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Abstract

The DVR3D program suite calculates energy levels, wavefunctions, and where appropriate dipole transition moments, for ro-
tating and vibrating triatomic molecules. Potential energy and, where necessary, dipole surfaces must be provided. Expectation
values of geometrically defined functions can be calculated, a feature which is particularly useful for fitting potential energy
surfaces. The programs use an exact (within the Born—Oppenheimer approximation) Hamiltonian and offer a choice of Jacobi
or Radau internal coordinates and several body-fixed axes. Rotationally excited states are treated using an efficient two-step al-
gorithm. The programs uses a Discrete Variable Representation (DVR) based on Gauss—Jacobi and Gauss—Laguerre quadrature
for all 3 internal coordinates and thus yields a fully point-wise representation of the wavefunctions. The vibrational step uses
successive diagonalisation and truncation which is implemented for a number of possible coordinate orderings. The rotational,
expectation value and transition dipole programs exploit the savings offered by performing integrals on a DVR grid. The new
version has been rewritten in FORTRAN 90 to exploit the dyitaarray allocations and thegadrithm for dipole and spectra
calculations have been substantially improved. New modules allog+#ixés to be embedded perpendicular to the plane of the
molecule and for the calculation of expectation values.

Program summary

Title of the program:DVR3D suite

Catalogue numberADTI

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTI

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Programming languagefortran 90
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No. of lines in distributed program, including test data, et61 574
No. of bytes in distributed program, including test data, e&72 404
Distribution format: tar.gz

New version summary

Title of program: DVR3DRJZ

Catalogue numberADTB

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTB

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

Reference in CPC to previous versio&6 (1995) 175

Catalogue identifier of previous versio®iDAK

Authors of previous versiond. Tennyson, J.R. Henderson and N.G. Fulton

Does the new version supersede the original progra¥R3DRJZ supersedes DVR3DRJ

Computer: PC running Linux

Installation: desktop

Other machines on which program testeGompagq running True64 Unix; SGI Origin 2000, Sunfire V750 and V880 systems
running SunOS, IBM p690 Regatta running AIX

Programming language used in the new versiérartran 90

Memory required to executecase dependent

No. of lines in distributed program, including test data, et4203

No. of bytes in distributed program, including test data, e®0:087

Has code been vectorised or parallelisedPhe code has been extensively vectorised. A parallel version of the code, PDVR3D
has been developed [1], contact the first author for details

Additional keywords:perpendicular embedding

Distribution format: gz

Nature of physical problemDVR3DRJZ calculates the bound vibrational or Coriolis decoupled rotational-vibrational states
of a triatomic system in body-fixed Jacobi (scattering) or Radau coordinates [2]

Method of solution: All coordinates are treated in a discrete variable representation (DVR). The angular coordinate uses a
DVR based on (associated) Legendreypoimials and the radial codinates utilise a DVR based on either Morse oscillator-

like or spherical oscillator functions. Inteediate diagonalisation and truncation &rformed on the hierarchical expression

of the Hamiltonian operator to yield the final secular problem. DVR3DRJ provides the vibrational wavefunctions necessary
for ROTLEV3, ROLEV3B or ROTLEV3Z to calculate rotationally excited states, DIPOLE3 to calculate rotational—vibrational
transition strengths and XPECT3 to compute expectation values

Restrictions on the complexity of the proble(d) The size of the final Hamiltonian matrix that can practically be diagonalised.

(2) The order of integration in the radial coordinates that can be dealt with within the machine exponent range. Some adjustment
in the code may be necessary when large order Gauss—Laguerre quadrature is used

Typical running time:Case dependent but usually dominated by the final (3D) matrix diagonalisation. The test runs take minutes
on afast PC

Unusual features of the programA user supplied subroutine containing the potential energy as an analytic function is a
program requirement

References:

[1] H.Y. Mussa, J. Tennyson, Comput. Phys. Commun. 128 (2000) 434.

[2] J. Tennyson, B.T. Sutcliffe, Internat. J. Quantum Chem. 42 (1992) 941.

New version summary

Title of program: ROTLEV3

Catalogue numberADTC

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTC

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
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Reference in CPC to previous versio&6 (1995) 175

Catalogue identifier of previous versiomDAL

Authors of previous versiond. Tennyson, J.R. Henderson and N.G. Fulton

Does the new version supersede the original prograriés

Computer: PC running Linux

Installation: desktop

Other machines on which program teste@ompagq running True64 Unix; SGI Origin 2000, Sunfire V750 and V880 systems
running SunOS

Programming language used=ortran 90

High speed storage requireccase dependent

No. of lines in distributed program, including test data, ett514

No. of bytes in distributed program, including test data, ett2:652

Has code been vectorised or parallelised?he code has been extensively vectorised. A parallel version of the code,
PROTLEVS has been developed [1], contact the first author for details

Distribution format: gz

Nature of physical problemROTLEV3 performs the send step in a two-step variationzdlculation for the bound rotational—
vibrational levels of a triatomic system represented in either Jacobi or unsymmetrised Radau coordinates

Method of solution: A basis is constructed from the solutions of the Coriolis decoupled problem provided by DVR3DRJZ.
The angular coordinate is transformed back to a basis setsegegion. The sparse Hamoifian matrix can be diagonalised
iteratively or in core

Restrictions on the complexity of the probleifhe size of matrix that can practically be diagonalised

Typical running time:Case dependent. The sample data takes less than a minute on a fast PC

Unusual features of the prograniviost data is read directly from DVR3DRJZ. ROTLEV3 can provide data to drive DIPOLE3
and/or XPECT3

References:

[1] H.Y. Mussa, J. Tennyson, Comput. Phys. Commun. 128 (2000) 434.

New version summary

Title of program: ROTLEV3B

Catalogue numberADTD

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTD

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

Reference in CPC to previous versio&6 (1995) 175

Catalogue identifier of previous versio®sDAM

Authors of previous versiond. Tennyson, J.R. Henderson and N.G. Fulton

Does the new version supersede the original prograrniés

Computer: PC running Linux

Installation: desktop

Other machines on which program testedompag running True64 Unix, Sunfire V750 and V880 systems running SunOS
Programming language used=ortran 90

High speed storage requireccase dependent

No. of lines in distributed program, including test data, et2215

No. of bytes in distributed program, including test data, ett5:595

Has code been vectorised or parallelisedhe code has been extensively vectorised. A parallel version of the code,
PROTLEVS3B has been developed [1], contact the first author for details

Distribution format: gz

Nature of physical problemROTLEV3B performshe second step in a two-step variatibcelculation for the bound rotational—
vibrational levels of a triatomic system represented by symmetrised Radau coordinates using a bisector embedding [2]
Method of solution:A basis is constructed from the solutions of the Coriolis decoupled problem provided by DVR3DRJZ. The
problem is constructed entirely within the DVR. The Hamiltonian matrix can be diagonalised iteratively or in core
Restrictions on the complexity of the probleifhe size of matrix that can practically be diagonalised
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Typical running time:Case dependent. The sample data takes a few minutes on a fast PC

Unusual features of the prograniost data is read directly from DVR3DRJZ. ROTLEV3B can provide data to drive DIPOLE3
and/or XPECT3

References:

[1] H.Y. Mussa, J. Tennyson, Comput. Phys. Commun. 128 (2000) 434.

[2] J. Tennyson, B.T. Sutcliffe, Internat. J. Quantum Chem. 42 (1992) 941.

Program summary

Title of program: ROTLEV3Z

Catalogue numberADTE

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTE

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer: PC running Linux

Installation: desktop

Other machines on which program testedompag running True64 Unix, Sunfire V750 and V880 systems running SunOS
Programming language usedzortran 90

High speed storage requireccase dependent

No. of lines in distributed program, including test data, et2919

No. of bytes in distributed program, including test data, etc7:241

Keywords: rotationally excited state, Coriolis coupling, secondary variational method, sparse matrix, vectorised, perpendicular
embedding, Radau coordinates

Has code been vectorised or parallelisedPhe code has been extensively vectorised

Distribution format: gz

Nature of physical problemROTLEV3Z performste second step in a two-step variatibcelculation for the bound rotational—
vibrational levels of a triatomic system represented by symmetrised Radau coordinates using a perpendicular embedding [1]
Method of solution:A basis is constructed from the solutions of the Coriolis decoupled problem provided by DVR3DRJZ. The
problem is constructed entirely within the DVR. The Hamiltonian matrix is diagonalised in core

Restrictions on the complexity of the probleifhe size of matrix that can practically be diagonalised

Typical running time:Case dependent. The sample data takes a few minutes on a fast PC

Unusual features of the prograniost data is read directly from DVR3DRJZ

References:

[1] M.A. Kostin, O.L. Polyansky, J.Tennyson, J. Chem. Phys. 116 (2002) 7564.

New version summary

Title of program: DIPOLE3

Catalogue numberADTF

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTF

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Reference in CPC to previous versio&6 (1995) 175

Catalogue identifier of previous versio®DAN

Authors of previous versiond. Tennyson, J.R. Henderson and N.G. Fulton

Does the new version supersede the original prograrvi@s

Computer: PC running Linux

Installation: desktop

Other machines on which program testedompag running True64 Unix; SGI Origin 2000; sunfire V750 and V880 systems
Programming language used=ortran 90

High speed storage requireccase dependent

No. of lines in distributed program, including test data, et&921

No. of bytes in distributed program, including test data, ett5:685
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Has code been vectorised or parallelisedPhe code has been extensively vectorised. Commands to parallelise the code using
OpenMP are included in the source

Distribution format: gz

Nature of physical problemDIPOLE3 calculates dipole transition intensities between previously calculated wavefunction for
both rotational and rotational—vibrational transitions

Method of solution:Integrals over dipole surfaces are constructed usingR D all three coordinates, this requires a transfor-
mation of the angular wavefunctions awéfunctions generated by DVR3DRJZBROTLEV3 or ROTLEV3B are then used to
give transition intensities for individual pairs of states

Restrictions on the complexity of the probleffihe complexity of the problem that can be solved by DVR3DRJZ, ROTLEV3
or ROTLEV3B

Typical running time:Case dependent. The test data takes a few seconds on a fast PC

Unusual features of the programMost data is read directly from DVR3DRJZ and ROTLEV3 or ROTLEV3B. DIPOLE
provides data to drive SPECTRA

New version summary

Title of program: SPECTRA

Catalogue numberADTG

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTG

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer: PC running Linux

Installation: desktop

Other machines on which program testedompag running True64 Unix

Reference in CPC to previous versior5 (1993) 339

Catalogue identifier of previous versio®iCNB

Authors of previous versiond. Tennyson, S. Miller and C.R. Le Sueur

Does the new version supersede the original prograrviés

Programming language usedzortran 90

High speed storage requireccase dependent

No. of lines in distributed program, including test data, et&¢Q37

No. of bytes in distributed program, including test data, e®&159

Has code been vectorised or parallelised®s execution times are very short this is usually not important

Distribution format: gz

Nature of physical problemSPECTRA generates synthetic, frequency ordered spectra as a function of temperature. Absolute
intensities can be calculated if the necessatg ttacalculate the pttion function is supplied

Method of solution: Transitions are sorted by frequency and weighted using Boltzmann statistics

Restrictions on the complexity of the probleifhe complexity of problem that can be solved by other programs in the suite
Typical running time:Case dependent, but very small for sample data

Unusual features of the progranmivost data is read directly from DIPOLES3. Some data from DVR3DRJZ and ROTLEV3 or
ROTLEV3B may also be required

Program summary

Title of program: XPECT3

Catalogue numberADTH

Program summary URLhttp://cpc.cs.qub.ac.uk/summaries/ADTH

Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer: PC running Linux

Installation: desktop

Other machines on which program testedompag running True64 Unix

Programming language used=ortran 90

High speed storage requireccase dependent
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No. of lines in distributed program, including test data, ett214

No. of bytes in distributed program, including test data, e&361

Distribution format: gz

Keywords: Expectation values, Hellmanneynman theorem, potential fitting

Has code been vectorised or parallelisedPhe code has been extensively vectorised

Nature of physical problemXPECTS3 calculates expectation of geometrically defined operators using previously calculated
wavefunctions

Method of solution:Integrals over the user defined surfaces are consttusieg a DVR in all three coordinates. Wavefunctions
generated by DVR3DRJZ and ROTLEV3 or ROTLEV3B are then used to give expectation values for each state
Restrictions on the complexity of the probleffihe complexity of problem that can be solved by DVR3DRJZ, ROTLEV3 or
ROTLEV3B

Typical running time:Case dependent. The test data takes a few seconds on a fast PC

Unusual features of the prograniost data is read directly from DVR3DRJZ and ROTLEV3 or ROTLEV3B.

0 2004 Elsevier B.V. All rights reserved.

PACS:33.20; 39.30

Keywords:Molecular spectra; Infrared; Microwave; Variational principiexpectation values; Born—Opperifmer approximation; Triatomic
molecules

1. Introduction

The calculation of rotation—vibration spectra for triatomic species has become almost routine for molecules with
a single low-lying potential mergy surface. This has led to increasing activity looking at highly excited states of
such molecules and using the observed spectrosco@daaetermine highly accueapotential energy surfaces
by successive refinement of the surftke Indeed high accuracy nuclear matioalculations have begun to make
a significant impact on key spectroscopic problé¢#js

A number of methods are available which will computeraifion—rotation spectra afiatomics using Hamilto-
nians which are exact within the Born—Oppenheimer apipnation and basis function expansions to represent the
nuclear wavefunction8—7]. These variational procedures have proved very successful, particularly for problems
where highly excited states are not required.

An alternative procedure, based on finite element representations of the nuclear wavefunctions, has been de-
veloped by Light and co-workef8,9]. This approach, generally known as thisalete variable representation or
DVR, was based on earlier work by Harris et [@l0]. The DVR is not strictly variational, but has a nhumber of
advantages over the more traditional basis set methods in both the development of compact representations for
multi-dimensional Hamiltonians and the simplicity of most of the matrix elements. This latter property has been
increasingly exploited in a number of methods using iterative diagonalisatioril spand references therein.

Such methods have proved very powerful for studying very high-lying states, for example, near and just above
dissociation, but have been little used to compute actual spectra.

Advances in computer technology have meant that variational or DVR methods can be routinely used to com-
pute spectra of triatomics on desktop computers. At the same time these methods are being increasingly used to
compute large datasets which are much too big to be obtained experimentally. Large variational calculations on
triatomics have been used to obtain data to give temperature dependent thermodynamic flitibsland
radiative transport mode[$6—21]

In 1995 Tennyson and co-workers published a triatomic rotational—vibrational spectral package based on the
use of a discrete variable representation for all three internal coordinates, called OQ¥R®3Dhe present work
updates and extends this program. The whole packagebken re-written into FORTRAN 90 to, in particu-
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lar, take advantage of the dynamic array allocationcpdures offered. Key podns of the pograms utilise

BLAS routines for optimal efficiency. A new module has been added, ROTLEV3Z, which allows the body-
fixed z-axis of the system to be placed perpenéicito the plane defined by the molecy3]. The main

driving module, renamed from DVR3DRJ to DVR3DRJZ, has been extended to cope with this case. Addi-
tional options in DRV3DRJZ and the various ROTLEV programs allow for the inclusion of non-adiabatic effects
which thus go beyond the Born—-Oppenheimer separation of electronic and nuclear f2d{@s] The tran-

sition moments routine DIPOLE3 has been reprogrammed with a new algorithm, described below, which is
both substantially faster for large runs and also significantly reduces input/output. The reduction in i/o means
that the interface between ROTLEV3/ROTLEV3B and DIFE3 has also been re-written. Module SPECTRA,
previously published as part of the finite basis set package TRIAT@8]I has been re-written to be more
efficient for large problems and to increase its fimwality. Finally a new module, XPECT3, has been in-
troduced which calculates expectation values for a given geometric operator. This procedure has a number of
uses but we have found it particularly important for fitfipotential energy surfaces using spectroscopic data
[22,27]

2. Method
2.1. The vibrational problem: DVR3DRJZ

2.1.1. The 3D DVR Hamiltonian matrix and its solution
We use a multidimensional DVR in scattering (Jacobi) or Radau coordinates. In scattering coordliregies-
sents the ‘diatom’ distance between atom 2 and atom 3;athe separation of the atom 1 from the diatom centre
of mass. The angle betweepandr, is 6. A formal definition of (1, 2, 6) in Radau coordinates is given below.
Using a finite basis representation (FBR), the zero rotational angular momestgr)(Hamiltonian matrix
can be writterj3]

(m,n, JIE =m0, 'y = (mIA D | m )8 8 i+ (AP )88
+ (m1gP1m") 8, + 1EP N0 VS ) (G + DS 1
+ (m,n, jlV(@r1,r2,0)|m' 0, j). (1)

A DVR is a unitary transformation of an FBR defined fome quadrature scheme associated with the FBR
polynomials. The angular basis function$, whenJ = 0, are Legendre polynomials. The radial basis functions
are Laguerre polynomials. These are either Morse osaillide functions or spherical oscillators. The Morse
oscillator-like functions are defined E28]:

In) = Hy (r) = BY%Nyq exp(—%)y“””” 2L2(y), y=Aexg—Br —ro)], ()
where
1/2
A= 4De, B= we(zl; ) , a =integel(A). 3)
We e

The parameterg, r., w, and D, can be associated with the reducedssjaequilibrium separation, funda-
mental frequency and dissociation energy of thievant coordinate respectively. In practice, ., D.) are
treated as variational pararees and optimised accordingl¥,,Lg is a normalised associated Laguerre poly-
nomial[29].

When optimizing the parameters for the Morse oscillator-like functions it usual to take initial guesses based on
the shape of the potential for the initial coordinate. Experience shows
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(a) thatthe results are largely insensitive to the choich of
(b) the optimal value of, is usually larger than the value given by the minimum of the potential,
(c) values forr, andw, are often quite strongly coupled and need to be varied together.

In particular if more states are required, increastp@nd reducingw, extends the range of the basis. When
optimising parameter one should concentrate on a few states at the top end of the required energy range as these
are the most sensitive to the parameters.

The spherical oscillator functions are particularly useful for systems which have significant amplituge for
These functions are defined [B0]:

y 1/2
|n) =H,(r)= 21/2ﬂ1/4me+1/2 exp<_§>y(a+l)/2Lg+ / (y), y= ,3;’2, (4)
where

B = (nwe)Y? (5)

and ¢, w,) are treated as variational parameters.

It can be advantageous to optimise the parameters for both Morse-like and spherical oscillator functions using
an FBR isomorphic to the DVR in which the final calctita is to be performed. Thiis because optimisation is
usually performed on cut-down problems for which a®¥an become unreliable because of the linkage between
accuracy of integration and size of baidis To this end optimisation is generally performed using the £Bftle
TRIATOM [26] or the two-dimensional (ZTWORB: T) option in the DVR—FBR? code DVR1D[31].

In (1) V is the potential, and the radial kinetic energy integrals are given by

5 () —n? 92

thh D)y = (t —l'), 6

(1At <|2Mari2|> (6)
. 12

(118D = (| >l ()

iri
where(t) = |m) fori =1 and|t) = |n) fori = 2. u; are the appropriate reduced masses givej3Bj
pyt=ghmit+myt+ (1 g2)°my",
pyt=mit 4 g2myt + (- g1)%mg?, (8)

where for scattering coordinates

m2
g1=—"—, =0 9)
mo +ms3
and for Radau coordinat§32]:
A A
=1l-— =1-—-
81 A+B—AB %2 1—B+AB
m3 1/2 my2
A=(7> . =" (10)
m1+mp+m3 mi + m2

The relationship between tl¥s and geometrically defined coordinates is giverHay. 1
A 1D DVR transformation for either of1, r> or 6 is defined in terms of points;, and weightsw,, of the
N-point Gaussian quadrature associated with the orthogonal polynomials used for the FBR in that cd8idinate

7" = (wy) 2|t (), (11)
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A

Q

A3 A2

P
Fig. 1. Internal coordinate system of Sutcliffe and Tenny[8@}: A; represents ator The coordinates are given by= A —R,rp = A1 — P

and the anglé = A1 0 A,. The geometric parameters are definegpy= /:\33:/52; g = 233:/51.

where |t) = |m), |n),|j) for n = «, B,y respectively. DVR3DRJZ automatically generates the appropriate
Gaussian quadrature schenig3].
The required composite transformation is written as a product of 1D transformations:
T=Tp0 =TTl (12)

= m,n, j man

A three-dimensional DVR is obtained by applying the transformafidri T. For J =0, the transformed
Hamiltonian can be written at the DVR grid points as

3D (€3] (@3] @
( )Ha,a’,ﬁ,ﬁ’,y,y’ = Ka,a’(sﬁdg/(s%y/ + Kﬂ,ﬂ’ga»a/SV»V/ + La,a’,y,y’(sﬁdg/
2
+ L;,;’,y,y’gava/ + V(rla, r2ﬂ, 9)/)8(1,0(/8/3,/3/8)/,)//~ (13)
In (13), the potential energy operator is diagbbecause of the quadrature approxima{i®y34]
S T n o, IV 2 ) 0 VTR 2V (1 r2p. 6y) S8y (14)

m,n,jm'.n',j’
where (14,128, 0,) is the value of £, 2, 0) at («, 8, ¥). A major attraction of DVR-based methods is that no

integration at all is required over the potiat it is diagonal in every coordinate.
The kinetic energy terms in HamiltonieQmB) are represented by

KO =S 1) T (15)
t,t'
@)
Ly =dyy TV, (16)
t,t
'h?
)’)’
S a7
= 2uir; 2 o

again applying the quadrature approximation, and where

Ty =Y TV j(i+DT] . (18)

J
The calculation is generally set up as a series of diagonalisations and trund86¢36] Assume for the
moment that the coordinate orderifighenr; thenrz is used, i.e., diagonalise onfirst andg last @ — r1 — r2).
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With this ordering, the 1D problems that have to be solved for eaghd are given by

D) gap _ 7 (D 2
H}/,)// = LO{,O{,]/,]// + LIS,IS,V,V/ + V(r]_a, 72}3, 9),)5),),/. (19)

Amplitudes for theith level, with eigenenerg:;ﬁ"g, are given at each grid point, 8, by C)‘fjf.
The solutions With;Z’ﬁ < EXL are then selected and used to solve 2D problems for each vafudbfs gives

, , ' 1
COHE = Saar + Y Con oK, (20)
14

Solutions for theth level, with eigenenergyf are given be,z,h-

The solutions withs;3 < E22 are then used to solve the full 3D problem of dimensian

3D B B g’ a.p o p - (2)
COHg g1 =¢ 8pp S+ Y ChynChw ch,h C K- (21)
o, h,h' Yy
Solutions of this diagonalisation are the required eigenenetgieand wavefunction coefficientSg ; ;.

2.1.2. Order of solution

As stated the 3D DVR Hamiltonian matrix of E({.3) can be solved by successive diagonalisation and trunca-
tion. In Sectior2.1.1the angle® was dealt with first, andp last. It also is possible for the problem to be solved in
any of the 5 other orders. The most efficient ordeigtp treat the coordinate accommodating the highest density
of states lasf36,37] In principle the coordinate holding the lowest density of states should come first but this has
been found to matter little in practice.

Four of the possible coordinate orders have been implemented in DVR3DRJZ. The two order®videre
considered second have been omitted,; it is unlikely that such orders will offer significant savings over the case in
which the order of) and the first coordinate are swapped.

In symmetrised Radau coordinates, see below, the coordingtmsd r» are mixed and it no longer makes
sense to diagonalise and truncate in these coordinates separately. Furthermore, in all the problems we have tackled
with Radau coordinates, diagonalisationtofast has been the method of choice. For this reason we have only
implemented this option in DVR3DRJZ for symmetrised Radau coordinates.

2.1.3. Symmetry
Scattering coordinates can exploit permutation symmetry of angyBtem. This symmetry is carried by tlie
matrix of Eq.(18). Then the symmetrisedl matrix becomes

N/2-1
Tyyg=2 Y T}, Ri+9)QRj+q+DT} . ¢=01 (22)
=0

It should be noted that for problems including rotational excitation, this symmetry is preserved with the body-fixed
z-axis placed either along either (ZEMBED = .TRUE. in the code) or; (ZEMBED = .FALSE.).

In Radau coordinates, the permutation symmetry of g folecule is carried by the radial coordinates. This
is more complicated to treat in a DVR since it involves coupling two coordinates. Symmetrising the DVR by taking
suitable combinations of points in andr; has been shown to have distinct advantages over other methods of
including symmetry38]. With this procedure the new functions become:

@, B,9) = [2A+80.p)] 2 (I B) + (DB, @), ¢=0,1, (23)

wherea > g for ¢ 4+ k odd ora > g for g + k even. Note that this definitiof39] of ¢, which is not the one used
in most of our previous works, identifies the ortho and para symmetry blocks fem#Becules each by a single
q value.
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Symmetry withJ > 0 and thez-perpendicular embedding is quite subtle. We refer to Kostin §23].for a full
discussion of this.

2.1.4. Rotational excitation within DVR3DRJZ

Besides solving the pure vibrational & 0) problem, DVR3DRJZ also solves the first step in the two-ptép
solution to the full rotational—vibrational problem. Fér> 0, DVR3DRJZ assumes that the projection/olong
the body-fixed;-axis, k, is a good quantum number. The choice of body-fixed axes is crucial to a rapid solution of
problems with rotational excitation. There are four possible options included in the program:

(1) r1 embeddingz is parallel tor, with x in the plane of the molecule.

(2) r2 embeddingz is parallel tor,, with x in the plane of the molecule.

(3) Bisector embedding bisects the angle, with z in the plane of the molecule.

(4) Perpendicular embedding bisects the angle, with z perpendicular to the plane of the molecule.

In each case thg-axis is defined to give a right-handed set. Options 1 and 2 are available for scattering co-
ordinates and non-symmetrised Radau coordinatespropB and 4 are available only for symmetrised Radau
coordinates.

For the standarg, or r, embeddings and assumikgo be a good quantum number, it is only necessary to add
one extra term to Hamiltoniafl):

(mon, j, J R H im0 k) = (myn, jIHT=Cm! 0 )+ (1180108, o855 (J (J + 1) — 2k?). (24)

In (24), if the z-axis is taken along; then|s) = |m), s = n andi = 1; conversely iz is alongr,, |t) = |n), s =m
andi = 2.
In the bisector embeddirig1]:

(mon, j, Ik H im0 ', J0k) = (myn, jLH?=Om' 0, ) 4 (m1g @ 1m 8w + (18P 1))
1 1 1
k| RNJ T+ 1) —3k2) + =8, o (J(T+1) —K2) ). 25
(UM gy B 4D =3+ 55 (14 ) -89 (25)

In both the standard and bisector embedding the angular basis functiahs-fércalculations are associated
Legendre polynomials of ordér. For the perpendicular embedding conversely they are Jacobi polynolflibolls
defined by[42]

1 1/2
a=b= <§[J(J+1)—k2]> . (26)
With these functions, the perpendicular embedding i28%
(m.n. j. K H  m 0’ j T k) = (m.n, jIH =m0’ )
— (8 (m(8Pm') + 8w (n13@ 1) [(j +a)(j+a+1)— g]) (27)

wherea is as defined in E((26).
In both the bisector and perpendicular embeddikgs,l is a special case and has an extra term on the diagonal.
For the bisector embedding:

(=Dt
16

il 8D’ e @y i €S0
(8 (M| |m") + Sy (1129 ")) (K| (1= cosd) kI +1), (28)

+
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wherep, the rotational parity, is defined below. Similarly for the perpendicular embedding the extra term is:

(=Dt NI NI
+ 4 (Sn,n’<m|g lm’) + 8 m (18 In >)(]k|
whereq is the symmetry label defined previouq2).
The extra matrix elements present for the- 0 case need to transformed into a DVR. For the stanciaathd

r2 embeddings this gives

cosd
mU kYJ(J + 1), (29)

(JU+D) = K2)M), 5 58y (30)

where theM -matrix is given by:

hZ
MY, = Z T (m| gV |m ) T = g ——- (31)
2erlot

if i=1andz embedded along, when it is diagonal irg, and

2

2 A ’ h

My =3 TH g @I T = 8o (32)
H2rag

if i =2 andz embedded alongp, when it is diagonal ira.

In the bisector embedding thedependent term becomes in a DVR:

1 2 (=Dt 1+y)

)8,y (é(J(J +) =)+ e/ +D - y)>
plus an extra term for the = 1 case. The extra term for the perpendicular embedding case is somewhat more
complicated and can be found in Kostin et[2B3].

For the bisector and perpendicular embeddings, the extra angular integrals are evaluated using the quadrature
approximation. It should be noted, however, that the operators which depefid-otnsd)~1 are singular when
6 = 0. These ABB linear geometries correspond to very high energy for manyiecules, for instance water.
The present code assumes that the wavefunction has zero amplitude in this region; this can actually be enforced for
rotationally excited states by using the switch ZLIN in DVR3DRJZ. Other angular integrals are evaluated in the
FBR and then transformed to the DVR as discussed foy theatrix, Eq.(18) above.

1
(€Y
) (Ma o B,

gt M, (33)

a,a BB

2.1.5. Wavefunctions

The eigenvectors of the 3D Hamiltonian are obtained aefficients of the intermediate basis. To use these
vectors it is usually necessary to express them in a more physically meaningful fashion. This can be achieved
by transforming the vectors to yield values for the amplitude of the wavefunction at the DVR grid points. These
wavefunctions can then, in principle, be put to many quantum mechanical and spectroscopic uses.

The wavefunction amplitude for théh eigenstate at the DVR grid points is simply

Z Cﬁthazhcyh = Z Cpil Z mC (34)

where, for deﬁmteness, tile— r1 — ro ordering has been assumed, as above.

Reverse transformations to FBR are also fairlyigttdorward to write down. In particular ROTLEV3 works
with the angular functions represented as a basis set of associated Legendre polynomials. In this case the wave-
function is written

Wi = Ik ). (35)

jk
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The new coefficients{’*, are obtained from the back transformation
dik = Z Wil (). (36)

DIPOLES uses a similar transformation to place all wavefunctions on a single gridppemdix A

A utility, wfnread.f90, has been included in the distribution to allow users to read wavefunctions for further
analysis such as plotting. The utility requires norusgut and will read the wavefunction files produced by
DVR3DRJZ, ROTLEV3 and ROTLEV3B. As written wfnredfl0 does no more than echo the contents of these
wavefunction files and it will therefore need to be adapted before use. For further information users should read
the source of the program.

2.1.6. A Problem with the quadrature approximation

The quadrature approximation can be used when evaluating the DVR transformation of FBR matrix elements
of an operator that leaves the ket unchanged. Its valiglithue to the unitarity of the DVR transformation matrix.

We have experienced one particular failure of the quadrature approxinid@pnmvhich occurred when evaluating
ther, 2 integrals.

In scattering coordinates, it is possible for ttyecoordinate to be equal, or very close, to zero if this linear
geometry is energetically accessible or favorable. It is desirable to use the spherical oscillator functions in this
case. Under these circumstances it was fddi3dlthat the quadrature approximation had to be abandoned for the
r{z integral because of its non-polynomial behaviouras> 0.

After extensive tests on thegl-molecular ion43], an alternative procedure was implemented which continues
to use the quadrature approximation to constfHétH, and then construct§® H using the full-matrix transfor-
mation of ther, 2 integrals, correcting for the fact that the quadrature approximation was us¥d ih. So the
only change in the formulation is that now

3D (@) (2) @B e
( )Hﬁﬁ/ll/z( )Hﬁﬁ/ll/-’_anlkcal/k/(Mﬂﬂ/_M ZC C/k/‘]]/]/ (37)
o,k k'

where®P Hy 4, v is defined by(21) and

2
M;} ;3/ ZTﬂ n|g(2)|n (38)

andMﬁ}, is given by the approximatiof82).
Note that the FBR matrix elements above can be evaluated analytically, and are g[2&h by

@)y h2pB n! T +a+3/2)\Y? o
n=>n.
2o+ Dpa2\n'' Tn+a+3/2) )

We have implemented a user input variable (ZQUAD?2) in the program DVR3DRJZ so that either ¢2Eqgs.
or (37) can be used when working in Jacobi or unsymmetrised Radau coordinates.

(n|g (39)

2.2. Rotational motion with standard embeddings: ROTLEV3

The rotational problem can be fully expanded in termsdinite set of functions, generally called rotation
matrices[44]. These functions are symmetrised to reflect the rotational parity of the system, giverlpy?
with p =0, 1; these functions will be denoted, k, p) below. To deal satisfactorily with the transition from linear
to non-linear geometries it is usual to couple these rotation matrices withdbpendent angular functions denoted
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|j) above[32]. The FBR Hamiltonian matrix for the fully coupled vibration—rotation problem can be expressed as

<m1n9j9 J’k9 p|ﬁ|m/’ n/’ j/9 J’ k/ p) _8k k/<m7n j|ﬁj'k|m/’ n/’ j/>
— (L4 81,0+ 80,00 280 k21(118V 118 85 v CT 1 Cis k=p.p+1,...,J, p=0,1, (40)

where if the body-fixed-axis is taken parallel tg; then|r) = [m), s = n andi = 1; and ifz is alongr,, |t) = |n),
s =m andi = 2. The angular factors are given by

CE = (e(e+1) —k(k £ 1)"2 (41)

Using the solutions of the first step as a basis to expand the full problem means that the first {@j)isn
simplye,{’k and the problem of constructing the Hamiltoniantrixareduces to the one of constructing the second,
off-diagonal ink, term.

The quadrature approximation means that the matrix elefmgt? |+') is diagonal in the DVR. Conversely the
angular contribution is diagonal in the FBR. ROTLEV3 tHere transforms the DVR wavefunctions generated by
DVR3DRJZ to an FBR i by

ke v, J.k.h
Valpj = ZT Yoy (42)

This means that only transformations oadonal matrix element are required, $48) below. It should be noted
that the above transformation, unlike that of the matrix elements, is one-dimensional and therefore rapid.
In this DVR>-FBR! representation, the Hamiltonian matrix in terms of solutions of the first step is

ok, plHI K p) = Spwdiney™ — A+ 8o+ 8.0 2usr Y vk vl s CroCE MY, 4.
a.B.j
k=p,p+1,...,J, p=0,1 (43)

For a givenJ, DVR3DRJZ solves the/ + 1 unique Coriolis decoupled ‘vibrational’ problems. ROTLEV3
selects the IBASS lowest energy solutions of these calculafitbisas a basis for the full problem. The angular
coordinate of these solutions is transformed back tBBIR and the Hamiltonian constructed. Because of its sparse
nature, only the diagonal elements aidk + 1) off-diagonal blocks are computed and stored. The matrix can be
diagonalised iteratively, a procedure which has proweg guccessful when a small fraction (less then 20%) of the
eigenvalues are of interest; where many levels are required full matrix diagonalisation is more efficign&The
matrix is simply a submatrix of the = 0 problem with thé = 0 rows and columns deleted. This matrix thus need
not be recalculated (option KMIM: 2).

2.3. Rotational motion with a bisector embedding: ROTLEV3B

ROTLEV3B uses a DVR for all three coordinates. In thepresentation, the Hamiltonian matrix in terms of
solutions of the first step is

=~ Tk
<h’ k» P.q |H|h/v k/v P, CI) = Sh,h/ak,k/gh
-1/2 + Jkh o K B () 2 (1
— A+ 8o+ Y 8k kx1C7 g Z VabyVary Moo s s=Miap ) iiiny.
o.B.y.y’
—(1+80+ 5k/,0)71/25k/,kichkﬂcfk

!t 1+‘}/
J.k,h J k' h D 2 (2)
x D VagiVisy (1 — > (Mg p.p T Macp.p)Iicany
a.By

k=p,p+1,...,J, p=0,1 (44)
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In (44), the angular integrals are obtained by quadrature in terms of basis functions and then transformed:

(1) Z y k) k+k\ . (A+cosd) N\ @)
;@ 20 (1 + cosv) y'(K)
k’kyy’_E:T (u/-H /’<|(1 cos@)” k') T, (46)

where the notat|ory(k) has been used to emphasis that the DVR points for the bra and ket are based on the
Gaussian quadrature points of associated Legendre functions of different degrees.

2.4. Rotational motion with a perpendicular embedding: ROTLEV3Z

The structure of the Hamiltonian matrix for thgerpendicular embedding is somewhat different from the other
cases since the couplings are between casesMitlk +2 only, but there are additional couplings between blocks
with positive and negativie. In this case the rotational parity, is given by the parity of. To help define the matrix
elements it is useful to define an extra quantum number, denditeldw, which depends on the signio&nd takes
the value 0 or 1. A detailed discussion of these quantum numbers and the structure of the resulting matrices is given
by Kostin et al[23]; note however that the definition efandq are swapped in that work compared to here.
ROTLEV3Z uses a DVR for all three coordinates. Theatimnal kinetic energy operator (KEO) also has a
diagonal contribution as well as couplikdlocks differing by two

cost

ml JYAT Ok kr2bs.

1
(JksjIT™JK's' 'y = —(1+ 5Ok)1/2§M+(]|

1 1
1+ 800 Y2 =M™ (jl=———— ) AT, 8k w2851y 47
+ (148007 <J|(1—co§9)1/2|1) i Sk £285 15 (47)
where
Ar =AT = (VU +D—kk+D]|[J(J +D —k(k £3) - 2])"", (48)
and where
i 1 1
Mi=—|:—2:|:—2:|. (49)
2LpuiRT  p2R3

Finally the Coriolis KEO couples terms diagonakimut differing ins

k__( . cosH(d+2a+2j) .
Jk TCOer/ ! s! ———-M _ /
(ks |TIKS ) == (( - el
. b 1/2
G2 ) BT
J

Besides these terms, there is a special case which occurskwhénFor this case there are extra terms both on
the diagonal, augmenting kgs|TV®|Jk's’ j):

ib (_ )1+S cosd
(Jksj|ITRENTK's' j) = J(J + 1)M+<J| §9| J")8k 18k 185 (51)
and on the off-diagonal augmentn(lgksj|T°°r|Jk’s’])
. rot Sl (_1)s’+q — =1/2) ./
(JksjlT 21| JK's" ) = TJ(J + DM (j|(L - cof0) 2| )6k 18k 185,15 (52)

wheregq is the parity of the radial basis, see E83). The above matrix elementsdlude a cancellation between
vibrational and rotational terms which is potentially singular at linear @.e:,0 or ) geometries.
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2.5. Non-adiabatic corrections

Polyansky and Tennysd@4,25]showed that non-adiabatic corrections to the Born—Oppenheimer approxima-
tion could, at least partially, be modelled by using separated reduced masses for the vibrational and rotational
motions,u) anduR, respectively. Ifu) # uX, a new term has to be added the Hamiltonian

. _ B2 /1 1 K2 /1 1
KNBo=sk,k/kzu’,k’|sm—29|j,k><—( >+ ( )) (53)

ri\nt w23\ ng
for the in-plane; embedding$24] and

1 1
TksjIT"BO 1K' jy = (1= L) 2[00 + 1) = K2IMH (Gl ————— 1) Sk 54
(Jksj| |JK's' j) ( - 4[( +1) — k7] T cogg 10k s.s (54)
for the z-perpendicular embeddirig3].

As ;LlV is usually greater thaniR, this extra term, which only occurs fdr> 0, is generally positive. The term
is computed if separate vibrational and rotational masses are specified in the input.

2.6. Dipole transition moments: DIPOLE3

Lynas-Gray et al[46] adapted Miller et al.'$47] formalism for calculating dipole transition strengths between
rotational—vibrational levels which use only rigorous selection rules. Their algorithm used DVRs in the radial
coordinates and transformed to an FBR for the angulagiate. For very large runs this method is still not optimal
and a new algorithm has been developed which retains the DVR in the radial coordinates and evaluates the angular
integrals as a simple sum over Gauss—Legendre quadrature point. This gives the basic structure that a transition
dipole is evaluated as the sum over grid points of the bra wavefunction times the dipole operator times the ket
wavefunctior{6]. Since this algorithm has not been pubésl before, a derivation is given Appendix A

As the angular DVR'’s defined by DVR3DRJZ dependigithe method used therefore involves transforming
all wavefunctions to an FBR in the anguicoordinate. These FBR wavefurwets, and the dipole surface, are then
evaluated at the requested Gauss—Legendre quadrature ppilitis,usually necessary to use slightly more Gauss—
Legendre quadrature points than the number of DVR gaised to define the underlying wavefunctions. However
the expression, E@55) below, involves one less summation than the equivalent one of Lynas-Gray4#]aln
addition the structure of the wavefunction fileeated by ROTLEV3 and ROTLEV3B has been reorganised to
minimise the i/o requirements in DIPOLE3 (and XPEZ). Note that ROTLEV3Z cannot be used in conjunction
with these programs.

With the new algorithm, the expression for the transition stre§ggh— i) is given by

S(f—i)= %[(ZJ/ + DRI+ D[~ (PP

+1 J" J/ 1 J// 7o' I 2
X[Z Za<k+v,k>(—1)’<(_v_k ) k) Cuasy ity M'Z’(aﬁy)] (55)

v=—1k=p" afy
wherec/Mrl s the value of the wavefunction of thith state with rotational quantum numbets M, p), at grid
point (¢By). The coefficient:(v, k) is given by
a(0, k) =2""p,
a(£1,0) = 52712,
a(xl,k)y=Fb (56)
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where the factob depends on the embedding used:

b=1 forthe standard; embedding
b= (—-1)" forthe standard, embedding
b= (=1 forthe bisector embedding

k / k a
d:integer< _;p>+integer<#> (57)

where theintegerspecifies integer arithmetic rounded towards zero.

2.7. Synthetic spectra: SPECTRA

There are a number of ways of representing transition data. The simplest is the Einstein A-coefficient which can
by defined in terms of our linestrengts):

e 647t SS(f —i)gi
=33 20+ 1
In programs the constants in the first fraction is set.&k88186x 10~/ which also converts from a linestrength in
D? to an A-coefficient in st.
Integrated absorption coefficients, in cm/molecule, can be generated as a function of fregyerayl tem-
perature[, using the formula
4.162034x 1070w, s g;[€Xp(E" /kT) — exp(E'/kT)]
o(T)
where Q(T) is the partition function of the system, and andw” are respectively the energies of the upper and
lower state. The degeneracy factpfar a particular level is determined by nuclear spin statistics.
The emissivity, in Ergs/molecule/Sr, is defined by
(2J' + D gihcwir exp(—E'/kT)
47 Q(T)
If enough energy levels of the system are known it is giegsd obtain an expressidar the partition function
of the system

E/
o(T) 222&'(2] +1) exp(—k—‘T>. (61)

J i

(58)

I(wif) = S(f =) (59)

J(wif) = Ajf. (60)

2.8. Expectation values: XPECT3

Expectation values of geometrically defined operatan be computed in a straightforward manner using a
DVR and the quadrature approximation simply by summing the square of the wavefunction and the operator over
all grid points. This is useful for obtaining such things as average coordinates or rotational constants. Unlike
DIPOLES, all expectation values involve diagonal summations and these can be evaluated straightforwardly on the
original DVR grid. Such expectation values have beesdus a humber of schemes for automating vibrational
assignmentf48,49]

Expectation values are particularly useful for least squares fitting of potential energy surfaces to spectroscopic
data[50]. If, as is often the case, the potential is reggneted as linear expansion of some function set

V(r1,r2.0) =Y _cifi(r1,r2,0) (62)
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then for staté the expectation value of the derivativihwespect to the expansion parametggs, can be obtained
using the Helmann—Feynman theorem as

d{|vil)
dc,-

where use has been made of the fact that the kinetic energy operator does not degpend on

Use of Eq.(63) means that it is cheap and straightforward ta ties sensitivity of all expansion parameters of
the potential during a fit. Formally the Helmann—Feynman theorem is only satisfied for exact wavefunctions, which
has caused difficulties in some numerical implementations. However, experience and many tests have shown that
converged wavefunctions obtained with present prograra accurate enough for thiopedure to be completely
reliable with well converged basis sets.

There is one final point that needs to be considered when fitting potentials to spectroscopic data. Fits are not
made to absolute energies but to energy differences such as transition frequencies or term values which are energies
relative to the ground state. This means that one actually needs to compute the difference in the derivative of
Eq.(63) rather than the absolute difference. So for ftieterm value E;, one needs:

E; dv dv

a (] dc; 1) — (0| dc; |0) (64)
where|0) is the wavefunction of the ground state. To facilitatis ffrocess for term values, the code can optionally
read in derivatives for the grounds state and take the differences. If transition frequencies are being fitted it is
necessary for the user to takes these differences which are, of course, dependent on the quantum numbers associatec
with each transition.

dv
= (ll—d 1) = {1 fi (r1, 72, 0)11), (63)
ci

3. Program structure

User input is needed for all modules. The modules follow the convention that names beginning with letters A—H
and O-Y are for 8-byte real variables, I-N are for integers and variables whose name begins with Z are logicals.

The data flow through the modules is giverHig. 2 The role of the individual subroutines is described in com-
ments included in the source prograll modules now make full use of the facility to allocate arrays dynamically

KEY DVR3DRJZ
[] modules
O data files
v data switch @ ROTLEV3 or
ROTLEV3B or

ROTLEV3Z

‘{/‘\‘
DIPOLE3 —»

Fig. 2. Structure and data flow for the DVR3D program suite. Nio& tnodule ROLEV3Z cannot drive DIPOLE3 or XPECT3. Scratch disk
files used by individual modules are not shown.
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offered under FORTRAN 90. In addition calls to a numbébasic linear algebra subroutines (BLAS) have been
implemented. The local implementation of these routines should be used where possible otherwise FORTRAN
sources can be downloaded from the web.

The only remaining machine depend aspect of the codesarns reading to the end of files. Certain disk files
(ILEV in DVR3DRJZ, ROTLEV3 ROTLEV3B and ROTLEV3Z, ITRA in DIPOLE3 and XPECT3) may be read
to the end and then written to. Unfortunately whether it is necessary to BACKSPACE the file between the reads
and the writes depends on the machine being used. The present implemeahtes@ACKSPACE and it may
be necessary to remove these statements. The occurrences, at most once per module, are all clearly labelled in the
sources of the programs.

Internally the programs work and pass data between them entirely in atomic units. Atomic mass units, used for
input, are converted usingul= 18228883m,; note that this value differs in earlier versions of the program. For
printing purposes the conversion factors, HE219474624 cnt ! is used for energies and 1 a12.5417662 D for
dipoles.

3.1. DVR3DRJZ

For large runs, the CPU time requirement of DVR3DRJZ is usually dominated by the diagonalisation of the
final 3D Hamiltonian matrix HAM3. The required diagonaliser has to compute all eigenvalues and eigenvectors of
a real symmetric matrix. The present implementation uses LAPS2Ksubroutine dsyev.

3.2. ROTLEV3, ROTLEV3B and ROTLEV3Z

These routines have rather diffetgrerformance characteristics wiROTLEV3 taking little time to construct
the Hamiltonian matrix unlike the other two. Exeian times for ROTLEV3B and ROTLEV3Z are dominated
by two processes, transformation and diagonalisation. The step which transforms the matrix elements has been
programmed using the BLAS rank-one-update routine dger.
In all three cases in core diagonalisation is performed by dg/HEvAs the matrices constructed by ROTLEV3
and ROTLEV3B can be sparse, particularly for high value$,daferative diagonalisation is offered in the programs
as an alternative which should be used if less than 20% of the eigenvalues are required. Iterative diagonalisation is
performed using NAG Library routine FOJF[B2] and associated subroutines This diagonaliser uses the algorithm
of Nikolai [53] and again timing is dominated by the vector matrix multiplies performed by BLAS routine dgemv.
When using ROTLEV3B for rotational states with> 1, it is essentiathat the vibrational wavefunctions output
file IWAVE is input onbothstreams IVEC and IVEC2, whicmustcorrespond to separate files. This duplication
is required to prevent excessive repositioning of the input file.
Similarly for ROTLEV3Z for rotational states witlh > 1 all calculations requirour wavefunction input files.
It is essential that the vibrational wavefunctiangput file IWAVE generated by DVR3DRJZ run with IPARO
is copied to units IVEC and IVEC1, and the IWE file generated by DVR3DRJZ run with IPAR 1 is copied to
IVEC2 and IVEC3.

3.3. DIPOLE3

DIPOLES uses the BLAS matrix multiply routine dger to perform transformations. This section of the code
dominates the CPU usage and the coding to parallelise it for large runs is in place using JpéhNMRe parallel
version has been used successfully on 8 processors of an SGI Origin 2000 njathared a Sun V750 machine,
it has also be tested on a dual processor Linux PC.
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4. Program use
4.1. Potential, dipole and property subroutines

DVR3DRJZ requires the user to provide the appropriate potential energy surface as a subroutine using the
structure:

SUBROUTINE POTV(V,R1,R2,XCOS) must be supplied. POTV returns the potential V in Hartree for an arbitrary
point given by R1=r1, R2=rp (both in Bohr) and XCOS= cosh.

DVR3DRJZ includes COMMON /MASS/ XMASS(3),G1,G2,XMASSR(3) where XMASS contains the (vibra-
tional) masses in atomic mass units, %1, G2= g> and XMASSR contains the rotational masses also in atomic
mass units. This enables users to write flexible potential subroutines which allow for changes in coordinates or
isotopic substitution.

DIPOLE requires a subroutinefining the dipole surfaces.

SUBROUTINE DIPD(DIPC,R1,R2,XCOS,NU) must be supplied. DIPD returns the NUth component of the dipole
in atomic units (1 au= 2.5417662 Debye) at point R r1, R2=r» (both in Bohr) and XCOS= cos¥ where
NU = 0 corresponds tp., and NU=1 p.

DIPOLES includes COMMON /MASS/ XMASS(3),G1,G2,ZEMBED,ZBISC where XMASS contains the (vi-
brational) masses, G& g1, G2= g2, ZEMBED is the axis embedding parameter defined below and ZBtSC
.TRUE. for the bisector embedding case (ID¥—2, JROT> 0 and ZPERR= .FALSE.) and.FALSE. otherwise.

This enables users to write dipole subroutines which allow for changes in coordinates, embeddings or isotopic
substitution.

XPECTS3 requires a subroutine defining the properties for which expectation values are requested.
SUBROUTINE PROPS(PROP,R1,R2,XCOS,N) must be supplied. PROPS returns the N properties required in
array PROP for an arbitrary point given by Rlr1, R2=r; (both in Bohr) and XCOS= cosf. Like DIPOLES3,
XPECTS3 includes COMMON /MASS/ XMASS(3),G1,G2,ZEMBED,ZBISC where the variables are as defined
above.

4.2. Input for DVR3DRJZ

DVR3DRJZ requires 9 lines of user input for all runs. Lines giving data not required or for which the defaults
[given below in parenthesis] are sufficient should be left blank.

Line1l: NAMELIST /PRT/

ZPHAM[F] =T requests printing of the Hamiltonian matrix.
ZPRADI[F] =T requests printing of the radial matrix elements.
ZP1D [F] =T requests printing of the results of 1D calculations.
ZP2D [F] =T requests printing of the results of 2D calculations.
ZPMIN[F] =T requests only minimal printing.

ZPVECI[F] =T requests printing of the eigenvectors.

ZLMAT[F] =T requests printing of thé-matrix.

ZCUTI[F] =T final dimension selected using an energy cut-off given by EMAX2.
= F final dimension determined by MAX3D (MAX3D?2).
ZROTI[T] =T DVR3DRJZ to perform first step in a two-step variational calculation.

= F Rotational excitation calculation with Coriolis coupling neglected.
ZPERP[F] = F z-axis embedded in plane.

= T z-axis embedded perpendicular to molecular plane.
ZEMBED[T]Used only ifJ > 0, ZBISC= F and ZPERP=F.

=T z-axis embedded along;

= F z-axis embedded along.



J. Tennyson et al. / Computer Physics Communications 163 (2004) 85-116 105

ZLIN [F] =T forces suppression of functions at last DVR point
(ZBISC=T or ZPERP=T only).
ZMORSL1[T] =T use Morse oscillator-like functions fef coordinate;
= F use spherical oscillator functions (IDEA O only).
ZMORS2[T] =T use Morse oscillator-like functions fes coordinate;
= F use spherical oscillator functions (IDEA O only).
ZLADD[T] =T NALF kept constant a& increases,
= F NALF decreases with
(used if ZROT=T only).
ZTWODIF] =T perform 2D calculation only at specified grid point.

ZVEC[F] =T store the eigenvectors from all the parts of the calculation (1D,2D and 3D) on stream IOUT2.
Further information relating to this (arrays IV1 and IV2) is stored on stream IOUTL1.
ZALL[F] =T requestsiotruncation of the intermediate solution.

ZTHETA[T] =T let6 be firstin the order of solution;
= F let6 be last in the order of solution;
(used if IDIA > —2 only).

ZR2R1[T] =T letr, come before; in the order of solution;
= F letr; come before in the order of solution;
(used if IDIA > —2 only).

ZTRAN[F] =T perform the transformation of the solution coefficients to the expression for the wavefunction
amplitudes at the grid points, E(9). Store the data on stream IWAVE.
ZTRAN =T automatically sets ZVE& T if IDIA > —2.

ZQUAD2[T] =T use the DVR quadrature approximation for the integrals oﬁ;f?ematrix, and hence make its
DVR transformation diagonal.
= F evaluate thez_2 integrals fully and perform the DVR transformation on them, only implemented
for ZMORS2=F and for ZTHETA=T.

ZDIAG[T] = F do not do final diagonalisation, insteae tfnal Hamiltonian matrix is written on units
IDIAG1[20] and IDIAG2[21]. For further details see the source code.
ZPFUN[F] =T eigenvalues concatenated on stream ILEV.

Warning, the first eigenvalues on this file must be for JREOQJ, IPAR= 0.

ILEV[14] output stream for eigenvalue data (formatted).

IEIGS1[7] stream for eigenvalues of the 1D solutions.

IVECS1[3] stream for eigenvectors of the 1D solutions.

IEIGS2[2] stream for eigenvalues of the 2D solutions.

IVECS2[4] stream for eigenvectors of the 2D solutions.

IVINT[17] scratch file used for storing intermediate vectors in building the final Hamiltonian.

IBAND[15] scratch file used for storing bands of the final Hamiltonian.

INTVEC[16] scratch file for intermediate storage of the 2D vectors.

IOUT1[24] stream for arrays IV1 and IV2, whiaecord the sizes of the truncated vectors.
Used when ZVEG=T.

IOUT2[25] stream for the 1D, 2D and 3D vectors for use when Z\(ET.

IWAVE[26] stores the wavefunction amplitudes at the grid points when ZTRAN

Line 2: NCOORD (15)

NCOORD[3] the number of vibrational coordinates of the problem:
= 2 for an atom-rigid diatom system,
= 3 for a full triatomic.
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Line 3: NPNT2,JROT,NEVAL,NALFMAX2D,MAX3D,IDIA,KMIN,NPNT1,IPAR,MAX3D2(1115)
NPNT2 number of DVR points in, from Gauss-(associated) Laguerre quadrature.
JROTIO] total angular momentum quantum number of the sysfem,
NEVAL[10] number of eigenvalues and eigenvectors required.
NALF number of DVR points irp from Gauss-(associated) Legendre quadrature.
MAX2D maximum dimension of the largest intermediate 2D Hamiltonian, (ignored if IBIA2).
MAX3D maximum dimension of the final Hamiltonian.

If ZCUT =F, it is the actual number of functions selected.

If ZCUT =T, MAX3D must be> than the number of functions selected using EMAX2.
IDIA = 1 for scattering coordinates with a heteronuclear diatomic,

= 2 for scattering coordinates with a homonuclear diatomic,

= —1 for Radau coordinates with a heteronuclear diatomic,

= —2 for Radau coordinates with a homonuclear diatomic.

KMINJO] =k for JROT> 0 and ZROT=F,
= (1- p) for JROT> 0 and ZROT=T.
Note:

For IDIA > 0, KMIN must be 1 in DVR3DRJ if KMIN= 2 in ROTLEV3.

For ZBISC=T, setting KMIN= 2 performsp = 0 and 1 calculations.

For ZPERP=T and ZROT=T, use KMIN= 1.
NPNT1 number of DVR points in; from Gauss-(associated) Laguerre quadrature, (ignored if EDIA2).
IPAR[O] parity of basis for the ABmolecule (i.e.]IDIA | = 2) case:

IPAR = 0 for even parity ane= 1 for odd.
MAX3D2[MAX3D] maximum dimension of odd parity final Hamiltonians.

(IDIA = =2, ZROT=T only).

Line4: TITLE (9A8)
A 72 character title.

Line5: FIXCOS (F20.0)
If ZTWOD =T, FIXCOS is the fixed value of c@sfor the run.
If ZTWOD = F, this line is read but ignored.

Line6: (XMASS(I),I =1,3) (3F20.0)
XMASS(l) contains the (vibrational) mass of atom | in atomic mass units.

Line7: (XMASSR(I),l =1,3) (3F20.0)
XMASSR(I) contains the rotational mass of atom | in atomic mass units.
If XMASSR(1) is not set, XMASSR is set equal to XMASS.

Line8 EMAX1, EMAX2 (2F20.0)

EMAX1 is the first cut-off energy in cm! with the same energy zero as the potential.
This determines the truncation of the 1D solutions (IDIA-2 only).
EMAX2 is the second cut-off energy in cth with the same energy zero as the potential.

This controls the truncation of the 2D solutions (i.e., the size of the final basis). If ZEBTt is
ignored and the size of the final Hamiltonian is MAX3D.

Line9: RE1,DISS1,WE1 (3F20.0)
If NCOORD =2, RE1 is the fixed diatomic bondlength, DISS1 and WE1 ignored.
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If NCOORD = 3, REl=r,, DISS1= D, and WE1= w, are Morse parameters for the coordinate when
ZMORS1=T, and are spherical oscillator parameters when ZMOR%1

Line 10: RE2,DISS2,WE2 (3F20.0)
IfZMORS2 =T, RE2=r,, DISS2= D, and WE2= w, are Morse parameters for thgcoordinate.

If ZMORS2 =F, RE2 isignored; DISS2Z « and WE2= w, are spherical oscillator parameters for theoor-
dinate.

If IDIA = —2line read but ignored.

Line 11: EZERO [0.0] (F20.0)
The ground state of the system in chrelative to the energy zero.
Optional and only read when IDIA +2, IPAR=1 and JROT= 0.

4.3. Input for ROTLEV3

Most of the data for ROTLEV3, which must have been prepared previously by DVR3DRJZ run with-1DI2,
is read from stream IWAVE. 3 or 4 lines of data are read.

Line1l: NAMELIST/PRT/

TOLER[0.0D0] tolerance for conveegce of the eigenvalues by FO2HH2], zero gives machine accuracyxl
10~% is usually sufficient for most applications.
(Ignored if ZDCORE=T.)

ZPVECI[F] =T requests printing of the eigenvectors.

THRESH[0.1d0] threshold for printing eigenvector coefficients, zero requests the full vector (only used if
ZPVEC=T).

ZPHAM[F] =T requests printing of the Hamiltonian matrix.

ZPTRA[F] =T requests printing of the transformed vectors.

IWAVE[26] stream for input data from DVR3DRJZ (unformatted).

IVEC[4] scratch file for the transformed input vectors (unformatted).

JVEC[3] stream for first set of eigenvalue/vector output (unformatted).

JVEC2[2] stream for second set of eigenvalue/vector output (unformatted), KhMANNy.

ZTRAN[F] =T eigenvectors transformed back to original basis.

ZVEC[F] =T eigenvalue and eigenvector data to be written to disk file.
(=T forced if ZTRAN=T.)

KVEC[8] stream for first set of transformed eigenvector output (unformatted).

KVEC2[9] stream for second set of transformed eigenvector output (unformatted), KMANNly.

ISCRI[1] stream for scratch file storing Hamiltonian matrix (unformatted).

JSCRJ7] stream for scratch file storing DVR3DRJZ vectors transformed to an FBRumformatted).
Used only if ZTRAN=T.

IRES[O] restart flag:
=0 normal run.
=1 full restart.
= 2 restart second diagonalisation only (for KM#N2 only).
= —1 perform vector transformation only (stream JVEC must be supplied).

ZPFUN[F] =T eigenvalues concatenated on stream ILENE first eigenvalues on this file must (with= 0,
j even) be already present.

ILEV[14] stream for eigenvalue data (formatted).

ZDIAG[T] = F do not diagonalise the Hamiltonian matrix.
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ZDCORE[F] =T diagonalisation performed in core using LAPACK routine dsyev,
= F diagonalisation performed iteratively using NAG Routine FO2FJF.

Line2: NVIB,NEVAL KMIN,IBASSNEVAL2 (515)
NVIB number of vibrational levels from DVR3DRJZ for eathto be read, and perhaps selected from, in
the second variational step.
NEVAL[10] the number of eigenvalues required for the first set.
KMIN[O] =0, f or p =1 parity calculation.
=1, e orp = 0 parity calculation.
=2, do both e and f parity calculation.
IBASS[O] = 0 or> NVIB*(JROT + KMIN), use all the vibrational levels.
Otherwise, select IBASS levels with the lowest energy.
NEVAL2[NEVAL]the number of eigenvalues required for the second set.

Line3: TITLE (9A8)
A 72 character title.

Line4: EZERO [0.0] (F20.0)
Optional. The ground state of the system in@melative to the energy zero.

4.4. Input for ROTLEV3B

Most of the data for ROTLEV3B, which must have been prepared previously by DVR3DRJZ run with2DIA
—2, is read from streams IVEC and IVEC2. 3 or 4 lines of data are read.

Linel: NAMELIST/PRT/

TOLER[0.0DO]tolerance for conveegice of the eigenvalues by FO2HH2], zero gives machine accuracyxl
10~ is usually sufficient for most applications.
(Ignored if ZDCORE=T.)

ZPVECI[F] =T requests printing of the eigenvectors.

THRESH[0.1d0] threshold for printing eigenvector coefficients, zero requests the full vector (only used if
ZPVEC=T).

ZPHAM[F] =T requests printing of the Hamiltonian matrix.

ZPTRA[F] =T requests printing of the transformed vectors.

IVEC[26]  stream for input data from DVR3DRJZ (unformatted).

IVEC2[4] second stream for input data from DVR3DRJZ (unformatted); this file is simply a copy of that on
stream IVEC.

ZVEC[F] =T eigenvalue and eigenvector data to be written to disk file (=T forced if ZTRAN.

JVEC[3] stream for first set of eigenvalue/vector output (unformatted).

JVEC2[2] stream for second set of eigenvalue/vector output (unformatted), KhMaNNly.

ZTRAN[F] =T eigenvector transformed back to original basis.

ZVEC[F] =T eigenvalue and eigenvector data to be written to disk file (=T forced if ZTRAN.

KVEC[8] stream for first set of transformed eigenvector output (unformatted).

KVEC2[9] stream for second set of transformed eigenvector output (unformatted), KNANnNly.

ISCR[1] stream for scratch file storing array OFFDG (unformatted).

IRES[O] restart flag:
=0 normal run.
=1 full restart.
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= 2 restart second diagonalisation only (for KM#N2 only).
= —1 perform vector transformation only (stream JVEC must be supplied).
ZPFUN[F] =T eigenvalues concatenated on stream ILENE first eigenvalues on this file must (with= 0,
J even) be already present.
ILEV[14] stream for eigenvalue data (formatted).
ZDIAG[T] = F do not diagonalise the Hamiltonian matrix.
ZDCORE[F] =T diagonalisation performed in core using LAPACK routine dsyev,
= F diagonalisation performed iteratively using NAG Routine FO2FJF.

Line2: NVIB,NEVAL ,KMIN,IBASSNEVAL2,NPNT (515)
NVIB number of vibrational levels from DVR3DRJZ for eathto be read, and perhaps selected from, in
the second variational step.
NEVAL[10] the number of eigenvalues required for the first set.
KMIN[O] =0, f or p = 1 parity calculation.
=1, e orp = 0 parity calculation.
=2, do both e and f parity calculation.
IBASS|O0] =0 or> NVIB*(JROT + KMIN), use all the vibrational levels.
Otherwise, select IBASS levels with the lowest energy.
NEVAL2[NEVAL]the number of eigenvalues required for the second set.
NPNT[NALF]number of quadrature points for angular integrals.

Line3: TITLE (9A8)
A 72 character title.

Line4: EZERO [0.0] (F20.0)
Optional. The ground state of the system indmelative to the energy zero.

4.5. Inputfor ROTLEV3Z

Most of the data for ROTLEV3Z, which must have been prepared previously by DVR3DRJZ run with=DIA
—2, is read from streams IVEC and IVEC2. To avoideafing i/o a second copy of each of these files is needed
linked to streams IVEC1 and IVEC3 respectively. The pamgialso uses six scratch files which are associated with
streams 1, 11, 60, 61, 70, 80 and 81. 3 or 4 lines of data are read.

Line1l: NAMELIST/PRT/

ZPVECI[F] =T requests printing of the eigenvectors.

IVEC[26] stream for input data from DVR3DRJZ run with IPARO (unformatted).
IVEC1[27] stream holding a copy of stream IVEC.

IVEC2[4] stream for input data from DVR3DRJZ run with IPAR1 (unformatted).
IVEC3[28] stream holding a copy of stream IVEC2.

ZVEC[F] =T eigenvalue and eigenvector data to be written to disk & forced if ZTRAN=T).
JVEC[3] stream for eigenvalues and rarisformed vectors (unformatted).

ZTRAN[F] =T eigenvector transformed back to original basis.

ZPTRA[F] =T requests printing of the transformed vectors.

ZVECIF] =T eigenvalue and eigenvector data to be written to disk file (=T forced if ZTRAN.
KVEC[8] stream for eigenvalues and transformed eigenvector output (unformatted).

ZPFUN[F] =T eigenvalues concatenated on stream ILENE first eigenvalues on this file must (with= 0O,

J even) be already present.
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ILEV[14] stream for eigenvalue data (formatted).
ZDIAG[T] = F do not diagonalise the Hamiltonian matrix.

Line2: NVIB,NEVAL ,KPAR,IBASS,|QPAR,NPNT (615)

NVIB number of vibrational levels from DVR3DRJZ for eathto be read, and perhaps selected from, in
the second variational step.

NEVAL[10] the number of eigenvalues required for the first set.

KPAR =0, for k even calculation,
=1, for k odd calculation.
IBASSJ0] =0 or> NVIB*(JROT + 1), use all the vibrational levels.

Otherwise, select IBASS levels with the lowest energy.
IQPAR parity of Hamiltonian, i.e., 0 or 1.
NPNT[NALF]number of quadrature points for angular integrals.

Line3: TITLE (9A8)
A 72 character title.

Line4: EZERO [0.0] (F20.0)
Optional. The ground state of the system in¢melative to the energy zero.

5. Input for DIPOLES3

DIPOLES takes most of its input from the output streams IWAVE (from DVR3DRJZ) or KVEC and KVEC2
(from ROTLEV3 or ROTLEV3B). It has the option to produce output files for SPECTEG to calculate sim-
ulated spectra at a given temperature. Input and output on streams IKET, IBRA and ITRA are in atomic units.
The data printed at the end of DIPOLE is given in wavenumbers, Debye for the transition dipoles dodtbe
EinsteinA coefficients. The user must supply the following three lines of input

Line1l: NAMELIST/PRT/
ZPRINT[F] =T supplies extra print out for debugging purposes.
ZTRA[T] = T writes data for SPECTRA to stream ITRA.
ZSTART[F] = T initiates the output file for the data for SPECTRA.
= F writes data to the end of existing file on stream ITRA.
IKET[11] input stream from DVR3DRJZ/ROTLEV3/ROTLEV3B for the ket (unformatted).
IBRA[12] input stream for the bra (unformatted).
ITRA[13] output stream to SPECTRA (if ZTRA: T) (unformatted).

Line2: TITLE (9A8)
A 72 character title.

Line 3: NPOT, NV1, NV2, IBASE1, IBASE2 (515)

NPOT number of Gauss—Legendre quadrature points.
NV1[all] number of ket eigenfunctions considered.
NV2[all] number of bra eigenfunctions considered.
IBASE1[0] number of lowest ket eigenfunctions skipped.
IBASE2[0] number of lowest bra eigenfunctions skipped.
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Line4: EZERO [0.0] (F20.0)
The ground state of the system in Threlative to the energy zero.

6. Input for SPECTRA

SPECTRA takes most of its input from stream ITRA gexted by DIPOLE. Data fiogenerating partition
functions may optionally be provided by DVR3DRJZ and one of the ROTLEV programs via stream ILEV. The
user must supply 5 (4 if ZSPE .FALSE.) lines of input.

Linel: NAMELIST/PRT/
ZOUTIF] =T, print sorted transition frequencies and line strengths.
ZOUT is set automatically to T if ZSPE F.
ZSORT[T] =T sorttransition data and write it to stream ISPE.
= F sorted transition data is to be read from stream ISPE.
ZSPE[T] = F if the program is to stop after sorting only.
ZPFUN[T] =T calculate the partition function from data on stream ILEV;
= F the partition function is not calculated but set to value Q which is read in.
ITRA[13] input stream transitionfile from DIPOLE3 (unformatted).
ILEV[14] formatted input stream with energy levels for the partition function.
The first eigenenergy on ILEV must be the ground state,J.e=,0, (IPAR=0).
This is the zero energy of the problem if ZPFUAT.
ISPE[15] stream for the sorted transitions (unformatted).
ITEM[16] scratch file (unformatted).

The following are only used if ZSORE T.

WSMIN[0.0d0] minimum transition frequency in cmh, for which data sorted.

WSMAX][1.0d6] maximum transition frequency in cm, for which data sorted.

EMIN[—1.0d27] minimum value of energy of lower state,En cm~, for which data sorted.

EMAX[ +1.0d27] maximum value of energy of lower stat&, i cm1, for which data sorted.
JMAX]alll] maximum value of J, the angular momentum of the lower state, for which data sorted.
SMIN[0.0] minimum linestrength (in B) for which data sorted.

GZ[0.0] ground state energy in cth.

Line2: TITLE (9A8)
A 72 character title.

Line3: GE, GO (2D10.0)

GE[1.0d0] nuclear-spin times symmetry-degeneracy factors for #Blecule (i.e.,|IDIA | = 2) for the even
(IPAR =0).

GO[1.0d0] nuclear-spin times symmetry-degeneracy factors for homonucleamakcule (i.e.|IDIA | = 2)
for the odd (IPAR=1).

Line4: TEMP, XMIN, WMIN, WMAX, DWL,Q (6F10.0)
TEMP temperature in K.

XMIN lowest relative intensity printed.

WMIN[0.0] minimum transition frequency required in crh
WMAX[all] maximum transition frequency required in crh.
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DWL[0.0] profile half width, in cnT! or um depending on ZFREQ, used if ZPR@H and ZDOP=F.
Q[1.0] value of the partition function, only used if ZPFUNF.

Line5: NAMELIST/SPE/
EMIN1[—1.0d27] minimum value of energy of lower staté’, B cm™1, for which data printed.
EMAX1[+1.0d27] maximum value of energy of lower staté, i cm~2, for which data printed.
EMIN2[—1.0d27] minimum value of energy of upper staté,i& cm™1, for which data printed.
EMAX2[+1.0d27] maximum value of energy of upper statg,iiEcm™, for which data printed.
JMAX]all] maximum value of J, the lower state angular momentum, for which data printed.
ZEMIT[F] = F calculates integrated absorption coefficient.

= T calculates emissivities.
ZPLOT[F] =T writes computed spectrum to stream IPLOT.
IPLOT[20] output stream for formatted file containing spectral data.
ZPROF[F] =T gives spectrum at NPOINTS points with Gaussian line profiles;

only used with ZPLOT= T, when results are written on stream IPLOT.

= F generates stick spectrum.
NPOINTS[3000] number of points at which spectrum is stored if ZPROF

ZDOPIF] =T use thermal Doppler half width for spectral profile.
XMOLM[18.0] molecular mass in amu. Only used if ZDGFT.
ZENE[F] =T write assignments with lines to IPLOT.

= F only line position and intensity to IPLOT.
Only used if ZPROR= F.
IDAT[19] Scratch file used to construct profiles (formatted), used if ZPROFand ZPLOT=T.
ZLIST[F] = T write transition data to linelist file on stream ILIST.
ILIST[36]  output stream for formatted linelist if ZLISE T.
PRTPR[0.1D0] relative intensity threshold for printing results.
TINTE[1.0D-15] absolute intensity threshold for printing results.
ZFREQ[T] =T, stream IPLOT contains wavenumber (chhas first column.
= F, stream IPLOT contains wavelength (um) as first column.
ZEINST[F] =T, stream IPLOT contains spin weighted Einsté coefficient as second column. In this case
ZEMIT =T is forced.
= F, stream IPLOT contains intensity as second column.

7. Input for XPECT3

XPECT3 requires wavefunctions as generated by DVR3DRJZ on unit IWAVE (ZPERPonly), or
ROTLEV3/ROTLEV3B on units KVEC or KVEC2. An adddhal four lines of standd input are required:

Linel: NAMELIST/PRT/
ZPRINT[F] =T supplies extra print out for debugging purposes.

ZTRA[T] = T writes property data to stream ITRA.
ZFORM[F] =T use formatted writes to stream ITRA.
ZFIT[T] =T potential energy fit being performed.

= F standard expectation value run.

ZSTART[F] =T initiates the output file ITRA,
= F writes data to the end of existing file on stream ITRA.
(Only used if ZFIT=F.)
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IKET[11] input stream from DVR3DRJZ/ROTLEV3/ROTLEV3B (unformatted).
ITRA[12]  output stream for properties (if ZTRA T).
ITRAO[28] derivatives computed by XPECTS3 for ground state.

(Only used if ZFIT= T.)

Line2: TITLE (9A8)
A 72 character title.

Line 3: LPOT, NPROPIN, NPRT, NV1 (515)

LPOT number of Gauss—Legendre quadrature points.
(IgnoredifJ =0.)

NPROPIN[1] number of properties to be considered.

NPRT [NPROPIN]total possible number of properties.

NV1[all] number of eigenfunctions considered.

Line4: (IPROP(1), | =1, NPROPIN) (2015)
Pointers to the properties in array IPROP to be considered. Defaul2js.1, NPROPIN.
Values must be unique and in the range 1 to NPRT.

8. Test runs

Short scripts, input data and associated output files have been included with the programs for four different
cases. These cases, ensure that there is a test run for each module, are as follows:

HCN tests use the potential and dipole surfaces of Van Mourik ¢58]. The calculations use scattering co-
ordinates and run modules DVR3DRJZ, ROTLEV3, DIPOLE3 and SPECTRA. These runs are a cut down version
of the calculations reported by Harris et [&6].

Water tests use the potential energy surface of Shirin ¢6&].and a preliminary version of the dipole surfaces
of Lynas-Gray et al[58]. A properties file used by Shirin et al. for their fits of the potential using spectroscopic data
is also given. The calculations use Radau coordinates with a bisector embedding and run modules DVR3DRJZ,
ROTLEV3, DIPOLE3 and XPECTS3.

Hg in Jacobi coordinates uses the glob@‘l potential of Polyansky et al. (Fit 2%9] and the dipole surface of
Ro6hse et al[60]. This calculation runs modules DVR3DRJZ, ROTLEV3, DIPOLE3 and SPECTRA.

H{ in Radau coordinates with a perpendicular embedding. This calculation uses the same potential as the other
Hg test run. It runs modes DVR3DRJZ and ROTLEV3Z only.

All test runs require Basic Linear Algebra Subroutines (BLAS) and LAPACK routine d&fdvThe programs
have been tested using several compilers. The test runs use the Intel Fortran compiler which we found significantly
better than others we tested for use under Linux. This compiler can be downloaded free. To keep run times short,
not all the results in the test runs are fully converged.
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Appendix A

This appendix gives a derivation of the line strength calculation algorithm used in DIPOLES. The derivation is
based upon that of Miller et gl47] for an FBR but exploits the properties of a DVR to yield an algorithm which
is significantly more efficient. This derivation is applicable to ‘standargd’andr, embeddings, as well as the
bisector embedding but does not apply to the perpendicular embedding.

J is the total angular momentum, withthe projection of/ onto thez-axis. M spans the magnetic sub levels
of the wavefunction. The angular part of the wavefunction is represented in an angular (FBR) basis given by

27 + 1\ ¥?
|JM,k’j’p) - (?—Z) @]O(Q)D&Q(aﬂy)*9 k =0’p:O9
2J +1l/2
_ D 0 (D @B + (—1P Dl @py)). k>0 p=01 (A1)

A
Below thelth eigenfunction for the symmetry block defined by angular momentwand rotational parity is
denoted by Jy, p,1). Its value is given at radial grid poinés g by d’(fé, see Eq(36), wherej runs over angular
functions of the form of Eq(A.1).
The line strength S( — i) for a particular transition from an initial stateo a final statef is given by

. I agl 2
S(f—iy= Y (T}™7), (A.2)
M'M"t
where
Tiy/Mﬂf — <J//V[/’ P/, l/|pL§|J/Z[//, p//’ l”) (A.3)

andy? is thetr component of the space-fixed dipole momentolm choice of body-fixed@ordinates, only the
andx components are non-zero. The body-fixes dipole momgﬁ(rl, r2, 0) transforms to a tensor of rank one
into space fixed coordinates:

+1
= Y WYL r2,0)DL @By, (A.4)
v=—1
giving
Ty M <JA4/,p’ |y (1. r2, ) DE g " 1)
7 %
Z Z Z Z Z (Jypo Km0’y j', 'l (r1,r2,9)Dl*|JM//,k”,m”,n”,j”,p”).
v==1k'=p'm'n’ j' k"=p" m"n" j" (A.5)

This equation can be separated into angular and radial parts. The treatment of the radial part is straightforward and
has been discussed previouflg]. Considering the angular part

7 7"

J /l/ J// //l/ . .
Z Z Do D g Ty K P (1,2, ) D T K ). (A.6)

v=—I1Fk'= k// p// ]/J//

Substituting in the angular functiorfé.1), multiplied out and exploiting the properties of the angular algebra
gives:

// —1 M/ " ’ / "
T - 5 " @ V22 + i G A C Nt
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‘IN X / 1 J// J/ 1 J//
e (e Fa) ()
v=—1 k=p”
/l/ J// //l
x Zdj e g / 0%, (0)0 i (6) d cod. (A7)
Evaluating the angular integral withf -point Gauss—Legendre quadrature is equivalent to transforming the wave-

functions back to a DVR on a grid of Gauss—Legendre (t.e=,0) points using transformatiafil) to give new

- Jpi
coefﬁuentmkaﬁy.

// _1 M/ " ’ / "
T = CD™ 21 4 DY20" + DY[(~1)7 4~ ]

2
+1 J// I 1 I "
k J 1 J J 1 J

DI (R | (P

v=—1 k=p”

J/ /l/ J// //l//

X Zak’jﬁy Wrapy My v (@By). (A.8)
afy

Finally summing over all degenerate magnetic substatel summing the dipole components gives the final ex-
pression for the linestrength:

S(f—i)= %[(2/ + QI+ D][(=17 T (—py )P

H I J’ 1 J” 7l a e 2
X |: Z Z atk+v, k) (=D (—v P > gy krapy 1 (aﬂy):| (A.9)

v=—1 k=p” afy

wherea(k + v, k) is defined by Eqs(56) and (57) This form of the dipole involves dipole transition integrals
which can be expressed in the computationally most efficient, generalXonm(/)u (I ¢ (1), wherel runs
over integration points, as advocated by Schwedfke

It should be noted that the phase factors in &q9) give the rigorous selection rules:

AJ =0’ p/ ?ép//,
AJ=1, p'=p” (A.10)

which all transitions must obey. Apart from further symmetry-induced selection rules for systems with identical
atoms, these are the only selection which rigorously apply.
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