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Abstract

The UK molecular R-matrix method has been adapted to treat positron collisions from polyatomic targets. A simple empirical
enhancement factor which corrects for the underestimation of electron–positron polarisation and correlation effects in the calculations
performed with the static-plus-polarization model at low scattering energies is presented. Application of this model to positron scattering
from carbon dioxide at energies below 8 eV is discussed. Introduction of the enhancement factor improves the integral cross sections
significantly and introduces structures in the differential cross sections consistent with other studies. The prospects for a fully ab initio

treatment of this problem are discussed.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Superficially it should be easier to treat low-energy col-
lisions of positrons with molecules than electron collisions
since one does not have to worry about exchange interac-
tions. In practice this is not true: it transpires that it is
much easier to allow for the anti-correlated motions found
between a scattering electron and those of the target mole-
cule than it is for the correlated motion of a scattering pos-
itron with these electrons. At long-range the effect of both
the electron–electron and electron–positron correlation is
to polarise the target wavefunction giving an attractive
potential of the same magnitude as a function of distance.
However, once the scattering particle begins to penetrate
the target wavefunction the resulting multicentered interac-
tions cannot truly be represented as a simple potential.
Indeed detailed and very accurate calculations on positron
collisions with one and two-electron atomic and molecular
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targets [1] have clearly demonstrated that the only com-
pletely satisfactory way dealing with this issue is by using
wavefunctions which are explicitly a function of the posi-
tron–electron distance. Use of such wavefunctions for
many electron problems is difficult but is an area of signif-
icant research activity [2].

To be able to make progress on actual positron–mole-
cule collision problems of interest a number of less compu-
tationally demanding methods have been used including
the distributed positron model [3], model potentials derived
from density functional theory [4], single centre expansions
[5], and close-coupling methods based on the Schwinger
variational principle [6] and the R-matrix method [7]. All
these methods have been applied to positron collisions with
many electron targets at low-energies (here defined as being
below the positronium formation threshold). We note that
at high energies relatively simple procedures appear to give
good results [8].

We have worked on the R-matrix treatment of low-
energy positron collisions and have recently collaborated
on the (re-)implementation of positron collisions within
the UK molecular R-matrix codes [9]. This method gave
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good results for positron collisions with the polar water
molecules [10], as it works well for cases where the interac-
tions are dominated by the dipole interactions [11]. How-
ever it is known [7,12–14] that such calculations perform
less well for collisions with non-polar target.

In this paper we consider positron collisions with the
non-polar carbon dioxide molecule. CO2 is a many electron
system with which positron collisions have been studied
both experimentally [15–20] and theoretically [8,21–23].
We show that for this system a standard but limited treat-
ment using the R-matrix method significantly underesti-
mates the elastic cross section for the system. However
by introducing a single adjustable parameter, which scales
the electron–positron interaction, we can bring the elastic
cross as function of energy into excellent agreement with
the experimental results. Furthermore the scaled interac-
tion introduces more structure into the differential cross
sections in line with other methods [21].

2. Computational models

2.1. R-matrix method with static-plus-polarisation model

In the static-plus-polarisation (SP) model the con-
figuration space for the electrons is built up from the
Hartree–Fock ground-state and all single electronic
excited configurations. These single excitations include
all excitations from occupied Hartree–Fock orbitals into
all the virtual (i.e. unoccupied) target orbitals. In this
model the positron is also allowed to occupy all target
molecular orbitals (including those already doubly occu-
pied by electrons) as well as a set of single centered diffuse
Gaussian orbitals which are used to represent the contin-
uum within the R-matrix sphere [24]. These configurations
are only subject to the constraint of overall space–spin
symmetry and an additional constraint which couples
the electrons to the appropriate electronic spin symmetry.

We note in passing that use of an equivalent model for
electron collisions would actually result in a phenomenon
known as ‘‘over-correlation”, where the energy levels of
the scattering system are too low relative to those of the
corresponding target calculation. The distinct nature of
the positron, whose wavefunction does not have to be
anti-symmetrised to the target electrons, means that there
is little danger of over-correlation in these calculations.
Indeed as the results shown below demonstrate, the SP
model is actually under-correlated for positron collisions
as it gives an insufficient treatment of the polarisation
effects arising from electron–positron correlation effects.

2.2. The f-factor to describe correlation effects

In order to model correlation effects which are not fully
described in the SP model, we have experimented with scal-
ing the electron–positron attraction integrals by an empir-
ically adjusted enhancement factor, f. These integrals are
the ones which are routinely referred to as two-electron
integrals in standard quantum chemistry language. Here
we wish to only increase the electron–positron attraction
so do not alter the corresponding electron–electron
integrals.

ðpqj�r�sÞenh ¼ f ðpqj�r�sÞ; ð1Þ

¼ f
Z

/pðr1Þ/qðr1Þ �
1

jr1�1j

� �
�vrðr�1Þ�vsðr�1Þdr1 dr�1:

ð2Þ

Here /pðr1Þ and /qðr1Þ are electron orbitals, �vrðr�1Þ and
�vsðr�1Þ are positron orbitals, and jr1�1j ¼ jr1 � r�1j is the elec-
tron–positron distance.

This form of scaling can be justified as follows. A
Møller–Plesset type perturbative expansion of the elec-
tron–positron correlation energy gives the second-order
contribution [25]

Eð2Þ ¼
X
ia�i�a

ðiaj�i�aÞ2

�i � �a þ ��i � ��a
:

Here �i and �a denote energies of occupied and virtual elec-
tronic orbitals, respectively. ��i and ��a are the same for
positrons.

The first-order contribution is given by

Eð1Þ ¼
X

i�i

ðiij�i�iÞ:

Adding the first- and second-order contribution and rear-
ranging the terms results in

Eð1þ2Þ ¼
X

i�i

ðiij�i�iÞ þ
X

a�a

ðiaj�i�aÞ2

�i � �a þ ��i � ��a

 !

¼
X

i�i

ðiij�i�iÞ þ ðiij�i�iÞð2Þ
� �

:

Here we have introduced a second-order correction ðiij�i�iÞð2Þ
to the electron–positron attraction integral ðiij�i�iÞ. Since all
denominators in the above expression are negative, this
correction is always negative, and therefore has the same
sign as the integral ðiij�i�iÞ itself. For each electron–positron
pair we can define the ratio

cð2Þi�i ¼
ðiij�i�iÞð2Þ

ðiij�i�iÞ :

between second-order and first-order contribution to the
interaction between both particles. By defining the pair-
dependent enhancement factor

fi�i ¼ 1þ cð2Þi�i

we can express the electron–positron interaction energy as

Eð1þ2Þ ¼
X

i�i

fi�iðiij�i�iÞ:

If we assume, that the ratio cð2Þi�i between second- and first-
order contribution is the same for each electron–positron
pair, we can replace the pair-dependent enhancement fac-
tor by an averaged enhancement factor f



Table 1
Carbon dioxide target Gaussian basis set used in R-matrix calculations

Centre Type Exponent Coefficient

C s 4232.610, 634.882,
146.097,

0.002029, 0.015535,
0.075411,

42.4974, 14.1892, 1.9666 0.257121, 0.596555,
0.242517

C s 5.1477 1.0
C s 0.4962 1.0
C s 0.1533 1.0
C p 18.1557, 3.9864, 1.1429, 0.018534, 0.115442,

0.386206,
0.3594 0.640089

C p 0.1146 1.0
C d 0.75 1.0
O s 7816.54, 1175.82, 273.188, 0.002031, 0.015436,

0.073771,
81.1696, 27.1836, 3.4136 0.247606, 0.611831,

0.241205
O s 9.5322 1.0
O s 0.9398 1.0
O s 0.2846 1.0
O p 35.1832, 7.904, 2.3051 0.01958, 0.124189, 0.394727,

0.7171 0.627375
O p 0.2137 1.0
O d 0.85 1.0
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Eð1þ2Þ �
X

i�i

f ðiij�i�iÞ; ð3Þ

as used in this paper. However, one should note that this
derivation has been made for the integral type ðiij�i�iÞ only.
In our computations we have used integrals of the more
general type ðijj�i�jÞ, for which the second-order correction
might be positive, resulting in enhancement factors smaller
than one. Nevertheless we have used the same enhance-
ment for all integral types.

The present approach is not equivalent to scaling the
positron or electron charge as such an approach would
require a scaling of the positron–nuclear repulsion integrals
or of the electron–nuclear attraction integrals in addition
to the scaling done here. An increased positron–nuclear
repulsion would enhance the repulsive interactions which
would compensate the increased positron–electron attrac-
tion. Hence the net-effect on the cross section would be
small. Furthermore, the interaction of the positron with
the multipole moments of the target molecule in the outer
region would require a similar scaling of the interaction.
On the other hand, a scaling of the electron charge will
increase the cross section, but will also change the proper-
ties of the target molecule. Furthermore this would induce
a charge on the target, which have to be taken care of in the
outer region. A related approach, the scaling of the nuclear
charge, is used for the calculation of resonances in elec-
tron–molecule scattering [26,27]. However, we do not fol-
low this route here for the same reasons mentioned for
scaling the electron charge.

Clearly use of f = 1 results in the standard ab initio result
used in previous R-matrix studies of positron–molecule col-
lisions. As shown below the results are very sensitive to the
choice of f and values of f only slightly bigger than unity
yield surprisingly good results.

Finally, for large distances rp between the positron and
the scattering centre the second-order contribution to the
electron–positron correlation energy goes over to the
asymptotic polarisation potential which is given by (in
a.u.) [28]

� a0

2r4
p

� P 2ðcos hÞ a2

2r4
p

ð4Þ

for a linear molecule. Here a0 (a2) is the spherical (aniso-
tropic) polarisability of the target molecule, and P 2ðcos hÞ
is a Legendre polynomial, where h is the angle between
the vector linking the positron to the molecular centre-of-
mass and that of the molecule. One should note that this
long-range behaviour is quite different from the long-range
behaviour, which would have been generated asymptoti-
cally by scaling the charge of one of the particles. A scaling
of the positron charge would have introduced a scaling of
the electrostatic interactions outside the box (here the lead-
ing term is the quadrupole moment), whereas a scaling of
the charge of the target electrons would have introduced
an attractive Coulomb-potential. The long-range polarisa-
tion is included automatically, if not completely, in calcula-
tions which use coupled states expansions [29,30] but not
in the SP model. Below we also discuss the influence of
including asymptotic polarisation potential outside the
R-matrix box, something that was also tested in earlier
R-matrix studies of positron–molecule collisions [12,13].

In all calculations the interaction due to the target quad-
rupole moment was allowed for in the outer region. In
addition the spherical and non-spherical polarisability has
been included in the outer region in some scattering runs.
The effects on the integral cross section is discussed in
Fig. 2, while the effects on the differential cross section is
shown in Figs. 4 and 5, respectively.
3. Computational details

Calculations were performed with our recent positron
implementation of the UK molecular R-matrix codes
[10]. Unlike the earlier implementation [7], this version uses
the polyatomic code [31] which is based on the use of
Gaussian Type Orbitals (GTOs) to represent both the tar-
get and continuum wavefunctions.

In all studies presented here we used the double-zeta
plus polarisation (DZP) GTO basis set of Dunning et al.
shown in Table 1. The calculation has been performed in
the D2h symmetry group using a bondlength of
rCO = 1.161 Å. In the R-matrix calculations a box size of
10.0a0 has been used. The continuum GTO basis set was
taken from Faure et al. [24]. Differential cross sections were
calculated using the code POLYDCS [32].

For the calculation including the asymptotic polarisa-
tion potential we have used the values a0 ¼ 15:608a3

0 and
a2 ¼ 14:910a3

0 which were calculated using density func-
tional theory (DFT) with the Perdew–Burke–Ernzerhof
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Fig. 3. Lowest R-matrix poles as a function of the enhancement factor f.
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(PBE) functional [33] and the TZVPP basis set [34] as
implemented in the TURBOMOLE program-package
[35]. These values agree well with previously calculated
and measured values of the polarisability [36].

4. Results and discussion

Fig. 1 shows the integral cross section for positron scat-
tering off carbon dioxide. The figure shows the unscaled
and scaled R-matrix results together with experimental
results from Hoffman et al. [15], from Sueoka and Hamada
[16], and from Zecca et al. [17]. The best agreement
between theory and experiment is reached with an enhance-
ment factor f = 1.002, i.e. a scaling of only 0.2%.

When compared with experiments, the calculated inte-
gral cross section using no scaling is too low at small ener-
gies but agree reasonably well at higher energies. By using
the enhancement factor, the failure to fully reproduce the
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Fig. 2. Integral cross section for positron scattering off carbon dioxide for
different f-factors with (thin lines) and without (thick lines) asymptotic
polarisation potential in the outer region. Note that different scales are
used than in Fig. 1.
effects of dynamic electron–positron interactions at low-
energies is corrected, while the good agreement at higher
energies is retained.

Fig. 2 shows the integral cross section calculated with
the various f-factors with and without asymptotic polarisa-
tion potential in the outer region (using thin and thick
lines, respectively). The unscaled cross section is nearly
unaffected by switching on the asymptotic potential. For
f = 1.001 the cross section near to zero positron-energy
(0.025 eV) is doubled by switching on the asymptotic
potential. This reduces to an increase of 15 per cent at
0.525 eV and to less than 8 per cent at 1.025 eV. For
f = 1.002 the cross section increases at 0.025 eV by about
6%. At 0.525 eV and 1.025 eV the increases are 14% and
9.4%, respectively. For f = 1.004 the increases at the same
energies are 11%, 7% and 6%, respectively. From these
numbers we conclude that the influence of the asymptotic
polarisation potential in the outer region decreases rapidly
with increasing energy and with larger f-factors.

Fig. 3 shows the three lowest R-matrix poles as a func-
tion of the f-factor. The poles are shifted linearly towards
lower energies with increasing f-factor. This becomes clear
from a closer look at the definition of the R-matrix poles

xK ¼ ENe1p
K � ENe;

where ENe is the ground-state energy of the target molecule
and ENe1p

K is the energy of the system including the target
molecule and the positron inside the R-matrix box. ENe1p

K

depends approximately linearly on the f-factor, since we
are scaling the electron–positron interaction linearly. In
general the shift in energy is different for different poles,
as can be seen in Fig. 3. By shifting R-matrix poles towards
lower energies the integral cross section is increased. For
f-factors slightly larger than 1.004 the first pole becomes
negative, indicating the formation of a bound state for
these f-factors.

Figs. 4 and 5 compare our calculations with the mea-
sured differential cross sections (DCS) of Przybyla et al.
[19] whose measurements are not absolute so that we have
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scaled their results to give approximate agreement with
theory. We have plotted the calculations using no scaling
(f = 1) and using the optimized enhancement factor
(f = 1.002) with and without inclusion of the asymptotic
polarisation potential. The DCS at 4.75 eV and 6.75 eV
are given in Figs. 4 and 5, respectively. Furthermore we
have included the DCS calculated by Gianturco and Pai-
oletta [21] at 5.0 eV and 7.0 eV in Figs. 4 and 5,
respectively.

The calculations using no-scaling show maxima in the
forward direction and nearly no oscillatory structure. The
scaling introduces oscillations in the DCS and brings them
into better agreement with results obtained in the calcula-
tions of Gianturco and Paioletta. Compared with Giant-
urco and Paioletta, we find the forward peak has larger
magnitude and the second peak at somewhat higher angles.
By including the asymptotic polarisation potential in the
outer region, the forward peak is increased by roughly
20%, while nearly no change in the DCS is observable for
angles larger than 30�. At angles above 90� our DCS show
small oscillations, which might be artefacts of the calcula-
tion. However, given that Gianturco and Paioletta have
used a fairly different approach, a model potential derived
from density functional theory, the overall agreement is
surprisingly good.

The comparison of the calculated DCS with experimen-
tal data is more difficult, as the measured DCS of Przybyla
et al. [19] are the only available points. Some oscillatory
behaviour can be seen in their data. However the overall
agreement between all the calculated DCS and the experi-
mental DCS remains unsatisfactory. It remains unclear if
this problem is due to the calculations or the experiments
themselves.

It is interesting to note, that the f-factor not only
changes the position of the R-matrix poles, but also
changes the amplitudes of the wavefunction at the bound-
ary of the R-matrix box towards values that produce differ-
ential cross sections with more structure.

5. Conclusions

We present a simple prescription for correcting for omit-
ted low-energy positron–electron polarisation effects in
positron–molecule collision. In this method the two parti-
cle integrals between each electron and the positron are
scaled by a factor. It is shown that use of a very modest
scaling, only 0.2% in the value of the integral, gives a dra-
matic improvement in the quality of the calculation.

The results presented here for CO2 are not unique. We
have performed similar calculations for acetylene, another
system for which the standard R-matrix treatment struggles
to reproduce the correct low-energy behaviour [14]. Simi-
larly good agreement is obtained in this case.

Of course resorting to scaling integrals, or the use of
similar arbitrary parameters, destroys much of the value
of a fully ab initio approach. It is our opinion that a full
and correct treatment of low-energy positron collisions
can only be obtained by explicitly including the posi-
tron–electron coordinate in the wavefunction ansatz.
That this is true has already been amply demonstrated
in detailed and rigorous calculations on one and two-
electron atoms and molecules [1]. We are striving to be
able to do this for the much more demanding case of
positron collisions with many electron polyatomic
systems.
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