features of the experimental data. We would like to encourage a spectroscopic analysis of the Kitt Peak H$_2$O$_2$ spectra in the IR and near-IR regions currently not present in HITRAN. We believe that our theoretical line list with a capability of providing absolute intensities and quantum numbers can assist in the assignment of these spectra.

Fig. 8 presents integrated absorption cross-sections computed using a Doppler profile (Hill, Yurchenko & Tennyson 2013) for a range of temperatures. The figure shows how the opacity changes with increasing temperature. We note the particularly dramatic effect raising the temperature has on the absorption by H$_2$O$_2$ in the 13.7 μm region. This smoothing in the overall spectra can only be modelled if there is adequate coverage and population of rotationally and vibrationally excited states. We also note the strength of the OH stretch feature at about 2.75 μm; these features are absent from line data bases such as HITRAN because of the absence of assigned spectra in this region. Hopefully APTY can be used to help analyse spectra in this region, as the BYTe NH$_3$ line list is being used to analyse ammonia spectra (Barton et al. 2015, 2016).

4 CONCLUSION

The frequency and Einstein-A coefficients of almost 20 billion transitions of hydrogen peroxide are computed. These transitions cover wavelengths longer than 1.6 μm and include all rotational excitations up to $J = 85$, making the line list applicable for temperatures up to 1250 K. The line list gives a room-temperature spectrum in excellent agreement with available experimental data and has good predictive ability for bands and line-positions not available experimentally. The new line list may be accessed via www.exomol.com or http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/MNRAS/. The sections of H$_2$O$_2$ can be also generated at www.exomol.com as described by Tennyson et al. (2016b).

ACKNOWLEDGEMENTS

This work was supported by the ERC under the Advanced Investigator Project 267219 and made use of the DiRAC@Darwin, DiRAC@COSMOS HPC cluster and Emerald CfI cluster. DiRAC is the UK HPC facility for particle physics, astrophysics and cosmology and is supported by STFC and BIS. The authors would like to acknowledge the work presented here made use of the EMERALD High Performance Computing Facility provided via the Centre for Innovation (CfI). The CfI is formed from the universities of Bristol, Oxford, Southampton and UCL in partnership with STFC Rutherford Appleton Laboratory. We would also like to thank nVidia for supplying our group with a Tesla K40 GPU for usage in intensity and cross-section computation. AFA would also like to thank Dr Faris N. Al-Refaie, Lamy A. Ali, Sarfraz Ahmed Aziz, and Rory and Annie Gleeson for their support.

REFERENCES

Encrezan T. et al., 2004, Icarus, 170, 424

ExoMol line lists – XV. H$_2$O$_2$ 1021

Downloaded from http://mnras.oxfordjournals.org/ by guest on July 2, 2016
Giguere P. A., Srinivasan K. V. K., 1974, J. Raman Spectrosc., 2, 125
Perrin A. et al., 1996, J. Mol. Spectrosc., 176, 287
Rothman L. S. et al., 2013, J. Quant. Spectrosc. Radiat. Transfer, 130, 4
Tennyson J. et al., 2016b, J. Mol. Spectrosc., in press

SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Table 4. Extract from the H$_2$O$_2$ state file.

Table 5. Extracts from the H$_2$O$_2$ transitions file.

Please note: Oxford University Press is not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.

This paper has been typeset from a TEX/LATEX file prepared by the author.