Cooling by H_3^+ Emission

Steve Miller,‡‡ Tom Stallard,‡ Jonathan Tennyson,‡ and Henrik Melin‡

‡Department of Physics and Astronomy, University College London, London WC1E 6BT, U.K.
‡‡Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE17RH, U.K.

ABSTRACT: Emission by the H_3^+ molecular ion may be important in determining the energy balance in astrophysical situations, such as in (exo)planetary atmospheres. Here we report the calculation of a new cooling function, based on refitted partition functions and a recalculaton of the total energy emitted by the molecule. This new function gives significantly increased cooling at higher temperatures, typical of those found in the atmospheres of gas giants. It is shown that nonthermal effects also need to be considered. A link to a web-based code to calculate radiative cooling in H_2/H_3^+ gas mixtures, including the effects of departures from equilibrium, is provided.

INTRODUCTION

The existence of a species with a mass-to-charge ratio of 3 was first reported by J. J. Thomson in 1911, which he originally labeled X_3. At lectures at the Royal Institution and Royal Society, Thomson publicly identified X_3 as a “new” form of hydrogen, H_3^-. Generally speaking, the spectrum of a candidate new molecule is needed to confirm any new discovery. In this case of H_3^+, seven decades were to pass before Oka finally claimed that prize in 1980, measuring fifteen infrared lines in a wavelength region of 500 cm$^{-1}$ centered on 2700 cm$^{-1}$ (3.704 μm). The reason it took so long and the far-reaching consequences of Oka’s measurements will be outlined below.

“New” is, of course, a relative term. The honor of being the first molecule formed in the Universe goes to HeH$^+$: because the ionization potential of He (24.6 eV) is considerably higher than that of H (13.6 eV), neutral He forms earlier after the Big Bang, during the early part of the Recombination Era, and can combine with H$^+$ (with no activation energy required). Some chemical pathways became available:5,6

\[
\begin{align*}
\text{H} + \text{H}^+ & \rightarrow \text{H}_2^+ + \nu \\
\text{H}_2^+ + \text{H} & \rightarrow \text{H}_2 + \text{H}^+ \\
\text{H}_2 + \text{H}^+ & \rightarrow \text{H}_3^+ + \nu \\
\text{H}_2^+ + \text{H}_2 & \rightarrow \text{H}_3^+ + \text{H}
\end{align*}
\]

(1)

(The last of this series of reactions was first described in 1925 by Hogness and Lunn and was the key reaction to forming H_3^- in the interstellar medium and planetary atmospheres.) As a result, H_3^+ is the sixth most abundant of 11 early universe molecules listed by Glover and Savin, with a peak abundance relative to the total gas number density of a few 10^{-12}. This peak abundance occurs in clouds collapsing to form a Population III star, at a point that the gas density reaches some 10^{14} m$^{-3}$. So though a newcomer relative to HeH$^+$, H_3^+ still goes back a long way: Thomson’s “new” form of hydrogen was new to human knowledge, but very old in astronomical terms.

Star formation from proto-stellar nebulae requires cooling, and in the early universe—before the first generation of stars can enrich the gas with elements heavier than lithium—that is predominantly supplied by radiation from H$_2$. The absence of a permanent dipole, or one induced when the molecule vibrates, means that H$_3$ is, per molecule, a very poor radiator: it relies on quadrupole emission, which typically results in very small Einstein A coefficients for spontaneous emission (A_ν) of $10^{-5} - 10^{-7}$ s$^{-1}$.

Although, according to Glover and Savin, the H_3^+ abundance relative to H$_2$ never rises above a few 10^{-9}, at a point when the overall gas density is $\sim10^{14}$ m$^{-3}$ and that of H$_2$ itself is $\sim10^{11}$ m$^{-3}$. Nonetheless, H$_3^+$ contributes up to 3% of the total cooling of the contracting gas cloud. With D_th equilibrium geometry, H_3^+ also has no permanent dipole, but it does have one that is induced when the molecule vibrates in a manner that distorts and lowers that symmetry. Its v_2 antisymmetric-stretch/bend mode generates ro-vibrational transitions with A_ν, typically in the range $10^{11} - 10^{12}$ s$^{-1}$, many orders of magnitude greater than those of H$_2$. Moreover, H$_3^+$ is a “floppy” molecule in the terminology of Tennyson and Sutcliffe, with large anharmonicities in the vibrational modes and large centrifugal forces complicating its rotational energy level structure. This also means distorted, rotating H_3^+ can exhibit a dipole-driven pure rotational spectrum. This “forbidden” rotational spectrum has yet to be observed but is an important cooling agent, especially at lower temperatures.

The downside of this floppiness is that it made it difficult for spectroscopists to predict and interpret the spectrum: Oka’s measurements will be outlined below.

Special Issue: Oka Festschrift: Celebrating 45 Years of Astrochemistry

Received: December 18, 2012
Revised: July 16, 2013
Published: July 16, 2013
spent many days searching for lines once he had found the first transition, and it took the complicated Hamiltonian developed by Watson to assign them. 14 The upside of ease with which H3+a geometry departs from its equilibrium configuration is that many transitions would be forbidden in a harmonic system (overtones, difference bands, and even symmetric-stretch transitions) have relatively large Aσ values. 15 The result is a rich and somewhat irregular spectrum, covering a large spectral range from the orange part of the visible 16 and near-infrared, 4, 17 - 25 through the mid-infrared, toward the microwave, 12, 13 although only one transition in the mid-infrared has been claimed to have been observed, 26 and none yet in the microwave.

As one of a small group of early universe molecules, and a species that is easily formed if there is an abundance of H2 and a source of ionization, H3+a has long been considered an important component of the interstellar medium, particularly in less dense environments where EUV radiation and cosmic rays can penetrate. 27, 28 So it was natural that it was proposed fairly early in the history of astrochemistry as a candidate for detection, 29 - 30 although, typically for the history of H3+a, it took several decades before it was first detected in an extra-solar-system source, 31 and was subsequently found where it should 32 and where it should not have been. 33 - 35 But the very first detection of H3+a outside of the laboratory really was where it was least expected—in terms of both spectroscopy and its location.

■ H3+a IN PLANETARY ATMOSPHERES

Although models of the upper atmospheres of the giant planets had predicted that H3+a would be a major ion there, 36, 37 no one actually had proposed observations to look for it. Instead, two groups looked for quadrupole lines of H3+, which they anticipated would be detectable in emission in Jupiter’s auroral/polar regions. These lines were indeed found, 38, 39 but they were measured along with several other emission lines in the atmospheric K window, in the region 1.9 - 2.4 µm. 39 These lines were assigned as belonging to the overtone band of H3+a as a result of comparisons between unassigned laboratory spectra and first principles calculations of higher ro-vibrational transitions. 37

The intensity of the overtone lines meant that planetary scientists were soon able to detect even stronger emission from the fundamental ν2 band in the atmospheric L and L’ windows (from 2.9 to 4.2 µm). 40 - 42 Since the 1990s, the fundamental band has been detected in emission in Saturn 43 and Uranus, 44 along with hot bands 45 and hot overtones 46 from Jupiter. No H3+a emission has been detected from Neptune, however. 47 General circulation models (GCMs) of the upper atmospheres of Jupiter 48, 49 and Saturn 50, 51 have incorporated H3+a to varying degrees, as have GCMs of “hot Jupiter” exoplanets. 52

The role of H3+a as a tracer of energy inputs from the magnetosphere, as a source of conductivity and heating, and as a driver of atmospheric winds, has been discussed in a number of conferences. 53 - 55 One key issue that has come to light is the role H3+a emission plays in cooling giant planet atmospheres, 41, 52, 58, 59 a property that has been termed the “H3+a thermostat”. Indeed, for giant exoplanets, GCMs have shown that this thermostatic effect controls the orbital radius inside of which the planet’s atmosphere is no longer in hydrostatic equilibrium but starts to lose mass by hydrodynamic outflows, 52 although this is also affected by the eccentricity of the orbit. 60

The importance of this H3+a thermostat has prompted us to look at the adequacy of attempts to model it and to propose some improvements. To do this, we look at the use of H3+ linelists and the generation of cooling functions, assuming local thermodynamical equilibrium (LTE), and attempts to parametrize those curves. We also look at the way non-LTE effects can be taken into account when gas densities fall below those critical to ensure that level populations are controlled by collisional effects, rather than radiative depopulation.

■ THE H3+a PARTITION FUNCTION

Early attempts 61, 62 to calculate the partition function of H3+a suffered from the relatively low number of energy levels that were available, from either spectroscopic measurement or calculation. For example, the 1992 partition function of Sidhu et al. 63 only covered the first ten vibrational levels with angular momentum J ≤ 12, based on the 1991 linelist of Kao et al. 10 In 1995, however, Neale and Tennyson 63 (henceforth NT) published explicitly calculated values for all the energy levels of H3+a with energies up to 15 000 cm -1 and an angular momentum J ≤ 20. From this, they calculated a partition function, z(T), for the molecule that was between 10 and 100 times greater above 4000 K than some previously published values. 61, 62 They parametrized this with a form

\[z(T) = \sum_n a_n (\log_{10} T)^n \]

with n = 0 - 6. They found the best fit over the entire range of their values of z(T) for H3+a, which varied from 7.36 at 100 K, through 14 259 at 5000 K, to 57 503 at 10 000 K, was given with the values

\[a_0 = 78.6233962485680706 \]
\[a_1 = -134.82202886523251 \]
\[a_2 = 88.4482694968956480 \]
\[a_3 = -25.9274134012622429 \]
\[a_4 = 2.6023376654769222 \]
\[a_5 = 0.224167420795110400 \]
\[a_6 = -0.0452550693680233290 \]

For 15 years, the NT partition function was the most reliable available and was used in the generation of cooling curves. This partition function also proved crucial in developing models of cool, metal-free white dwarves that were consistent with observations. 64 However, one problem with fitting to log₁₀ T is that, though the errors in the log-fit may be relatively small, these can scale up to quite large errors in the actual value, which would be derived from a direct calculation that would be obtained from

\[z(T) = \sum_N g_N (2J_N + 1) \exp(-E_N/kT) \]

where N is the energy level number, g_N and J_N are the nuclear spin degeneracy and angular momentum of that level, respectively, and the sum is over the total number of energy levels. For this reason, Miller et al. 59 carried out a direct recalculation of z(T) and then fitted to the actual value of z(T) rather than the log₁₀ of that value. The resultant fit was to the following form:
Table 1. Fit Coefficient for the Partition Function \(z(T) = \sum_n A_n T^n \) for NT All Levels\(^6\)

<table>
<thead>
<tr>
<th>range</th>
<th>100−1800 K</th>
<th>1800−5000 K</th>
<th>5000−10000 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_0)</td>
<td>−1.11391</td>
<td>−22125.5</td>
<td>−654293.0</td>
</tr>
<tr>
<td>(A_1)</td>
<td>+0.0581076</td>
<td>+51.1539</td>
<td>+617630</td>
</tr>
<tr>
<td>(A_2)</td>
<td>+0.000302967</td>
<td>−0.0472256</td>
<td>−0.237058</td>
</tr>
<tr>
<td>(A_3)</td>
<td>−2.83724 × 10(^7)</td>
<td>+2.26131 × 10(^5)</td>
<td>+4.74466 × 10(^5)</td>
</tr>
<tr>
<td>(A_4)</td>
<td>+2.31119 × 10(^{−10})</td>
<td>−5.85307 × 10(^{−7})</td>
<td>−5.20566 × 10(^{−9})</td>
</tr>
<tr>
<td>(A_5)</td>
<td>−7.15895 × 10(^{−14})</td>
<td>+7.90879 × 10(^{−15})</td>
<td>+3.05824 × 10(^{−15})</td>
</tr>
<tr>
<td>(A_6)</td>
<td>+1.00150 × 10(^{−17})</td>
<td>−4.28349 × 10(^{−17})</td>
<td>−7.45152 × 10(^{−16})</td>
</tr>
</tbody>
</table>

Table 2. Fit Coefficients for the Partition Function \(z_{fp}(T) = \sum_n A_n T^n \) Obtained Using NT First Principles Levels Only

<table>
<thead>
<tr>
<th>range</th>
<th>100−1800 K</th>
<th>1800−5000 K</th>
<th>5000−10000 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_0)</td>
<td>−1.11391</td>
<td>−378.621</td>
<td>+6200.41</td>
</tr>
<tr>
<td>(A_1)</td>
<td>+0.0581076</td>
<td>+0.839719</td>
<td>−8.55558</td>
</tr>
<tr>
<td>(A_2)</td>
<td>+0.000302967</td>
<td>−0.000304567</td>
<td>+0.00005172</td>
</tr>
<tr>
<td>(A_3)</td>
<td>−2.83724 × 10(^7)</td>
<td>+5.17514 × 10(^{−8})</td>
<td>+2.53004 × 10(^{−7})</td>
</tr>
<tr>
<td>(A_4)</td>
<td>+2.31119 × 10(^{−10})</td>
<td>+7.79447 × 10(^{−11})</td>
<td>−4.69402 × 10(^{−11})</td>
</tr>
<tr>
<td>(A_5)</td>
<td>−7.15895 × 10(^{−14})</td>
<td>−1.63248 × 10(^{−14})</td>
<td>+3.06177 × 10(^{−15})</td>
</tr>
<tr>
<td>(A_6)</td>
<td>+1.00150 × 10(^{−17})</td>
<td>+9.60597 × 10(^{−19})</td>
<td>−7.34376 × 10(^{−20})</td>
</tr>
</tbody>
</table>

\(z(T) = \sum_n A_n T^n \) \hspace{1cm} (4)

again with \(n \) ranging from 0 to 6. For this fit, however, it was found that \(z(T) \) had to be broken into a series of ranges, if a good correspondence was to be obtained. The values obtained for the coefficients are given in Table 1.

Miller et al.\(^{69\text{*}}\) showed that the NT fit overestimated the value of \(z(T) \) for the entire temperature range they had calculated, ranging from a factor of 2.5 at 100 K to a few percent at temperatures over 5000 K. By comparison, the new fit had a maximum error of +1.7% at 3000 K and was generally well over 6.2 million transitions from which some 3.2 million were removed as they had \(A_d \) values that were less than \(10^{-7} \) s\(^{−1}\). This left still 3 070 571 individual lines with their associated wavenumbers and \(A_d \) values.

From this NMT calculated the per molecule emission curve, \(E(H_3^+, T) \) assuming LTE. Their results showed that their line list gave an almost complete representation up to 4000 K, a temperature above which considerable thermal dissociation would take place. They did not, however, parametrize this curve. Moreover, the overall per molecule emission was based on using the NT value of \(z(T) \), which overestimates the true value; Thus any cooling curve based on the full NT partition function will underestimate the true cooling rate because \(E(H_3^+, T) \) is inversely proportional to \(z(T) \).

To calculate the cooling due to \(H_3^+ \) in giant planet atmospheres, Melin\(^{67\text{*}}\) produced a per molecule cooling curve making use of only the transitions that fell within the wavelength range 2−5 \(\mu \)m, the region in which the molecule’s emissions peak in the temperature range normally sampled in Jupiter. (These wavelengths correspond to the peak emission, \(\lambda_{max} \), of a blackbody with \(T \) in the range 1500−600 K.) Melin\(^{66\text{*}}\) made use of the Neale–Tennyson fit to their full level partition function, using

\[
E(H_3^+, T) = \sum_n B_n T^n
\]

The resulting cooling curve was fitted with \(n = 0 \rightarrow 4 \) (Table 3).

Table 3. Fit Coefficients for the Cooling Function \(E(H_3^+, T) = \sum_n B_n T^n \) Given by Melin (2006) in Units of Watts Molecule\(^{−1}\) Steradian\(^{−1}\)

<table>
<thead>
<tr>
<th>range</th>
<th>500−900 K</th>
<th>900−1800 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_0)</td>
<td>−6.11904 × 10(^{−21})</td>
<td>−8.24045 × 10(^{−21})</td>
</tr>
<tr>
<td>(B_1)</td>
<td>+4.96694 × 10(^{−23})</td>
<td>+3.54583 × 10(^{−23})</td>
</tr>
<tr>
<td>(B_2)</td>
<td>−1.43608 × 10(^{−25})</td>
<td>−8.66269 × 10(^{−26})</td>
</tr>
<tr>
<td>(B_3)</td>
<td>+1.60926 × 10(^{−28})</td>
<td>+9.76608 × 10(^{−29})</td>
</tr>
<tr>
<td>(B_4)</td>
<td>−3.87932 × 10(^{−32})</td>
<td>−1.61317 × 10(^{−32})</td>
</tr>
</tbody>
</table>

THE H\(_3^+\) COOLING CURVE

Neale et al.\(^{65\text{*}}\) (henceforth NMT) used the wave functions associated with the NT energy levels to compute a line list of over 6.2 million transitions from which some 3.2 million were removed as they had \(A_d \) values that were less than \(10^{-7} \) s\(^{−1}\). This left still 3 070 571 individual lines with their associated wavenumbers and \(A_d \) values.

Using these cooling rates, Melin et al.\(^{58\text{*}}\) were able to demonstrate that cooling by \(H_3^+ \) could more or less offset the heating in Jupiter’s auroral/polar atmosphere due to the influx of energetic particles but was not able to do so for Saturn.\(^{57\text{*}}\) Koskinen et al.\(^{52\text{*}}\) also demonstrated that the \(H_3^+ \) thermostat—the trade-off between ionization due to stellar EUV and subsequent \(H_3^+ \) cooling, on the one hand, and stellar radiation heating the atmosphere, on the other—was able to stabilize a Jupiter-like planet as close as 22 × 10\(^{6}\) km from a sun-like star, before its atmosphere started to undergo hydrodynamic escape.

Given its importance in governing conditions in (exo-)planetary upper atmospheres, we have now recalculated the \(E(H_3^+, T) \) curve, but making use of the full transition set of
Our calculations initially make use of \(z(T) \) given in Table 1. One problem with this cooling function is that it makes use of NT's complete partition function, which includes energy levels extrapolated via the Padé approximants up to \(J = 46 \) and \(E_{\text{level}} = 35\,000 \text{ cm}^{-1} \). However, transitions are only available for levels with \(J \) up to 20 and \(E_{\text{level}} = 15\,000 \text{ cm}^{-1} \). So the total emission that is being calculated is effectively too low, because transitions between energy levels from \(J = 20 \) to \(J = 46 \) and between \(E_{\text{level}} = 15\,000 \) and \(35\,000 \text{ cm}^{-1} \) are not included in the calculation of \(E(H_3^{+},T) \), even though the energy levels do go into the calculation of \(z(T) \).

To allow for the missing transitions, therefore, we have scaled the value of \(E(H_3^{+},T) \) by a factor given by

\[
s_\text{f}(T) = 2.0 - z_{\text{fp}}(T)/z(T)
\]

where \(z_{\text{fp}}(T) \) is computed from the first principles levels only (Table 2). This scaling assumes the missing levels make a pro-rata contribution.

Table 4 shows that the values of \(E(H_3^{+},T) \) using these partition functions are identical up to 2000 K, because the partition functions are equal to that point, and that differences are within less than 2% up to 2500 K and less than 8% at 3000 K. After that, the value of \(E(H_3^{+},T) \) calculated with \(z_{\text{fp}}(T) \) increases in comparison with that using \(z(T) \) from all levels, as the latter partition function increases more rapidly with temperature: at 5000 K \(E(H_3^{+},T) \) calculated from \(z_{\text{fp}}(T) \) is a factor of 1.4 times greater.

Table 4 also shows that our new calculation of \(E(H_3^{+},T) \) is greater than that derived from the Melin \textit{et al.} function for all valid temperatures for which that function was derived. At 500 K, the difference is already \(\approx 35\% \), rising to a factor of \(\approx 2.5 \) at 2000 K. At temperatures above 2000 K, Melin did not claim his function was reliable, and this is clearly seen as it actually starts to decrease in value at \(T > 4000 \text{ K} \).

On the basis of these new calculations, we have parametrized the cooling curves. This time, our fit is to the following form:

\[
\log_e \{E (H_3^{+} , T)\} = \sum \beta \cdot T^n
\]

and covering a wide temperature range, from 30 to 5000 K. Varying degrees of fit were required, depending on the temperature range. Our best fits to the curve calculated using \(z(T) \) are given in Table 5. We have also fitted the scaled cooling function to the same function for the region \(T = 1800--5000 \text{ K} \), where \(z_{\text{fp}}(T) \) is less than \(z(T) \) due to the exclusion of extrapolated levels. Our best fit values are given, with errors over the entire range of less than 0.1%, in Table 5 (last column).

Figure 1 shows the values of \(\log_e \{E (H_3^{+} , T)\} \) and the percentage error in the actual value of \(E(H_3^{+},T) \) itself against temperature for the cooling curve based on the emission from the first principles calculated states and using \(z(T) \). The largest errors in the fitted values of \(E(H_3^{+},T) \) occur for the lowest temperature range, for which they are between a maximum of \(\pm 5\% \). For the 30--300 K range, we use the "brute force" values of \(z(T) \) rather than a fit.

Between 300 and 800 K, the errors in \(E(H_3^{+},T) \) are generally less than 0.1%, except at the lower end and are all but nonexistent for the 800--1800 K range. From 1800 to 5000 K, the errors increase again to a few tenths of a percent. These ranges are the most important for \(H_3^{+} \) cooling, covering the full range of temperatures found in planetary atmospheres up to a point where \(H_3^{+} \) and, even more importantly, its feedstock \(H_2 \) are subject to considerable thermal dissociation. Above 5000 K, our calculation of \(E(H_3^{+},T) \) almost certainly misses higher energy transitions, and the errors on the fit creep back toward \(\pm 0.5\% \). We do not report these values here.

Given the absence of calculated transitions between missing higher energy states, discussed above, it is clear there is additional uncertainty in the values of \(E(H_3^{+},T) \). At this stage, however, any attempt at quantification of this uncertainty would be speculative, and our \(s_\text{f}(T) \) parameter must be viewed as generating an effective cooling curve. New calculations of \(H_3^{+} \) energy levels and linelists would be welcome if further progress is to be made.

| Table 4. Values for \(E(H_3^{+},T) \) Extrapolated for the Melin Fit Compared with Those Calculated Here in Units of Watts Molecule\(^{-1}\) Steradian\(^{-1}\) |
\(T \) (K) \(E(H_3^{+},T) \) (Melin 2006)	\(E(H_3^{+},T) \) using \(z_{\text{fp}}(T) \) (scaled)	
500	0.50484 \times 10^{-11}	6.7736 \times 10^{-11}
1000	0.22120 \times 10^{-10}	0.33393 \times 10^{-10}
1500	0.97975 \times 10^{-10}	0.19205 \times 10^{-10}
2000	0.23933 \times 10^{-10}	0.60456 \times 10^{-10}
2500	0.43479 \times 10^{-10}	0.12736 \times 10^{-10}
3000	0.64867 \times 10^{-10}	0.20089 \times 10^{-10}
3500	0.82113 \times 10^{-10}	0.26726 \times 10^{-10}
4000	0.86818 \times 10^{-10}	0.31158 \times 10^{-10}
4500	0.68146 \times 10^{-10}	0.33158 \times 10^{-10}
5000	0.12867 \times 10^{-10}	0.34119 \times 10^{-10}

Table 5. Fit Coefficients for the Cooling Function \(\log_e \{E (H_3^{+} , T)\} = \sum \beta \cdot T^n \) Using \(z(T) \) and \(z_{\text{fp}}(T) \) in Units of Watts Molecule\(^{-1}\) Steradian\(^{-1}\)
NON-LTE EFFECTS

Planetary upper atmospheres typically span the density range $10^{12}-10^{20}$ m$^{-3}$ from the exosphere down to the homopause,36,37 so H$_2$ energy levels are generally populated according to an LTE distribution there (see, e.g., Coppola et al.68 and references therein). But the high values of A_{fi} for H$_3^+$ mean that radiative relaxation is competitive with collisional de-excitation at much higher densities, probably up to $10^{17}-10^{18}$ m$^{-3}$, dependent on temperature. This means that H$_3^+$ levels are often subthermally populated for much of the gas column. Miller et al.41 referred to the levels as being quasi-thermally populated in these regions, by which they meant

(a) that, although the level populations were generally subthermal with respect to the ground state, ratios of emitting vibrationally excited level populations were close to what would be expected from LTE and

(b) that, because H$_3^+$ had no permanent dipole, rotational sublevels within any particular vibrational manifold were generally populated in the same ratio as would be expected from LTE.

This means it has been possible to use H$_3^+$ line ratios to derived column temperatures (and effective column densities) to characterize the upper atmospheres of the giant planets, to study energy deposition and generation and changes due to solar wind–magnetosphere–ionosphere coupling processes.54–56

With the development of (global circulation) models capable of including the effects of H$_3^+$ production either by explicit means48,69 or in a parametrized fashion,49–52,70 it has become important to model the H$_3^+$ emission by taking account the line production along the line-of-sight, i.e., throughout the column of the atmosphere. In turn, this means allowing for the departure from LTE as a function of altitude/local density and local temperature to model correctly the energy balance in the atmosphere and to compare with measured H$_3^+$ emission.50–52,70

Oka and Epp71 have developed a very elegant formulation of the detailed balance calculations required to allow for non-LTE effects for H$_3^+$ in a predominantly H$_2$ atmosphere; their aim was to compute departures of individual rotational levels from thermal population, which subsequent observations confirmed.72,73 We have adapted this approach to compute the departure from LTE of the population of individual vibrational levels.59 We then use this to scale the overall emission from H$_3^+$ making use of Miller et al.’s41 approximation (b), using

\[
\xi_{\text{nonLTE}}(T,[H_2]) = \sum_V N_{\text{nonLTE}}(V,T,[H_2]) I(V) / \sum_V N_{\text{LTE}}(V,T) I(V)
\]

where $N_{\text{nonLTE}}(V,T,[H_2])$ is the population of vibrational level V that comes out of the detailed balance calculation at a temperature of T and an H$_2$ number density of $[H_2]$.

Figure 1. Left column: log$_e\{E(H_3^+,T)\}$ vs T. Right column: percent error in $E(H_3^+,T)$ vs T. The values given here make use of $z_{35000}(T)$. The units of $E(H_3^+,T)$ are Watts molecule$^{-1}$ steradian$^{-1}$.

dx.doi.org/10.1021/jp312468b.j.p.chem.a 2013, 117, 9770–9777

9774
Table 6. \(\text{H}_3^+ \) per Molecule Emission\(^*\) and Non-LTE Scaling Factor as a Function of \(T \) and \([\text{H}_2] \)

| \(T \) (K) | \([\text{H}_2] \) (\(\text{m}^{-3} \)) | 10\(^{12} \) | 10\(^{14} \) | 10\(^{16} \) | 10\(^{18} \) | 10\(^{20} \) \\
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>0.36090 \times 10^{-15}</td>
<td>0.21031 \times 10^{-23}</td>
<td>0.52688 \times 10^{-25}</td>
<td>0.53494 \times 10^{-25}</td>
<td>0.53503 \times 10^{-25}</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>0.0067</td>
<td>0.3931</td>
<td>0.9848</td>
<td>0.9998</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.24926 \times 10^{-15}</td>
<td>0.73027 \times 10^{-22}</td>
<td>0.17356 \times 10^{-20}</td>
<td>0.23219 \times 10^{-20}</td>
<td>0.23299 \times 10^{-20}</td>
<td></td>
</tr>
<tr>
<td>1500</td>
<td>0.43876 \times 10^{-12}</td>
<td>0.35956 \times 10^{-21}</td>
<td>0.16548 \times 10^{-19}</td>
<td>0.32950 \times 10^{-19}</td>
<td>0.33392 \times 10^{-19}</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>0.24890 \times 10^{-21}</td>
<td>0.12329 \times 10^{-20}</td>
<td>0.69923 \times 10^{-19}</td>
<td>0.18637 \times 10^{-18}</td>
<td>0.19205 \times 10^{-18}</td>
<td></td>
</tr>
<tr>
<td>2500</td>
<td>0.12313 \times 10^{-20}</td>
<td>0.53968 \times 10^{-20}</td>
<td>0.32046 \times 10^{-17}</td>
<td>0.12069 \times 10^{-17}</td>
<td>0.12968 \times 10^{-17}</td>
<td></td>
</tr>
<tr>
<td>3000</td>
<td>0.18641 \times 10^{-20}</td>
<td>0.81666 \times 10^{-20}</td>
<td>0.47956 \times 10^{-17}</td>
<td>0.19736 \times 10^{-17}</td>
<td>0.21580 \times 10^{-17}</td>
<td></td>
</tr>
<tr>
<td>3500</td>
<td>0.24196 \times 10^{-20}</td>
<td>0.10847 \times 10^{-19}</td>
<td>0.62835 \times 10^{-17}</td>
<td>0.27436 \times 10^{-17}</td>
<td>0.30401 \times 10^{-17}</td>
<td></td>
</tr>
<tr>
<td>4000</td>
<td>0.28498 \times 10^{-20}</td>
<td>0.13073 \times 10^{-19}</td>
<td>0.74751 \times 10^{-17}</td>
<td>0.34010 \times 10^{-17}</td>
<td>0.38065 \times 10^{-17}</td>
<td></td>
</tr>
<tr>
<td>4500</td>
<td>0.31218 \times 10^{-20}</td>
<td>0.14624 \times 10^{-19}</td>
<td>0.82649 \times 10^{-17}</td>
<td>0.38740 \times 10^{-17}</td>
<td>0.43690 \times 10^{-17}</td>
<td></td>
</tr>
<tr>
<td>5000</td>
<td>0.32787 \times 10^{-20}</td>
<td>0.15644 \times 10^{-19}</td>
<td>0.87518 \times 10^{-17}</td>
<td>0.41948 \times 10^{-17}</td>
<td>0.47587 \times 10^{-17}</td>
<td></td>
</tr>
</tbody>
</table>

\(^*\)Units: Watts molecule\(^{-1}\) steradian\(^{-1}\).

\(N_{\text{LTE}}(V,T) \) is the corresponding LTE population, and \(I(V) \) is given by

\[
I(V) = \sum_{V-V'} (E_V - E_{V'}) A_{V',V} \tag{9}
\]

which allows for the relative brightness in each of the vibration-only transitions that depopulate level \(V \) and \(A_{V,V'} \) is taken from Dinelli et al.\(^{15}\) Vibrational excitation and de-excitation of \(\text{H}_3^+ \) in an \(\text{H}_2 \) atmosphere has not been studied experimentally but probably, as is the case with rotational excitation and de-excitation, proceeds most efficiently through the proton-hopping reaction:

\[
\text{H}_3^+(v=m) + \text{H}_2 \rightarrow \text{H}_2 + \text{H}_3^+ (v=n) \tag{10}
\]

We therefore use the same rate coefficient \((2 \times 10^{-15} \text{ m}^3 \text{s}^{-1})\) as Oka and Epp\(^71\) for this reaction. We note that these authors point out that this is the greatest source of uncertainty in their calculation, and it is in ours, too.

Table 6 gives sample results for our non-LTE emission calculations. (Note that these values may be upper limits, especially at low densities, because we have taken the Oka and Epp\(^*\) rate coefficient.) They show the huge variation in \(E(\text{H}_3^+) \) as a function of temperature and \([\text{H}_2] \) values typical in a planetary atmosphere. Clearly, the scaling factor, \(s_{\text{cool},\text{LTE}}(\text{T},[\text{H}_2]) \), plays a major role in determining the overall emission: at the lowest densities and the highest temperatures, less than 0.1\% of the LTE emission is being generated, which severely limits the ability of \(\text{H}_3^+ \) to cool the exospheres of “hot Jupiter” exoplanets.

For the exospheres of the solar system giants, where \(T_{\text{exo}} \) lies between 400–600 K (Saturn) and 1100–1500 K (Jupiter), emission levels fall off rapidly with altitude. For example, the emission at 1000 K and \([\text{H}_2] = 10^{16}–10^{18} \text{ m}^{-3}\), where \([\text{H}_3^+] \) tends to have its peak, is between 1 and 2 orders of magnitude greater than for higher altitudes where \(T \sim 1500 \text{ K} \) but \([\text{H}_2] = 10^{12}–10^{14} \text{ m}^{-3}\). As a result, high altitude energy inputs due to solar EUV or (lower energy) particles will heat this region more efficiently than higher energy (1–100 keV) electrons that penetrate almost to the homopause in the auroral/polar regions.\(^{69}\) But the low emission levels mean that space- or ground-based observations of \(\text{H}_3^+ \) are not very sensitive to the higher altitudes. It should also be noted that calculations of overall cooling rates from an atmospheric column may need to take into account optical depth effects, although this has been shown not to be necessary for Jupiter, even in the auroral regions.\(^{74}\) It may become an issue, however, for “hot Jupiters” where \(\text{H}_3^+ \) densities can exceed those in Jupiter’s auroral regions.

CONCLUSIONS

It is clear from our new fits to the \(\text{H}_3^+ \) cooling curve that previous versions of this have underestimated the role of \(E(\text{H}_3^+) \) in the thermal balance of planetary atmospheres. This is less important at lower temperatures but can be as much as a factor of 2 at 1500 K, which is about the highest temperature reached in Jupiter’s exosphere, and even higher at higher temperatures, such as are produced in exoplanet atmospheres. Given the other uncertainties that are implicit and explicit in current models, it is not clear how significant this will turn out to be. But as those uncertainties are gradually made more certain, it is important that the full impact of \(\text{H}_3^+ \) cooling be taken into account. These new fits should help to ensure that is possible.

A program to calculate cooling due to \(\text{H}_3^+ \), \(\text{H}_3\text{Pcool} \), is part of the Europlanet Joint Research Activity 3 and is available to run on user specified grid of temperatures and local densities at [http://astroweb.projects.phys.ucl.ac.uk/europlanetjra3/h3pcool/] (\(\text{h}_3\text{pcool} / \)).

AUTHOR INFORMATION

Corresponding Author

Tel: +44 20 7779 3490. E-mail: s.miller@ucl.ac.uk.
ACKNOWLEDGMENTS

We thank Oka for his inspirational work on the H$_3^+$ molecule and for many years of encouragement in our efforts to work on this system. We thank two anonymous referees who have helped us to improve this paper. Much of the work reported here was carried out as part of the Europlanet Research Infrastructure project funded by the European Commission’s Framework 7 Programme under Contract Number 228319.

REFERENCES

Notes

The authors declare no competing financial interest.

