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Abstract

The DVR3D program suite calculates energy levels, wavefunctions, and where appropriate dipole transition momen
tating and vibrating triatomic molecules. Potential energy and, where necessary, dipole surfaces must be provided. E
values of geometrically defined functions can be calculated, a feature which is particularly useful for fitting potential
surfaces. The programs use an exact (within the Born–Oppenheimer approximation) Hamiltonian and offer a choice
or Radau internal coordinates and several body-fixed axes. Rotationally excited states are treated using an efficient tw
gorithm. The programs uses a Discrete Variable Representation (DVR) based on Gauss–Jacobi and Gauss–Laguerre
for all 3 internal coordinates and thus yields a fully point-wise representation of the wavefunctions. The vibrational s
successive diagonalisation and truncation which is implemented for a number of possible coordinate orderings. The r
expectation value and transition dipole programs exploit the savings offered by performing integrals on a DVR grid. T
version has been rewritten in FORTRAN 90 to exploit the dynamic array allocations and the algorithm for dipole and spectr
calculations have been substantially improved. New modules allow thez-axis to be embedded perpendicular to the plane of
molecule and for the calculation of expectation values.

Program summary

Title of the program:DVR3D suite
Catalogue number:ADTI
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTI
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Programming language:Fortran 90

✩ This paper and its associated computer programs are available via the Computer Physics Communications homepage on ScienceDire
(http://www.sciencedirect.com/science/journal/00104655).
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No. of lines in distributed program, including test data, etc.:61 574
No. of bytes in distributed program, including test data, etc.:972 404
Distribution format: tar.gz

New version summary

Title of program: DVR3DRJZ
Catalogue number:ADTB
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTB
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Reference in CPC to previous version:86 (1995) 175
Catalogue identifier of previous version:ADAK
Authors of previous version:J. Tennyson, J.R. Henderson and N.G. Fulton
Does the new version supersede the original program?:DVR3DRJZ supersedes DVR3DRJ
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix; SGI Origin 2000, Sunfire V750 and V880 sys
running SunOS, IBM p690 Regatta running AIX
Programming language used in the new version:Fortran 90
Memory required to execute:case dependent
No. of lines in distributed program, including test data, etc.:4203
No. of bytes in distributed program, including test data, etc.:30 087
Has code been vectorised or parallelised?:The code has been extensively vectorised. A parallel version of the code, PD
has been developed [1], contact the first author for details
Additional keywords:perpendicular embedding
Distribution format: gz
Nature of physical problem:DVR3DRJZ calculates the bound vibrational or Coriolis decoupled rotational–vibrational
of a triatomic system in body-fixed Jacobi (scattering) or Radau coordinates [2]
Method of solution: All coordinates are treated in a discrete variable representation (DVR). The angular coordinate
DVR based on (associated) Legendre polynomials and the radial coordinates utilise a DVR based on either Morse oscilla
like or spherical oscillator functions. Intermediate diagonalisation and truncation is performed on the hierarchical expressi
of the Hamiltonian operator to yield the final secular problem. DVR3DRJ provides the vibrational wavefunctions ne
for ROTLEV3, ROLEV3B or ROTLEV3Z to calculate rotationally excited states, DIPOLE3 to calculate rotational–vibra
transition strengths and XPECT3 to compute expectation values
Restrictions on the complexity of the problem:(1) The size of the final Hamiltonian matrix that can practically be diagonali
(2) The order of integration in the radial coordinates that can be dealt with within the machine exponent range. Some ad
in the code may be necessary when large order Gauss–Laguerre quadrature is used
Typical running time:Case dependent but usually dominated by the final (3D) matrix diagonalisation. The test runs take
on a fast PC
Unusual features of the program:A user supplied subroutine containing the potential energy as an analytic functio
program requirement
References:
[1] H.Y. Mussa, J. Tennyson, Comput. Phys. Commun. 128 (2000) 434.
[2] J. Tennyson, B.T. Sutcliffe, Internat. J. Quantum Chem. 42 (1992) 941.

New version summary

Title of program: ROTLEV3
Catalogue number:ADTC
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTC
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland

http://cpc.cs.qub.ac.uk/summaries/ADTB
http://cpc.cs.qub.ac.uk/summaries/ADTC
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Reference in CPC to previous version:86 (1995) 175
Catalogue identifier of previous version:ADAL
Authors of previous version:J. Tennyson, J.R. Henderson and N.G. Fulton
Does the new version supersede the original program?:Yes
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix; SGI Origin 2000, Sunfire V750 and V880 sys
running SunOS
Programming language used:Fortran 90
High speed storage required:case dependent
No. of lines in distributed program, including test data, etc.:1514
No. of bytes in distributed program, including test data, etc.:12 652
Has code been vectorised or parallelised?:The code has been extensively vectorised. A parallel version of the
PROTLEV3 has been developed [1], contact the first author for details
Distribution format: gz
Nature of physical problem:ROTLEV3 performs the second step in a two-step variationalcalculation for the bound rotational
vibrational levels of a triatomic system represented in either Jacobi or unsymmetrised Radau coordinates
Method of solution: A basis is constructed from the solutions of the Coriolis decoupled problem provided by DVR3D
The angular coordinate is transformed back to a basis set representation. The sparse Hamiltonian matrix can be diagonalise
iteratively or in core
Restrictions on the complexity of the problem:The size of matrix that can practically be diagonalised
Typical running time:Case dependent. The sample data takes less than a minute on a fast PC
Unusual features of the program:Most data is read directly from DVR3DRJZ. ROTLEV3 can provide data to drive DIPO
and/or XPECT3
References:
[1] H.Y. Mussa, J. Tennyson, Comput. Phys. Commun. 128 (2000) 434.

New version summary

Title of program: ROTLEV3B
Catalogue number:ADTD
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTD
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Reference in CPC to previous version:86 (1995) 175
Catalogue identifier of previous version:ADAM
Authors of previous version:J. Tennyson, J.R. Henderson and N.G. Fulton
Does the new version supersede the original program?:Yes
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix, Sunfire V750 and V880 systems running SunO
Programming language used:Fortran 90
High speed storage required:case dependent
No. of lines in distributed program, including test data, etc.:2215
No. of bytes in distributed program, including test data, etc.:16 595
Has code been vectorised or parallelised?:The code has been extensively vectorised. A parallel version of the
PROTLEV3B has been developed [1], contact the first author for details
Distribution format: gz
Nature of physical problem:ROTLEV3B performs the second step in a two-step variational calculation for the bound rotational
vibrational levels of a triatomic system represented by symmetrised Radau coordinates using a bisector embedding [2
Method of solution:A basis is constructed from the solutions of the Coriolis decoupled problem provided by DVR3DRJ
problem is constructed entirely within the DVR. The Hamiltonian matrix can be diagonalised iteratively or in core
Restrictions on the complexity of the problem:The size of matrix that can practically be diagonalised

http://cpc.cs.qub.ac.uk/summaries/ADTD
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Typical running time:Case dependent. The sample data takes a few minutes on a fast PC
Unusual features of the program:Most data is read directly from DVR3DRJZ. ROTLEV3B can provide data to drive DIPO
and/or XPECT3
References:
[1] H.Y. Mussa, J. Tennyson, Comput. Phys. Commun. 128 (2000) 434.
[2] J. Tennyson, B.T. Sutcliffe, Internat. J. Quantum Chem. 42 (1992) 941.

Program summary

Title of program: ROTLEV3Z
Catalogue number:ADTE
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTE
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix, Sunfire V750 and V880 systems running SunO
Programming language used:Fortran 90
High speed storage required:case dependent
No. of lines in distributed program, including test data, etc.:2919
No. of bytes in distributed program, including test data, etc.:17 241
Keywords: rotationally excited state, Coriolis coupling, secondary variational method, sparse matrix, vectorised, perpe
embedding, Radau coordinates
Has code been vectorised or parallelised?:The code has been extensively vectorised
Distribution format: gz
Nature of physical problem:ROTLEV3Z performs the second step in a two-step variational calculation for the bound rotational
vibrational levels of a triatomic system represented by symmetrised Radau coordinates using a perpendicular embed
Method of solution:A basis is constructed from the solutions of the Coriolis decoupled problem provided by DVR3DRJ
problem is constructed entirely within the DVR. The Hamiltonian matrix is diagonalised in core
Restrictions on the complexity of the problem:The size of matrix that can practically be diagonalised
Typical running time:Case dependent. The sample data takes a few minutes on a fast PC
Unusual features of the program:Most data is read directly from DVR3DRJZ
References:
[1] M.A. Kostin, O.L. Polyansky, J.Tennyson, J. Chem. Phys. 116 (2002) 7564.

New version summary

Title of program: DIPOLE3
Catalogue number:ADTF
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTF
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Reference in CPC to previous version:86 (1995) 175
Catalogue identifier of previous version:ADAN
Authors of previous version:J. Tennyson, J.R. Henderson and N.G. Fulton
Does the new version supersede the original program?:Yes
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix; SGI Origin 2000; sunfire V750 and V880 syste
Programming language used:Fortran 90
High speed storage required:case dependent
No. of lines in distributed program, including test data, etc.:1921
No. of bytes in distributed program, including test data, etc.:15 685

http://cpc.cs.qub.ac.uk/summaries/ADTE
http://cpc.cs.qub.ac.uk/summaries/ADTF
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Has code been vectorised or parallelised?:The code has been extensively vectorised. Commands to parallelise the cod
OpenMP are included in the source
Distribution format: gz
Nature of physical problem:DIPOLE3 calculates dipole transition intensities between previously calculated wavefuncti
both rotational and rotational–vibrational transitions
Method of solution:Integrals over dipole surfaces are constructed using a DVR in all three coordinates, this requires a transf
mation of the angular wavefunctions. Wavefunctions generated by DVR3DRJZ and ROTLEV3 or ROTLEV3B are then used
give transition intensities for individual pairs of states
Restrictions on the complexity of the problem:The complexity of the problem that can be solved by DVR3DRJZ, ROTLE
or ROTLEV3B
Typical running time:Case dependent. The test data takes a few seconds on a fast PC
Unusual features of the program:Most data is read directly from DVR3DRJZ and ROTLEV3 or ROTLEV3B. DIPO
provides data to drive SPECTRA

New version summary

Title of program: SPECTRA
Catalogue number:ADTG
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTG
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix
Reference in CPC to previous version:75 (1993) 339
Catalogue identifier of previous version:ACNB
Authors of previous version:J. Tennyson, S. Miller and C.R. Le Sueur
Does the new version supersede the original program?:Yes
Programming language used:Fortran 90
High speed storage required:case dependent
No. of lines in distributed program, including test data, etc.:1037
No. of bytes in distributed program, including test data, etc.:9159
Has code been vectorised or parallelised?:As execution times are very short this is usually not important
Distribution format: gz
Nature of physical problem:SPECTRA generates synthetic, frequency ordered spectra as a function of temperature. A
intensities can be calculated if the necessary data to calculate the partition function is supplied
Method of solution:Transitions are sorted by frequency and weighted using Boltzmann statistics
Restrictions on the complexity of the problem:The complexity of problem that can be solved by other programs in the su
Typical running time:Case dependent, but very small for sample data
Unusual features of the program:Most data is read directly from DIPOLE3. Some data from DVR3DRJZ and ROTLEV
ROTLEV3B may also be required

Program summary

Title of program: XPECT3
Catalogue number:ADTH
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADTH
Program obtainable from:CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer: PC running Linux
Installation: desktop
Other machines on which program tested:Compaq running True64 Unix
Programming language used:Fortran 90
High speed storage required:case dependent

http://cpc.cs.qub.ac.uk/summaries/ADTG
http://cpc.cs.qub.ac.uk/summaries/ADTH
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No. of lines in distributed program, including test data, etc.:1214
No. of bytes in distributed program, including test data, etc.:9361
Distribution format: gz
Keywords: Expectation values, Hellmann–Feynman theorem, potential fitting
Has code been vectorised or parallelised?:The code has been extensively vectorised
Nature of physical problem:XPECT3 calculates expectation of geometrically defined operators using previously calc
wavefunctions
Method of solution:Integrals over the user defined surfaces are constructed using a DVR in all three coordinates. Wavefunctio
generated by DVR3DRJZ and ROTLEV3 or ROTLEV3B are then used to give expectation values for each state
Restrictions on the complexity of the problem:The complexity of problem that can be solved by DVR3DRJZ, ROTLEV3
ROTLEV3B
Typical running time:Case dependent. The test data takes a few seconds on a fast PC
Unusual features of the program:Most data is read directly from DVR3DRJZ and ROTLEV3 or ROTLEV3B.
 2004 Elsevier B.V. All rights reserved.

PACS:33.20; 39.30

Keywords:Molecular spectra; Infrared; Microwave; Variational principle; Expectation values; Born–Oppenheimer approximation; Triatomic
molecules

1. Introduction

The calculation of rotation–vibration spectra for triatomic species has become almost routine for molecu
a single low-lying potential energy surface. This has led to increasing activity looking at highly excited stat
such molecules and using the observed spectroscopic data to determine highly accurate potential energy surface
by successive refinement of the surface[1]. Indeed high accuracy nuclear motion calculations have begun to ma
a significant impact on key spectroscopic problems[2].

A number of methods are available which will compute vibration–rotation spectra oftriatomics using Hamilto-
nians which are exact within the Born–Oppenheimer approximation and basis function expansions to represen
nuclear wavefunctions[3–7]. These variational procedures have proved very successful, particularly for pro
where highly excited states are not required.

An alternative procedure, based on finite element representations of the nuclear wavefunctions, has
veloped by Light and co-workers[8,9]. This approach, generally known as the discrete variable representation
DVR, was based on earlier work by Harris et al.[10]. The DVR is not strictly variational, but has a number
advantages over the more traditional basis set methods in both the development of compact represent
multi-dimensional Hamiltonians and the simplicity of most of the matrix elements. This latter property ha
increasingly exploited in a number of methods using iterative diagonalisation, see[11] and references therei
Such methods have proved very powerful for studying very high-lying states, for example, near and jus
dissociation, but have been little used to compute actual spectra.

Advances in computer technology have meant that variational or DVR methods can be routinely used
pute spectra of triatomics on desktop computers. At the same time these methods are being increasing
compute large datasets which are much too big to be obtained experimentally. Large variational calcula
triatomics have been used to obtain data to give temperature dependent thermodynamic functions[12–15] and
radiative transport models[16–21].

In 1995 Tennyson and co-workers published a triatomic rotational–vibrational spectral package base
use of a discrete variable representation for all three internal coordinates, called DVR3D[22]. The present work
updates and extends this program. The whole package has been re-written into FORTRAN 90 to, in partic
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lar, take advantage of the dynamic array allocation procedures offered. Key portions of the programs utilise
BLAS routines for optimal efficiency. A new module has been added, ROTLEV3Z, which allows the
fixed z-axis of the system to be placed perpendicular to the plane defined by the molecule[23]. The main
driving module, renamed from DVR3DRJ to DVR3DRJZ, has been extended to cope with this case
tional options in DRV3DRJZ and the various ROTLEV programs allow for the inclusion of non-adiabatic e
which thus go beyond the Born–Oppenheimer separation of electronic and nuclear motion[24,25]. The tran-
sition moments routine DIPOLE3 has been reprogrammed with a new algorithm, described below, w
both substantially faster for large runs and also significantly reduces input/output. The reduction in i/o
that the interface between ROTLEV3/ROTLEV3B and DIPOLE3 has also been re-written. Module SPECTR
previously published as part of the finite basis set package TRIATOM[26], has been re-written to be mo
efficient for large problems and to increase its functionality. Finally a new module, XPECT3, has been
troduced which calculates expectation values for a given geometric operator. This procedure has a nu
uses but we have found it particularly important for fitting potential energy surfaces using spectroscopic
[22,27].

2. Method

2.1. The vibrational problem: DVR3DRJZ

2.1.1. The 3D DVR Hamiltonian matrix and its solution
We use a multidimensional DVR in scattering (Jacobi) or Radau coordinates. In scattering coordinatesr1 repre-

sents the ‘diatom’ distance between atom 2 and atom 3, andr2 the separation of the atom 1 from the diatom cen
of mass. The angle betweenr1 andr2 is θ . A formal definition of (r1, r2, θ ) in Radau coordinates is given below

Using a finite basis representation (FBR), the zero rotational angular momentum (J = 0) Hamiltonian matrix
can be written[3]

〈m,n, j |Ĥ J=0|m′, n′, j ′〉 = 〈m|ĥ(1)|m′〉δn,n′δj,j ′ + 〈n|ĥ(2)|n′〉δm,m′δj,j ′

+ (〈m|ĝ(1)|m′〉δn,n′ + 〈n|ĝ(2)|n′〉δm,m′
)
j (j + 1)δj,j ′

(1)+ 〈m,n, j |V (r1, r2, θ)|m′, n′, j ′〉.
A DVR is a unitary transformation of an FBR defined for some quadrature scheme associated with the

polynomials. The angular basis functions|j 〉, whenJ = 0, are Legendre polynomials. The radial basis functi
are Laguerre polynomials. These are either Morse oscillator-like functions or spherical oscillators. The Mor
oscillator-like functions are defined as[28]:

(2)|n〉 = Hn(r) = β1/2Nnα exp

(
−y

2

)
y(α+1)/2Lα

n(y), y = Aexp
[−β(r − re)

]
,

where

(3)A = 4De

ωe

, β = ωe

(
µ

2De

)1/2

, α = integer(A).

The parametersµ, re , ωe and De can be associated with the reduced mass, equilibrium separation, fund
mental frequency and dissociation energy of the relevant coordinate respectively. In practice (re,ωe,De) are
treated as variational parameters and optimised accordingly.NnαLα

n is a normalised associated Laguerre po
nomial[29].

When optimizing the parameters for the Morse oscillator-like functions it usual to take initial guesses ba
the shape of the potential for the initial coordinate. Experience shows
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(a) that the results are largely insensitive to the choice ofDe ,
(b) the optimal value ofre is usually larger than the value given by the minimum of the potential,
(c) values forre andwe are often quite strongly coupled and need to be varied together.

In particular if more states are required, increasingre and reducingwe extends the range of the basis. Wh
optimising parameter one should concentrate on a few states at the top end of the required energy rang
are the most sensitive to the parameters.

The spherical oscillator functions are particularly useful for systems which have significant amplitude forr2 = 0.
These functions are defined by[30]:

(4)|n〉 = Hn(r) = 21/2β1/4Nnα+1/2 exp

(
−y

2

)
y(α+1)/2L

α+1/2
n (y), y = βr2,

where

(5)β = (µωe)
1/2

and (α,ωe) are treated as variational parameters.
It can be advantageous to optimise the parameters for both Morse-like and spherical oscillator functio

an FBR isomorphic to the DVR in which the final calculation is to be performed. This is because optimisation
usually performed on cut-down problems for which a DVR can become unreliable because of the linkage betw
accuracy of integration and size of basis[1]. To this end optimisation is generally performed using the FBR3 code
TRIATOM [26] or the two-dimensional (ZTWOD= T) option in the DVR1–FBR2 code DVR1D[31].

In (1) V is the potential, and the radial kinetic energy integrals are given by

(6)〈t|ĥ(i)|t ′〉 = 〈t|−h̄2

2µi

∂2

∂r2
i

|t ′〉,

(7)〈t|ĝ(i)|t ′〉 = 〈t| h̄2

2µir
2
i

|t ′〉,

where|t〉 = |m〉 for i = 1 and|t〉 = |n〉 for i = 2. µi are the appropriate reduced masses given by[32]:

µ−1
1 = g2

2m−1
1 + m−1

2 + (1− g2)
2m−1

3 ,

(8)µ−1
2 = m−1

1 + g2
1m−1

2 + (1− g1)
2m−1

3 ,

where for scattering coordinates

(9)g1 = m2

m2 + m3
, g2 = 0

and for Radau coordinates[32]:

g1 = 1− A

A + B − AB
, g2 = 1− A

1− B + AB
,

(10)A =
(

m3

m1 + m2 + m3

)1/2

, B = m2

m1 + m2
.

The relationship between theg’s and geometrically defined coordinates is given byFig. 1.
A 1D DVR transformation for either ofr1, r2 or θ is defined in terms of points,η, and weights,wη, of the

N -point Gaussian quadrature associated with the orthogonal polynomials used for the FBR in that coordin[8]:

(11)T
η
t = (wη)

1/2
∣∣t (η)

〉
,
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Fig. 1. Internal coordinate system of Sutcliffe and Tennyson[32]: Ai represents atomi. The coordinates are given byr1 = A2 −R, r2 = A1 −P

and the angleθ = A1Q̂A2. The geometric parameters are defined byg1 = A3−P
A3−A2

; g2 = A3−R
A3−A1

.

where |t〉 = |m〉, |n〉, |j 〉 for η = α,β, γ respectively. DVR3DRJZ automatically generates the approp
Gaussian quadrature schemes[33].

The required composite transformation is written as a product of 1D transformations:

(12)T = T
α,β,γ

m,n,j = T α
mT β

n T
γ

j .

A three-dimensional DVR is obtained by applying the transformationT T H T . For J = 0, the transformed
Hamiltonian can be written at the DVR grid points as

(3D)Hα,α′,β,β ′,γ ,γ ′ = K
(1)

α,α′δβ,β ′δγ,γ ′ + K
(2)

β,β ′δα,α′δγ,γ ′ + L
(1)

α,α′,γ ,γ ′δβ,β ′

(13)+ L
(2)

β,β ′,γ ,γ ′δα,α′ + V (r1α, r2β, θγ )δα,α′δβ,β ′δγ,γ ′.

In (13), the potential energy operator is diagonal because of the quadrature approximation[8,34]

(14)
∑

m,n,j

∑
m′,n′,j ′

T
α,β,γ

m,n,j 〈m,n, j |V (r1, r2, θ)|m′, n′, j ′〉T α′,β ′,γ ′
m′,n′,j ′ � V (r1α, r2β, θγ )δαα′δββ ′δγ γ ′

where (r1α, r2β, θγ ) is the value of (r1, r2, θ ) at (α,β, γ ). A major attraction of DVR-based methods is that
integration at all is required over the potential; it is diagonal in every coordinate.

The kinetic energy terms in Hamiltonian(13)are represented by

(15)K
(i)

η,η′ =
∑
t,t ′

T
η
t 〈t|ĥ(i)|t ′〉T η′

t ′ ,

(16)L
(i)

η,η′,γ ,γ ′ = Jγγ ′
∑
t,t ′

T
η
t 〈t|ĝ(i)|t ′〉T η′

t ′

(17)� Jγγ ′ h̄2

2µir
2
iη

δηη′,

again applying the quadrature approximation, and where

(18)Jγγ ′ =
∑
j

T
γ
j j (j + 1)T

γ ′
j .

The calculation is generally set up as a series of diagonalisations and truncations[35,36]. Assume for the
moment that the coordinate orderingθ thenr1 thenr2 is used, i.e., diagonalise onγ first andβ last (θ → r1 → r2).
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With this ordering, the 1D problems that have to be solved for eachα andβ are given by

(19)(1D)H
α,β

γ,γ ′ = L
(1)

α,α,γ,γ ′ + L
(2)

β,β,γ,γ ′ + V (r1α, r2β, θγ )δγ γ ′ .

Amplitudes for thehth level, with eigenenergyεα,β
h , are given at each grid point,α,β , by C

α,β
γ,h .

The solutions withεα,β

h � E1D
max are then selected and used to solve 2D problems for each value ofβ . This gives

(20)(2D)H
β

α,α′,h,h′ = ε
α,β
h δαα′δhh′ +

∑
γ

C
α,β
γ,hC

α′,β
γ,h′ K

(1)

αα′ .

Solutions for thelth level, with eigenenergyεβ
l are given byCβ

α,l,h.

The solutions withεβ
l � E2D

max are then used to solve the full 3D problem of dimensionN :

(21)(3D)Hβ,β ′,l,l′ = ε
β
l δββ ′δll′ +

∑
α,h,h′

C
β
α,l,hC

β ′
α,l′,h′

∑
γ

C
α,β
γ,hC

α,β ′
γ,h′ K

(2)

ββ ′ .

Solutions of this diagonalisation are the required eigenenergies,εi , and wavefunction coefficientsCβ,i,l .

2.1.2. Order of solution
As stated the 3D DVR Hamiltonian matrix of Eq.(13) can be solved by successive diagonalisation and tru

tion. In Section2.1.1the angleθ was dealt with first, andr2 last. It also is possible for the problem to be solved
any of the 5 other orders. The most efficient orderingis to treat the coordinate accommodating the highest de
of states last[36,37]. In principle the coordinate holding the lowest density of states should come first but th
been found to matter little in practice.

Four of the possible coordinate orders have been implemented in DVR3DRJZ. The two orders wheθ is
considered second have been omitted; it is unlikely that such orders will offer significant savings over the
which the order ofθ and the first coordinate are swapped.

In symmetrised Radau coordinates, see below, the coordinatesr1 and r2 are mixed and it no longer make
sense to diagonalise and truncate in these coordinates separately. Furthermore, in all the problems we ha
with Radau coordinates, diagonalisation ofθ last has been the method of choice. For this reason we have
implemented this option in DVR3DRJZ for symmetrised Radau coordinates.

2.1.3. Symmetry
Scattering coordinates can exploit permutation symmetry of an AB2 system. This symmetry is carried by theJ

matrix of Eq.(18). Then the symmetrisedJ matrix becomes

(22)Jγγ ′q = 2
N/2−1∑
j=0

T
γ ′
2j+q(2j + q)(2j + q + 1)T

γ

2j+q, q = 0,1.

It should be noted that for problems including rotational excitation, this symmetry is preserved with the bod
z-axis placed either along eitherr2 (ZEMBED= .TRUE. in the code) orr1 (ZEMBED= .FALSE.).

In Radau coordinates, the permutation symmetry of an A2B molecule is carried by the radial coordinates. T
is more complicated to treat in a DVR since it involves coupling two coordinates. Symmetrising the DVR by
suitable combinations of points inr1 and r2 has been shown to have distinct advantages over other metho
including symmetry[38]. With this procedure the new functions become:

(23)|α,β, q〉 = [
2(1+ δα,β)

]−1/2(|α,β〉 + (−1)q+k|β,α〉), q = 0,1,

whereα > β for q + k odd orα � β for q + k even. Note that this definition[39] of q , which is not the one use
in most of our previous works, identifies the ortho and para symmetry blocks for AB2 molecules each by a sing
q value.
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Symmetry withJ > 0 and thez-perpendicular embedding is quite subtle. We refer to Kostin et al.[23] for a full
discussion of this.

2.1.4. Rotational excitation within DVR3DRJZ
Besides solving the pure vibrational (J = 0) problem, DVR3DRJZ also solves the first step in the two-step[40]

solution to the full rotational–vibrational problem. ForJ > 0, DVR3DRJZ assumes that the projection ofJ along
the body-fixedz-axis,k, is a good quantum number. The choice of body-fixed axes is crucial to a rapid solu
problems with rotational excitation. There are four possible options included in the program:

(1) r1 embedding: z is parallel tor1, with x in the plane of the molecule.
(2) r2 embedding: z is parallel tor2, with x in the plane of the molecule.
(3) Bisector embedding: x bisects the angleθ , with z in the plane of the molecule.
(4) Perpendicular embedding: x bisects the angleθ , with z perpendicular to the plane of the molecule.

In each case they-axis is defined to give a right-handed set. Options 1 and 2 are available for scatteri
ordinates and non-symmetrised Radau coordinates; options 3 and 4 are available only for symmetrised Ra
coordinates.

For the standardr1 or r2 embeddings and assumingk to be a good quantum number, it is only necessary to
one extra term to Hamiltonian(1):

(24)〈m,n, j, J, k|Ĥ J,k|m′, n′, j ′, J, k〉 = 〈m,n, j |Ĥ J=0|m′, n′, j ′〉 + 〈t|ĝ(i)|t ′〉δj,j ′δs,s ′
(
J (J + 1) − 2k2).

In (24), if the z-axis is taken alongr1 then|t〉 = |m〉, s = n andi = 1; conversely ifz is alongr2, |t〉 = |n〉, s = m

andi = 2.
In the bisector embedding[41]:

〈m,n, j, J, k|Ĥ J,k|m′, n′, j ′, J, k〉 = 〈m,n, j |Ĥ J=0|m′, n′, j ′〉 + (〈m|ĝ(1)|m′〉δn,n′ + 〈n|ĝ(2)|n′〉δm,m′
)

(25)×
(

1

4
〈jk| 1

(1− cosθ)
|j ′k〉(J (J + 1) − 3k2) + 1

8
δj,j ′

(
J (J + 1) − k2)).

In both the standard and bisector embedding the angular basis functions forJ > 0 calculations are associate
Legendre polynomials of orderk. For the perpendicular embedding conversely they are Jacobi polynomialJ

a,b
j

defined by[42]

(26)a = b =
(

1

2

[
J (J + 1) − k2])1/2

.

With these functions, the perpendicular embedding gives[23]:

〈m,n, j, J, k|Ĥ J,k|m′, n′, j ′, J, k〉 = 〈m,n, j |Ĥ J=0|m′, n′, j ′〉
(27)−

(
δn,n′ 〈m|ĝ(1)|m′〉 + δm,m′ 〈n|ĝ(2)|n′〉

[
(j + a)(j + a + 1) − k2

4

])
wherea is as defined in Eq.(26).

In both the bisector and perpendicular embeddings,k = 1 is a special case and has an extra term on the diag
For the bisector embedding:

(28)+ (−1)1−p

16

(
δn,n′ 〈m|ĝ(1)|m′〉 + δm,m′ 〈n|ĝ(2)|n′〉)〈jk| (1+ cosθ)

(1− cosθ)
|j ′k〉J (J + 1),
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wherep, the rotational parity, is defined below. Similarly for the perpendicular embedding the extra term is

(29)+ (−1)1−q

4

(
δn,n′ 〈m|ĝ(1)|m′〉 + δm,m′ 〈n|ĝ(2)|n′〉)〈jk| cosθ

(1− cos2 θ)
|j ′k〉J (J + 1),

whereq is the symmetry label defined previously,(22).
The extra matrix elements present for theJ > 0 case need to transformed into a DVR. For the standardr1 and

r2 embeddings this gives

(30)
(
J (J + 1) − k2)M(i)

α,α′,β,β ′δγ,γ ′

where theM-matrix is given by:

(31)M
(1)

α,α′ =
∑
m,m′

T α
m〈m|ĝ(1)|m′〉T α′

m′ � δαα′
h̄2

2µ1r
2
1α

if i = 1 andz embedded alongr1, when it is diagonal inβ , and

(32)M
(2)

β,β ′ =
∑
n,n′

T β
n 〈n|ĝ(2)|n′〉T β ′

n′ � δββ ′
h̄2

2µ2r
2
2β

if i = 2 andz embedded alongr2, when it is diagonal inα.
In the bisector embedding theJ -dependent term becomes in a DVR:

(33)
1

8

(
M

(1)

α,α′,β,β ′ + M
(2)

α,α′,β,β ′
)
δγ,γ ′

(
1

8

(
J (J + 1) − k2) + δk,1

(−1)1−p

16
J (J + 1)

(1+ γ )

(1− γ )

)
plus an extra term for thek = 1 case. The extra term for the perpendicular embedding case is somewha
complicated and can be found in Kostin et al.[23].

For the bisector and perpendicular embeddings, the extra angular integrals are evaluated using the q
approximation. It should be noted, however, that the operators which depend on(1 − cosθ)−1 are singular when
θ = 0. These ABB linear geometries correspond to very high energy for many AB2 molecules, for instance wate
The present code assumes that the wavefunction has zero amplitude in this region; this can actually be en
rotationally excited states by using the switch ZLIN in DVR3DRJZ. Other angular integrals are evaluated
FBR and then transformed to the DVR as discussed for theJ -matrix, Eq.(18)above.

2.1.5. Wavefunctions
The eigenvectors of the 3D Hamiltonian are obtained as coefficients of the intermediate basis. To use th

vectors it is usually necessary to express them in a more physically meaningful fashion. This can be a
by transforming the vectors to yield values for the amplitude of the wavefunction at the DVR grid points.
wavefunctions can then, in principle, be put to many quantum mechanical and spectroscopic uses.

The wavefunction amplitude for theith eigenstate at the DVR grid points is simply

(34)Ψ i
αβγ =

∑
l,h

CβilC
β
αlhC

αβ
γh =

∑
l

Cβil

∑
h

C
β
αlhC

αβ
γh

where, for definiteness, theθ → r1 → r2 ordering has been assumed, as above.
Reverse transformations to FBR are also fairly straightforward to write down. In particular ROTLEV3 work

with the angular functions represented as a basis set of associated Legendre polynomials. In this case
function is written

(35)Ψ Ji
αβ =

∑
jk

dJki
jαβ |j 〉.
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The new coefficients,dJki , are obtained from the back transformation

(36)dJki
jαβ =

∑
γ

Ψ i
αβγ ω1/2

γ |j (γ )〉.

DIPOLE3 uses a similar transformation to place all wavefunctions on a single grid, seeAppendix A.
A utility, wfnread.f90, has been included in the distribution to allow users to read wavefunctions for f

analysis such as plotting. The utility requires no user input and will read the wavefunction files produced
DVR3DRJZ, ROTLEV3 and ROTLEV3B. As written wfnread.f90 does no more than echo the contents of th
wavefunction files and it will therefore need to be adapted before use. For further information users sho
the source of the program.

2.1.6. A Problem with the quadrature approximation
The quadrature approximation can be used when evaluating the DVR transformation of FBR matrix e

of an operator that leaves the ket unchanged. Its validityis due to the unitarity of the DVR transformation matr
We have experienced one particular failure of the quadrature approximation[43], which occurred when evaluatin
ther−2

2 integrals.
In scattering coordinates, it is possible for ther2 coordinate to be equal, or very close, to zero if this lin

geometry is energetically accessible or favorable. It is desirable to use the spherical oscillator function
case. Under these circumstances it was found[43] that the quadrature approximation had to be abandoned fo
r−2
2 integral because of its non-polynomial behaviour asr2 → 0.

After extensive tests on the H+3 molecular ion[43], an alternative procedure was implemented which contin
to use the quadrature approximation to construct(1D)H , and then constructs(3D)H using the full-matrix transfor
mation of ther−2

2 integrals, correcting for the fact that the quadrature approximation was used in(1D)H . So the
only change in the formulation is that now

(37)(3D)
≈
Hβ,β ′,l,l′ = (3D)Hβ,β ′,l,l′ +

∑
α,k,k′

C
β
α,l,kC

β ′
α,l′,k′

(
M̃

(2)

β,β ′ − M
(2)

β,β ′
)∑

γ,γ ′
C

α,β
γ,k C

α,β ′
γ ′,k′Jγγ ′

where(3D)Hβ,β ′,l,l′ is defined by(21)and

(38)M̃
(2)

β,β ′ =
∑
n,n′

T β
n 〈n|ĝ(2)|n′〉T β ′

n′ ,

andM
(2)

β,β ′ is given by the approximation(32).
Note that the FBR matrix elements above can be evaluated analytically, and are given by[28]

(39)〈n|ĝ(2)|n′〉 = h̄2β

(2α + 1)µ2

(
n!
n′!

�(n′ + α + 3/2)

�(n + α + 3/2)

)1/2

, n � n′.

We have implemented a user input variable (ZQUAD2) in the program DVR3DRJZ so that either of Eq(21)
or (37)can be used when working in Jacobi or unsymmetrised Radau coordinates.

2.2. Rotational motion with standard embeddings: ROTLEV3

The rotational problem can be fully expanded in terms ofa finite set of functions, generally called rotati
matrices[44]. These functions are symmetrised to reflect the rotational parity of the system, given by(−1)J+p

with p = 0,1; these functions will be denoted|J, k,p〉 below. To deal satisfactorily with the transition from line
to non-linear geometries it is usual to couple these rotation matrices with thek-dependent angular functions denot
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|j 〉 above[32]. The FBR Hamiltonian matrix for the fully coupled vibration–rotation problem can be express

〈m,n, j, J, k,p|Ĥ |m′, n′, j ′, J, k′,p〉 = δk,k′ 〈m,n, j |Ĥ J,k|m′, n′, j ′〉
(40)− (1+ δk,0 + δk′,0)

−1/2δk′,k±1〈t|ĝ(i)|t ′〉δj,j ′δs,s ′C±
J,k′C

±
j,k′ , k = p,p + 1, . . . , J, p = 0,1,

where if the body-fixedz-axis is taken parallel tor1 then|t〉 = |m〉, s = n andi = 1; and ifz is alongr2, |t〉 = |n〉,
s = m andi = 2. The angular factors are given by

(41)C±
�,k = (

�(� + 1) − k(k ± 1)
)1/2

.

Using the solutions of the first step as a basis to expand the full problem means that the first term in(40) is
simply ε

J,k
h and the problem of constructing the Hamiltonian matrix reduces to the one of constructing the seco

off-diagonal ink, term.
The quadrature approximation means that the matrix element〈t|ĝ(i)|t ′〉 is diagonal in the DVR. Conversely th

angular contribution is diagonal in the FBR. ROTLEV3 therefore transforms the DVR wavefunctions generated
DVR3DRJZ to an FBR inθ by

(42)ψ
J,k,h
α,β,j =

∑
γ

T
γ

j ψ
J,k,h
α,β,γ .

This means that only transformations of diagonal matrix element are required, see(43) below. It should be note
that the above transformation, unlike that of the matrix elements, is one-dimensional and therefore rapid.

In this DVR2–FBR1 representation, the Hamiltonian matrix in terms of solutions of the first step is

〈h, k,p|Ĥ |h′, k′,p〉 = δh,h′δk,k′εJ,k
h − (1+ δk,0 + δk′,0)

−1/2δk′,k±1

∑
α,β,j

ψ
J,k,h
α,β,j ψ

J,k′,h′
α,β,j C±

J,k′C
±
j,k′ ,M

(i)
α,α,β,β,

(43)k = p,p + 1, . . . , J, p = 0,1.

For a givenJ , DVR3DRJZ solves theJ + 1 unique Coriolis decoupled ‘vibrational’ problems. ROTLEV
selects the IBASS lowest energy solutions of these calculations[45] as a basis for the full problem. The angu
coordinate of these solutions is transformed back to anFBR and the Hamiltonian constructed. Because of its sp
nature, only the diagonal elements and(k, k + 1) off-diagonal blocks are computed and stored. The matrix ca
diagonalised iteratively, a procedure which has proved very successful when a small fraction (less then 20%) of
eigenvalues are of interest; where many levels are required full matrix diagonalisation is more efficient. Thp = 1
matrix is simply a submatrix of thep = 0 problem with thek = 0 rows and columns deleted. This matrix thus ne
not be recalculated (option KMIN= 2).

2.3. Rotational motion with a bisector embedding: ROTLEV3B

ROTLEV3B uses a DVR for all three coordinates. In thisrepresentation, the Hamiltonian matrix in terms
solutions of the first step is

〈h, k,p, q|Ĥ |h′, k′,p, q〉 = δh,h′δk,k′εJ,k
h

− (1+ δk,0 + δk′,0)
−1/2δk′,k±1C

±
J,k

∑
α,β,γ,γ ′

ψ
J,k,h
α,β,γ ψ

J,k′,h′
α,β,γ ′

(
M

(1)
α,α,β,β − M

(2)
α,α,β,β

)
J

(1)

k±1,k,γ ,γ ′

− (1+ δk,0 + δk′,0)
−1/2δk′,k±2C

±
J,k±1C

±
J,k

×
∑
α,β,γ

ψ
J,k,h
α,β,j ψ

J,k′,h′
α,β,γ

(
1+ γ

1− γ

)(
M

(1)
α,α,β,β + M

(2)
α,α,β,β

)
J

(2)

k±2,k,γ ,γ ′,

(44)k = p,p + 1, . . . , J, p = 0,1.
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In (44), the angular integrals are obtained by quadrature in terms of basis functions and then transformed:

(45)J
(1)

k′,k,γ ,γ ′ =
∑
j,j ′

T
γ (k)
j

(
δj,j ′ +

(
k + k′

2

)
〈j, k| (1+ cosθ)

sinθ
|j ′, k′〉

)
T

γ ′(k′)
j ′ ,

(46)J
(2)

k′,k,γ ,γ ′ =
∑
j,j ′

T
γ (k)
j

(
δj,j ′ + 〈j, k| (1+ cosθ)

(1− cosθ)
|j ′, k′〉

)
T

γ ′(k′)
j ′

where the notationγ (k) has been used to emphasis that the DVR points for the bra and ket are based
Gaussian quadrature points of associated Legendre functions of different degrees.

2.4. Rotational motion with a perpendicular embedding: ROTLEV3Z

The structure of the Hamiltonian matrix for thez-perpendicular embedding is somewhat different from the o
cases since the couplings are between cases with�k = ±2 only, but there are additional couplings between blo
with positive and negativek. In this case the rotational parity,p, is given by the parity ofk. To help define the matrix
elements it is useful to define an extra quantum number, denoteds below, which depends on the sign ofk and takes
the value 0 or 1. A detailed discussion of these quantum numbers and the structure of the resulting matrice
by Kostin et al.[23]; note however that the definition ofs andq are swapped in that work compared to here.

ROTLEV3Z uses a DVR for all three coordinates. The rotational kinetic energy operator (KEO) also has
diagonal contribution as well as couplingk blocks differing by two

〈Jksj |T rot|Jk′s′j ′〉 = −(1+ δ0k)
1/21

2
M+〈j | cosθ

1− cos2 θ
|j ′〉A±

J k′δk,k′±2δs,s ′

(47)+ (1+ δ0k)
1/21

4
M−〈j | 1

(1− cos2 θ)1/2 |j ′〉A±
J k′δk,k′±2δs,1−s ′

where

(48)A±
J k = A∓

J−k = ([
J (J + 1) − k(k ± 1)

][
J (J + 1) − k(k ± 3) − 2

])1/2
,

and where

(49)M± = 1

2

[
1

µ1R
2
1

± 1

µ2R
2
2

]
.

Finally the Coriolis KEO couples terms diagonal ink but differing ins

〈Jksj |T cor|Jk′s′j ′〉 = −k

2
M−

(
〈j | − cosθ(1+ 2a + 2j ′)

(1− cos2 θ)1/2 |j ′〉

(50)+ 〈j | 2(j ′ + a)

(1− cos2 θ)1/2

(hab
j ′−1)

1/2

(hab
j ′ )1/2

|j ′ − 1〉
)

δkk′δs,1−s ′.

Besides these terms, there is a special case which occurs whenk = 1. For this case there are extra terms both
the diagonal, augmenting〈Jkqs|T vib|Jk′s′j 〉:

(51)〈Jksj |T vib
k=1|Jk′s′j 〉 = (−1)1+s

4
J (J + 1)M+〈j | cosθ

1− cos2 θ
|j ′〉δk,1δk′,1δs,s ′

and on the off-diagonal augmenting〈Jksj |T cor|Jk′s′j 〉

(52)〈Jksj |T rot
k=1|Jk′s′j 〉 = (−1)s

′+q

4
J (J + 1)M−〈j |(1− cos2 θ)−1/2|j ′〉δk,1δk′,1δs,1−s ′

whereq is the parity of the radial basis, see Eq.(23). The above matrix elements include a cancellation betwee
vibrational and rotational terms which is potentially singular at linear (i.e.,θ = 0 orπ ) geometries.
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2.5. Non-adiabatic corrections

Polyansky and Tennyson[24,25]showed that non-adiabatic corrections to the Born–Oppenheimer appro
tion could, at least partially, be modelled by using separated reduced masses for the vibrational and r
motions,µV

i andµR
i , respectively. IfµV

i 	= µR
i , a new term has to be added the Hamiltonian

(53)K̂NBO = δk,k′k2〈j ′, k′|sin−2 θ |j, k〉
(

h̄2

2r2
1

(
1

µR
1

− 1

µV
1

)
+ h̄2

2r2
2

(
1

µR
2

− 1

µV
2

))
for the in-planez embeddings[24] and

(54)〈Jksj |T nBO |Jk′s′j 〉 =
(

1− µr

µv

)
1

4

[
J (J + 1) − k2]M+〈j | 1

1− cos2 θ
|j ′〉δk,k′δs,s ′

for thez-perpendicular embedding[23].
As µV

i is usually greater thanµR
i , this extra term, which only occurs forJ > 0, is generally positive. The term

is computed if separate vibrational and rotational masses are specified in the input.

2.6. Dipole transition moments: DIPOLE3

Lynas-Gray et al.[46] adapted Miller et al.’s[47] formalism for calculating dipole transition strengths betwe
rotational–vibrational levels which use only rigorous selection rules. Their algorithm used DVRs in the
coordinates and transformed to an FBR for the angular integrals. For very large runs this method is still not optim
and a new algorithm has been developed which retains the DVR in the radial coordinates and evaluates th
integrals as a simple sum over Gauss–Legendre quadrature point. This gives the basic structure that a
dipole is evaluated as the sum over grid points of the bra wavefunction times the dipole operator times
wavefunction[6]. Since this algorithm has not been published before, a derivation is given inAppendix A.

As the angular DVR’s defined by DVR3DRJZ depend onk, the method used therefore involves transform
all wavefunctions to an FBR in the angular coordinate. These FBR wavefunctions, and the dipole surface, are th
evaluated at the requested Gauss–Legendre quadrature points,γi . It is usually necessary to use slightly more Gau
Legendre quadrature points than the number of DVR points used to define the underlying wavefunctions. Howe
the expression, Eq.(55) below, involves one less summation than the equivalent one of Lynas-Gray et al.[46]. In
addition the structure of the wavefunction files created by ROTLEV3 and ROTLEV3B has been reorganise
minimise the i/o requirements in DIPOLE3 (and XPECT3). Note that ROTLEV3Z cannot be used in conjunct
with these programs.

With the new algorithm, the expression for the transition strengthS(f − i) is given by

S(f − i) = 1

4

[
(2J ′ + 1)(2J ′′ + 1)

][
(−1)J

′′+J ′+1 + (−1)p
′+p′′]2

(55)×
[ +1∑

ν=−1

J ′′∑
k=p′′

a(k + ν, k)(−1)k
(

J ′ 1 J ′′
−ν − k ν k

)∑
αβγ

c
J ′p′l′
k′αβγ

c
J ′′p′′l′′
k′′αβγ

µm
ν (αβγ )

]2

,

wherecJMpl is the value of the wavefunction of thelth state with rotational quantum numbers(J,M,p), at grid
point (αβγ ). The coefficienta(ν, k) is given by

a(0, k) = 2−1/2b,

a(±1,0) = ∓2−1/2b,

(56)a(±1, k) = ∓b
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where the factorb depends on the embedding used:

b = 1 for the standardr1 embedding;
b = (−1)ν for the standardr2 embedding;
b = (−1)d for the bisector embedding,

(57)d = integer

(
k + p′

2

)
+ integer

(
k + ν + p′′

2

)
where theintegerspecifies integer arithmetic rounded towards zero.

2.7. Synthetic spectra: SPECTRA

There are a number of ways of representing transition data. The simplest is the Einstein A-coefficient wh
by defined in terms of our linestrength(55):

(58)Aif = 64π4

3c3h
ω3S(f − i)gi

2J ′ + 1
.

In programs the constants in the first fraction is set to 3.136186× 10−7 which also converts from a linestrength
D2 to an A-coefficient in s−1.

Integrated absorption coefficients, in cm/molecule, can be generated as a function of frequency,ωif , and tem-
perature,T , using the formula

(59)I (ωif ) = 4.162034× 10−19ωif gi [exp(E′′/kT ) − exp(E′/kT )]
Q(T )

S(f − i)

whereQ(T ) is the partition function of the system, andω′ andω′′ are respectively the energies of the upper
lower state. The degeneracy factor gi for a particular level is determined by nuclear spin statistics.

The emissivity, in Ergs/molecule/Sr, is defined by

(60)J (ωif ) = (2J ′ + 1)gihcωif exp(−E′/kT )

4πQ(T )
Aif .

If enough energy levels of the system are known it is possible to obtain an expressionfor the partition function
of the system

(61)Q(T ) =
∑
J

∑
i

gi (2J + 1)exp

(
−EJ

i

kT

)
.

2.8. Expectation values: XPECT3

Expectation values of geometrically defined operators can be computed in a straightforward manner usin
DVR and the quadrature approximation simply by summing the square of the wavefunction and the opera
all grid points. This is useful for obtaining such things as average coordinates or rotational constants
DIPOLE3, all expectation values involve diagonal summations and these can be evaluated straightforward
original DVR grid. Such expectation values have been used in a number of schemes for automating vibratio
assignments[48,49].

Expectation values are particularly useful for least squares fitting of potential energy surfaces to spect
data[50]. If, as is often the case, the potential is represented as linear expansion of some function set

(62)V (r1, r2, θ) =
∑

i

cifi(r1, r2, θ)
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then for statel the expectation value of the derivative with respect to the expansion parameters,dV
dci

, can be obtained
using the Helmann–Feynman theorem as

(63)
d〈l|V |l〉

dci

= 〈l|dV

dci

|l〉 = 〈l|fi (r1, r2, θ)|l〉,
where use has been made of the fact that the kinetic energy operator does not depend onci .

Use of Eq.(63) means that it is cheap and straightforward to test the sensitivity of all expansion parameters
the potential during a fit. Formally the Helmann–Feynman theorem is only satisfied for exact wavefunctions
has caused difficulties in some numerical implementations. However, experience and many tests have sh
converged wavefunctions obtained with present programs are accurate enough for this procedure to be completel
reliable with well converged basis sets.

There is one final point that needs to be considered when fitting potentials to spectroscopic data. Fits
made to absolute energies but to energy differences such as transition frequencies or term values which ar
relative to the ground state. This means that one actually needs to compute the difference in the deri
Eq.(63) rather than the absolute difference. So for thelth term value,El , one needs:

(64)
El

dci

= 〈l|dV

dci

|l〉 − 〈0|dV

dci

|0〉
where|0〉 is the wavefunction of the ground state. To facilitate this process for term values, the code can option
read in derivatives for the grounds state and take the differences. If transition frequencies are being fi
necessary for the user to takes these differences which are, of course, dependent on the quantum numbers
with each transition.

3. Program structure

User input is needed for all modules. The modules follow the convention that names beginning with lette
and O–Y are for 8-byte real variables, I–N are for integers and variables whose name begins with Z are lo

The data flow through the modules is given inFig. 2. The role of the individual subroutines is described in co
ments included in the source programs. All modules now make full use of the facility to allocate arrays dynamic

Fig. 2. Structure and data flow for the DVR3D program suite. Note that module ROTLEV3Z cannot drive DIPOLE3 or XPECT3. Scratch dis
files used by individual modules are not shown.
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offered under FORTRAN 90. In addition calls to a number of basic linear algebra subroutines (BLAS) have b
implemented. The local implementation of these routines should be used where possible otherwise FO
sources can be downloaded from the web.

The only remaining machine depend aspect of the codes concerns reading to the end of files. Certain disk fi
(ILEV in DVR3DRJZ, ROTLEV3 ROTLEV3B and ROTLEV3Z, ITRA in DIPOLE3 and XPECT3) may be re
to the end and then written to. Unfortunately whether it is necessary to BACKSPACE the file between th
and the writes depends on the machine being used. The present implementationdoesBACKSPACE and it may
be necessary to remove these statements. The occurrences, at most once per module, are all clearly lab
sources of the programs.

Internally the programs work and pass data between them entirely in atomic units. Atomic mass units,
input, are converted using 1u = 1822.8883me ; note that this value differs in earlier versions of the program.
printing purposes the conversion factors 1Eh = 219474.624 cm−1 is used for energies and 1 au= 2.5417662 D for
dipoles.

3.1. DVR3DRJZ

For large runs, the CPU time requirement of DVR3DRJZ is usually dominated by the diagonalisation
final 3D Hamiltonian matrix HAM3. The required diagonaliser has to compute all eigenvalues and eigenve
a real symmetric matrix. The present implementation uses LAPACK[51] subroutine dsyev.

3.2. ROTLEV3, ROTLEV3B and ROTLEV3Z

These routines have rather different performance characteristics withROTLEV3 taking little time to construc
the Hamiltonian matrix unlike the other two. Execution times for ROTLEV3B and ROTLEV3Z are dominate
by two processes, transformation and diagonalisation. The step which transforms the matrix elements
programmed using the BLAS rank-one-update routine dger.

In all three cases in core diagonalisation is performed by dsyev[51]. As the matrices constructed by ROTLEV
and ROTLEV3B can be sparse, particularly for high values ofJ , iterative diagonalisation is offered in the progra
as an alternative which should be used if less than 20% of the eigenvalues are required. Iterative diagona
performed using NAG Library routine F0JFJF[52] and associated subroutines This diagonaliser uses the algo
of Nikolai [53] and again timing is dominated by the vector matrix multiplies performed by BLAS routine dg

When using ROTLEV3B for rotational states withJ > 1, it isessentialthat the vibrational wavefunctions outp
file IWAVE is input onbothstreams IVEC and IVEC2, whichmustcorrespond to separate files. This duplicat
is required to prevent excessive repositioning of the input file.

Similarly for ROTLEV3Z for rotational states withJ > 1 all calculations requirefour wavefunction input files
It is essential that the vibrational wavefunctionsoutput file IWAVE generated by DVR3DRJZ run with IPAR= 0
is copied to units IVEC and IVEC1, and the IWAVE file generated by DVR3DRJZ run with IPAR= 1 is copied to
IVEC2 and IVEC3.

3.3. DIPOLE3

DIPOLE3 uses the BLAS matrix multiply routine dger to perform transformations. This section of the
dominates the CPU usage and the coding to parallelise it for large runs is in place using OpenMP[54]. The parallel
version has been used successfully on 8 processors of an SGI Origin 2000 machine[21] and a Sun V750 machine
it has also be tested on a dual processor Linux PC.
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4. Program use

4.1. Potential, dipole and property subroutines

DVR3DRJZ requires the user to provide the appropriate potential energy surface as a subroutine u
structure:
SUBROUTINE POTV(V,R1,R2,XCOS) must be supplied. POTV returns the potential V in Hartree for an arb
point given by R1= r1, R2= r2 (both in Bohr) and XCOS= cosθ .

DVR3DRJZ includes COMMON /MASS/ XMASS(3),G1,G2,XMASSR(3) where XMASS contains the (vi
tional) masses in atomic mass units, G1= g1, G2= g2 and XMASSR contains the rotational masses also in ato
mass units. This enables users to write flexible potential subroutines which allow for changes in coordi
isotopic substitution.

DIPOLE requires a subroutine defining the dipole surfaces.
SUBROUTINE DIPD(DIPC,R1,R2,XCOS,NU) must be supplied. DIPD returns the NUth component of the
in atomic units (1 au= 2.5417662 Debye) at point R1= r1, R2= r2 (both in Bohr) and XCOS= cosθ where
NU = 0 corresponds toµz and NU= 1 µx .

DIPOLE3 includes COMMON /MASS/ XMASS(3),G1,G2,ZEMBED,ZBISC where XMASS contains the
brational) masses, G1= g1, G2= g2, ZEMBED is the axis embedding parameter defined below and ZBIS=
.TRUE. for the bisector embedding case (IDIA= −2, JROT> 0 and ZPERP= .FALSE.) and.FALSE. otherwise
This enables users to write dipole subroutines which allow for changes in coordinates, embeddings or
substitution.

XPECT3 requires a subroutine defining the properties for which expectation values are requested.
SUBROUTINE PROPS(PROP,R1,R2,XCOS,N) must be supplied. PROPS returns the N properties req
array PROP for an arbitrary point given by R1= r1, R2= r2 (both in Bohr) and XCOS= cosθ . Like DIPOLE3,
XPECT3 includes COMMON /MASS/ XMASS(3),G1,G2,ZEMBED,ZBISC where the variables are as de
above.

4.2. Input for DVR3DRJZ

DVR3DRJZ requires 9 lines of user input for all runs. Lines giving data not required or for which the de
[given below in parenthesis] are sufficient should be left blank.

Line 1: NAMELIST /PRT/
ZPHAM[F] = T requests printing of the Hamiltonian matrix.
ZPRAD[F] = T requests printing of the radial matrix elements.
ZP1D [F] = T requests printing of the results of 1D calculations.
ZP2D [F] = T requests printing of the results of 2D calculations.
ZPMIN[F] = T requests only minimal printing.
ZPVEC[F] = T requests printing of the eigenvectors.
ZLMAT[F] = T requests printing of theL-matrix.
ZCUT[F] = T final dimension selected using an energy cut-off given by EMAX2.

= F final dimension determined by MAX3D (MAX3D2).
ZROT[T] = T DVR3DRJZ to perform first step in a two-step variational calculation.

= F Rotational excitation calculation with Coriolis coupling neglected.
ZPERP[F] = F z-axis embedded in plane.

= T z-axis embedded perpendicular to molecular plane.
ZEMBED[T] Used only ifJ > 0, ZBISC= F and ZPERP= F.

= T z-axis embedded alongr2;
= F z-axis embedded alongr1.
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ZLIN [F] = T forces suppression of functions at last DVR point
(ZBISC= T or ZPERP= T only).

ZMORS1[T] = T use Morse oscillator-like functions forr1 coordinate;
= F use spherical oscillator functions (IDIA> 0 only).

ZMORS2[T] = T use Morse oscillator-like functions forr2 coordinate;
= F use spherical oscillator functions (IDIA> 0 only).

ZLADD[T] = T NALF kept constant ask increases,
= F NALF decreases withk
(used if ZROT= T only).

ZTWOD[F] = T perform 2D calculation only at specified grid point.
ZVEC[F] = T store the eigenvectors from all the parts of the calculation (1D,2D and 3D) on stream IOU

Further information relating to this (arrays IV1 and IV2) is stored on stream IOUT1.
ZALL[F] = T requestsno truncation of the intermediate solution.
ZTHETA[T] = T let θ be first in the order of solution;

= F let θ be last in the order of solution;
(used if IDIA > −2 only).

ZR2R1[T] = T let r2 come beforer1 in the order of solution;
= F let r1 come beforer2 in the order of solution;
(used if IDIA > −2 only).

ZTRAN[F] = T perform the transformation of the solution coefficients to the expression for the wavefunc
amplitudes at the grid points, Eq.(29). Store the data on stream IWAVE.
ZTRAN = T automatically sets ZVEC= T if IDIA > −2.

ZQUAD2[T] = T use the DVR quadrature approximation for the integrals of ther−2
2 matrix, and hence make it

DVR transformation diagonal.
= F evaluate ther−2

2 integrals fully and perform the DVR transformation on them, only impleme
for ZMORS2= F and for ZTHETA= T.

ZDIAG[T] = F do not do final diagonalisation, instead the final Hamiltonian matrix is written on units
IDIAG1[20] and IDIAG2[21]. For further details see the source code.

ZPFUN[F] = T eigenvalues concatenated on stream ILEV.
Warning, the first eigenvalues on this file must be for JROT= 0, IPAR= 0.

ILEV[14] output stream for eigenvalue data (formatted).
IEIGS1[7] stream for eigenvalues of the 1D solutions.
IVECS1[3] stream for eigenvectors of the 1D solutions.
IEIGS2[2] stream for eigenvalues of the 2D solutions.
IVECS2[4] stream for eigenvectors of the 2D solutions.
IVINT[17] scratch file used for storing intermediate vectors in building the final Hamiltonian.
IBAND[15] scratch file used for storing bands of the final Hamiltonian.
INTVEC[16] scratch file for intermediate storage of the 2D vectors.
IOUT1[24] stream for arrays IV1 and IV2, which record the sizes of the truncated vectors.

Used when ZVEC= T.
IOUT2[25] stream for the 1D, 2D and 3D vectors for use when ZVEC= T.
IWAVE[26] stores the wavefunction amplitudes at the grid points when ZTRAN= T.

Line 2: NCOORD (I5)
NCOORD[3] the number of vibrational coordinates of the problem:

= 2 for an atom–rigid diatom system,
= 3 for a full triatomic.
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Line 3: NPNT2,JROT,NEVAL,NALF,MAX2D,MAX3D,IDIA,KMIN,NPNT1,IPAR,MAX3D2(11I5)
NPNT2 number of DVR points inr2 from Gauss-(associated) Laguerre quadrature.
JROT[0] total angular momentum quantum number of the system,J .
NEVAL[10] number of eigenvalues and eigenvectors required.
NALF number of DVR points inθ from Gauss-(associated) Legendre quadrature.
MAX2D maximum dimension of the largest intermediate 2D Hamiltonian, (ignored if IDIA= −2).
MAX3D maximum dimension of the final Hamiltonian.

If ZCUT = F, it is the actual number of functions selected.
If ZCUT = T, MAX3D must be� than the number of functions selected using EMAX2.

IDIA = 1 for scattering coordinates with a heteronuclear diatomic,
= 2 for scattering coordinates with a homonuclear diatomic,
= −1 for Radau coordinates with a heteronuclear diatomic,
= −2 for Radau coordinates with a homonuclear diatomic.

KMIN[0] = k for JROT> 0 and ZROT= F,
= (1− p) for JROT> 0 and ZROT= T.
Note:
For IDIA > 0, KMIN must be 1 in DVR3DRJ if KMIN= 2 in ROTLEV3.
For ZBISC= T, setting KMIN= 2 performsp = 0 and 1 calculations.
For ZPERP= T and ZROT= T, use KMIN= 1.

NPNT1 number of DVR points inr1 from Gauss-(associated) Laguerre quadrature, (ignored if IDIA= −2).
IPAR[0] parity of basis for the AB2 molecule (i.e.,|IDIA | = 2) case:

IPAR = 0 for even parity and= 1 for odd.
MAX3D2[MAX3D] maximum dimension of odd parity final Hamiltonians.

(IDIA = −2, ZROT= T only).

Line 4: TITLE (9A8)
A 72 character title.

Line 5: FIXCOS (F20.0)
If ZTWOD = T, FIXCOS is the fixed value of cosθ for the run.
If ZTWOD = F, this line is read but ignored.

Line 6: (XMASS(I),I = 1,3) (3F20.0)
XMASS(I) contains the (vibrational) mass of atom I in atomic mass units.

Line 7: (XMASSR(I),I = 1,3) (3F20.0)
XMASSR(I) contains the rotational mass of atom I in atomic mass units.
If XMASSR(1) is not set, XMASSR is set equal to XMASS.

Line 8: EMAX1, EMAX2 (2F20.0)
EMAX1 is the first cut-off energy in cm−1 with the same energy zero as the potential.

This determines the truncation of the 1D solutions (IDIA> −2 only).
EMAX2 is the second cut-off energy in cm−1 with the same energy zero as the potential.

This controls the truncation of the 2D solutions (i.e., the size of the final basis). If ZCUT= F it is
ignored and the size of the final Hamiltonian is MAX3D.

Line 9: RE1,DISS1,WE1 (3F20.0)
If NCOORD = 2, RE1 is the fixed diatomic bondlength, DISS1 and WE1 ignored.
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If NCOORD = 3, RE1= re, DISS1= De and WE1= ωe are Morse parameters for ther1 coordinate when
ZMORS1= T, and are spherical oscillator parameters when ZMORS1= F.

Line 10: RE2,DISS2,WE2 (3F20.0)
If ZMORS2 = T, RE2= re , DISS2= De and WE2= ωe are Morse parameters for ther2 coordinate.
If ZMORS2 = F, RE2 is ignored; DISS2= α and WE2= ωe are spherical oscillator parameters for ther2 coor-

dinate.
If IDIA = −2 line read but ignored.

Line 11: EZERO [0.0] (F20.0)
The ground state of the system in cm−1 relative to the energy zero.
Optional and only read when IDIA= ±2, IPAR= 1 and JROT= 0.

4.3. Input for ROTLEV3

Most of the data for ROTLEV3, which must have been prepared previously by DVR3DRJZ run with IDIA> −2,
is read from stream IWAVE. 3 or 4 lines of data are read.

Line 1: NAMELIST/PRT/
TOLER[0.0D0] tolerance for convergence of the eigenvalues by F02FJF[52], zero gives machine accuracy, 1×

10−4 is usually sufficient for most applications.
(Ignored if ZDCORE= T.)

ZPVEC[F] = T requests printing of the eigenvectors.
THRESH[0.1d0] threshold for printing eigenvector coefficients, zero requests the full vector (only u

ZPVEC= T).
ZPHAM[F] = T requests printing of the Hamiltonian matrix.
ZPTRA[F] = T requests printing of the transformed vectors.
IWAVE[26] stream for input data from DVR3DRJZ (unformatted).
IVEC[4] scratch file for the transformed input vectors (unformatted).
JVEC[3] stream for first set of eigenvalue/vector output (unformatted).
JVEC2[2] stream for second set of eigenvalue/vector output (unformatted), KMIN= 2 only.
ZTRAN[F] = T eigenvectors transformed back to original basis.
ZVEC[F] = T eigenvalue and eigenvector data to be written to disk file.

(= T forced if ZTRAN= T.)
KVEC[8] stream for first set of transformed eigenvector output (unformatted).
KVEC2[9] stream for second set of transformed eigenvector output (unformatted), KMIN= 2 only.
ISCR[1] stream for scratch file storing Hamiltonian matrix (unformatted).
JSCR[7] stream for scratch file storing DVR3DRJZ vectors transformed to an FBR inθ (unformatted).

Used only if ZTRAN= T.
IRES[0] restart flag:

= 0 normal run.
= 1 full restart.
= 2 restart second diagonalisation only (for KMIN= 2 only).
= −1 perform vector transformation only (stream JVEC must be supplied).

ZPFUN[F] = T eigenvalues concatenated on stream ILEV. The first eigenvalues on this file must (withJ = 0,
j even) be already present.

ILEV[14] stream for eigenvalue data (formatted).
ZDIAG[T] = F do not diagonalise the Hamiltonian matrix.
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ZDCORE[F] = T diagonalisation performed in core using LAPACK routine dsyev,
= F diagonalisation performed iteratively using NAG Routine F02FJF.

Line 2: NVIB,NEVAL,KMIN,IBASS,NEVAL2 (5I5)
NVIB number of vibrational levels from DVR3DRJZ for eachk to be read, and perhaps selected from

the second variational step.
NEVAL[10] the number of eigenvalues required for the first set.
KMIN[0] = 0, f or p = 1 parity calculation.

= 1, e orp = 0 parity calculation.
= 2, do both e and f parity calculation.

IBASS[0] = 0 or> NVIB*(JROT + KMIN), use all the vibrational levels.
Otherwise, select IBASS levels with the lowest energy.

NEVAL2[NEVAL]the number of eigenvalues required for the second set.

Line 3: TITLE (9A8)
A 72 character title.

Line 4: EZERO [0.0] (F20.0)
Optional. The ground state of the system in cm−1 relative to the energy zero.

4.4. Input for ROTLEV3B

Most of the data for ROTLEV3B, which must have been prepared previously by DVR3DRJZ run with ID=
−2, is read from streams IVEC and IVEC2. 3 or 4 lines of data are read.

Line 1: NAMELIST/PRT/
TOLER[0.0D0]tolerance for convergence of the eigenvalues by F02FJF[52], zero gives machine accuracy, 1×

10−4 is usually sufficient for most applications.
(Ignored if ZDCORE= T.)

ZPVEC[F] = T requests printing of the eigenvectors.
THRESH[0.1d0] threshold for printing eigenvector coefficients, zero requests the full vector (only u

ZPVEC= T).
ZPHAM[F] = T requests printing of the Hamiltonian matrix.
ZPTRA[F] = T requests printing of the transformed vectors.
IVEC[26] stream for input data from DVR3DRJZ (unformatted).
IVEC2[4] second stream for input data from DVR3DRJZ (unformatted); this file is simply a copy of th

stream IVEC.
ZVEC[F] = T eigenvalue and eigenvector data to be written to disk file (= T forced if ZTRAN= T).
JVEC[3] stream for first set of eigenvalue/vector output (unformatted).
JVEC2[2] stream for second set of eigenvalue/vector output (unformatted), KMIN= 2 only.
ZTRAN[F] = T eigenvector transformed back to original basis.
ZVEC[F] = T eigenvalue and eigenvector data to be written to disk file (= T forced if ZTRAN= T).
KVEC[8] stream for first set of transformed eigenvector output (unformatted).
KVEC2[9] stream for second set of transformed eigenvector output (unformatted), KMIN= 2 only.
ISCR[1] stream for scratch file storing array OFFDG (unformatted).
IRES[0] restart flag:

= 0 normal run.
= 1 full restart.
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= 2 restart second diagonalisation only (for KMIN= 2 only).
= −1 perform vector transformation only (stream JVEC must be supplied).

ZPFUN[F] = T eigenvalues concatenated on stream ILEV. The first eigenvalues on this file must (withJ = 0,
j even) be already present.

ILEV[14] stream for eigenvalue data (formatted).
ZDIAG[T] = F do not diagonalise the Hamiltonian matrix.
ZDCORE[F] = T diagonalisation performed in core using LAPACK routine dsyev,

= F diagonalisation performed iteratively using NAG Routine F02FJF.

Line 2: NVIB,NEVAL,KMIN,IBASS,NEVAL2,NPNT (5I5)
NVIB number of vibrational levels from DVR3DRJZ for eachk to be read, and perhaps selected from

the second variational step.
NEVAL[10] the number of eigenvalues required for the first set.
KMIN[0] = 0, f or p = 1 parity calculation.

= 1, e orp = 0 parity calculation.
= 2, do both e and f parity calculation.

IBASS[0] = 0 or> NVIB*(JROT + KMIN), use all the vibrational levels.
Otherwise, select IBASS levels with the lowest energy.

NEVAL2[NEVAL]the number of eigenvalues required for the second set.
NPNT[NALF]number of quadrature points for angular integrals.

Line 3: TITLE (9A8)
A 72 character title.

Line 4: EZERO [0.0] (F20.0)
Optional. The ground state of the system in cm−1 relative to the energy zero.

4.5. Input for ROTLEV3Z

Most of the data for ROTLEV3Z, which must have been prepared previously by DVR3DRJZ run with ID=
−2, is read from streams IVEC and IVEC2. To avoid repeating i/o a second copy of each of these files is nee
linked to streams IVEC1 and IVEC3 respectively. The program also uses six scratch files which are associated
streams 1, 11, 60, 61, 70, 80 and 81. 3 or 4 lines of data are read.

Line 1: NAMELIST/PRT/
ZPVEC[F] = T requests printing of the eigenvectors.
IVEC[26] stream for input data from DVR3DRJZ run with IPAR= 0 (unformatted).
IVEC1[27] stream holding a copy of stream IVEC.
IVEC2[4] stream for input data from DVR3DRJZ run with IPAR= 1 (unformatted).
IVEC3[28] stream holding a copy of stream IVEC2.
ZVEC[F] = T eigenvalue and eigenvector data to be written to disk file (= T forced if ZTRAN= T).
JVEC[3] stream for eigenvalues and untransformed vectors (unformatted).
ZTRAN[F] = T eigenvector transformed back to original basis.
ZPTRA[F] = T requests printing of the transformed vectors.
ZVEC[F] = T eigenvalue and eigenvector data to be written to disk file (= T forced if ZTRAN= T).
KVEC[8] stream for eigenvalues and transformed eigenvector output (unformatted).
ZPFUN[F] = T eigenvalues concatenated on stream ILEV. The first eigenvalues on this file must (withJ = 0,

j even) be already present.
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ILEV[14] stream for eigenvalue data (formatted).
ZDIAG[T] = F do not diagonalise the Hamiltonian matrix.

Line 2: NVIB,NEVAL,KPAR,IBASS,IQPAR,NPNT (6I5)
NVIB number of vibrational levels from DVR3DRJZ for eachk to be read, and perhaps selected from

the second variational step.
NEVAL[10] the number of eigenvalues required for the first set.
KPAR = 0, for k even calculation,

= 1, for k odd calculation.
IBASS[0] = 0 or> NVIB*(JROT + 1), use all the vibrational levels.

Otherwise, select IBASS levels with the lowest energy.
IQPAR parity of Hamiltonian, i.e., 0 or 1.
NPNT[NALF]number of quadrature points for angular integrals.

Line 3: TITLE (9A8)
A 72 character title.

Line 4: EZERO [0.0] (F20.0)
Optional. The ground state of the system in cm−1 relative to the energy zero.

5. Input for DIPOLE3

DIPOLE3 takes most of its input from the output streams IWAVE (from DVR3DRJZ) or KVEC and KV
(from ROTLEV3 or ROTLEV3B). It has the option to produce output files for SPECTRA[26] to calculate sim-
ulated spectra at a given temperature. Input and output on streams IKET, IBRA and ITRA are in atomi
The data printed at the end of DIPOLE is given in wavenumbers, Debye for the transition dipoles and s−1 for the
EinsteinA coefficients. The user must supply the following three lines of input

Line 1: NAMELIST/PRT/
ZPRINT[F] = T supplies extra print out for debugging purposes.
ZTRA[T] = T writes data for SPECTRA to stream ITRA.
ZSTART[F] = T initiates the output file for the data for SPECTRA.

= F writes data to the end of existing file on stream ITRA.
IKET[11] input stream from DVR3DRJZ/ROTLEV3/ROTLEV3B for the ket (unformatted).
IBRA[12] input stream for the bra (unformatted).
ITRA[13] output stream to SPECTRA (if ZTRA= T) (unformatted).

Line 2: TITLE (9A8)
A 72 character title.

Line 3: NPOT, NV1, NV2, IBASE1, IBASE2 (5I5)
NPOT number of Gauss–Legendre quadrature points.
NV1[all] number of ket eigenfunctions considered.
NV2[all] number of bra eigenfunctions considered.
IBASE1[0] number of lowest ket eigenfunctions skipped.
IBASE2[0] number of lowest bra eigenfunctions skipped.
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. The
Line 4: EZERO [0.0] (F20.0)
The ground state of the system in cm−1 relative to the energy zero.

6. Input for SPECTRA

SPECTRA takes most of its input from stream ITRA generated by DIPOLE. Data for generating partition
functions may optionally be provided by DVR3DRJZ and one of the ROTLEV programs via stream ILEV
user must supply 5 (4 if ZSPE= .FALSE.) lines of input.

Line 1: NAMELIST/PRT/
ZOUT[F] = T, print sorted transition frequencies and line strengths.

ZOUT is set automatically to T if ZSPE= F.
ZSORT[T] = T sort transition data and write it to stream ISPE.

= F sorted transition data is to be read from stream ISPE.
ZSPE[T] = F if the program is to stop after sorting only.
ZPFUN[T] = T calculate the partition function from data on stream ILEV;

= F the partition function is not calculated but set to value Q which is read in.
ITRA[13] input stream transitionsfile from DIPOLE3 (unformatted).
ILEV[14] formatted input stream with energy levels for the partition function.

The first eigenenergy on ILEV must be the ground state, i.e.,J = 0, (IPAR= 0).
This is the zero energy of the problem if ZPFUN= T.

ISPE[15] stream for the sorted transitions (unformatted).
ITEM[16] scratch file (unformatted).

The following are only used if ZSORT= T.
WSMIN[0.0d0] minimum transition frequency in cm−1, for which data sorted.
WSMAX[1.0d6] maximum transition frequency in cm−1, for which data sorted.
EMIN[−1.0d27] minimum value of energy of lower state, E′ ′, in cm−1, for which data sorted.
EMAX[ +1.0d27] maximum value of energy of lower state, E′ ′, in cm−1, for which data sorted.
JMAX[all] maximum value of J′ ′, the angular momentum of the lower state, for which data sorted.
SMIN[0.0] minimum linestrength (in D2) for which data sorted.
GZ[0.0] ground state energy in cm−1.

Line 2: TITLE (9A8)
A 72 character title.

Line 3: GE, GO (2D10.0)
GE[1.0d0] nuclear-spin times symmetry-degeneracy factors for AB2 molecule (i.e.,|IDIA | = 2) for the even

(IPAR = 0).
GO[1.0d0] nuclear-spin times symmetry-degeneracy factors for homonuclear AB2 molecule (i.e.,|IDIA | = 2)

for the odd (IPAR= 1).

Line 4: TEMP, XMIN, WMIN, WMAX, DWL,Q (6F10.0)
TEMP temperature in K.
XMIN lowest relative intensity printed.
WMIN[0.0] minimum transition frequency required in cm−1.
WMAX[all] maximum transition frequency required in cm−1.



112 J. Tennyson et al. / Computer Physics Communications 163 (2004) 85–116

se
DWL[0.0] profile half width, in cm−1 or µm depending on ZFREQ, used if ZPROF= T and ZDOP= F.
Q[1.0] value of the partition function, only used if ZPFUN= F.

Line 5: NAMELIST/SPE/
EMIN1[−1.0d27] minimum value of energy of lower state, E′′, in cm−1, for which data printed.
EMAX1[+1.0d27] maximum value of energy of lower state, E′′, in cm−1, for which data printed.
EMIN2[−1.0d27] minimum value of energy of upper state, E′, in cm−1, for which data printed.
EMAX2[+1.0d27] maximum value of energy of upper state, E′, in cm−1, for which data printed.
JMAX[all] maximum value of J′ ′, the lower state angular momentum, for which data printed.
ZEMIT[F] = F calculates integrated absorption coefficient.

= T calculates emissivities.
ZPLOT[F] = T writes computed spectrum to stream IPLOT.
IPLOT[20] output stream for formatted file containing spectral data.
ZPROF[F] = T gives spectrum at NPOINTS points with Gaussian line profiles;

only used with ZPLOT= T, when results are written on stream IPLOT.
= F generates stick spectrum.

NPOINTS[3000] number of points at which spectrum is stored if ZPROF= T.
ZDOP[F] = T use thermal Doppler half width for spectral profile.
XMOLM[18.0] molecular mass in amu. Only used if ZDOP= T.
ZENE[F] = T write assignments with lines to IPLOT.

= F only line position and intensity to IPLOT.
Only used if ZPROF= F.

IDAT[19] Scratch file used to construct profiles (formatted), used if ZPROF= T and ZPLOT= T.
ZLIST[F] = T write transition data to linelist file on stream ILIST.
ILIST[36] output stream for formatted linelist if ZLIST= T.
PRTPR[0.1D0] relative intensity threshold for printing results.
TINTE[1.0D–15] absolute intensity threshold for printing results.
ZFREQ[T] = T, stream IPLOT contains wavenumber (cm−1) as first column.

= F, stream IPLOT contains wavelength (µm) as first column.
ZEINST[F] = T, stream IPLOT contains spin weighted Einstein A coefficient as second column. In this ca

ZEMIT = T is forced.
= F, stream IPLOT contains intensity as second column.

7. Input for XPECT3

XPECT3 requires wavefunctions as generated by DVR3DRJZ on unit IWAVE (ZPERP= F only), or
ROTLEV3/ROTLEV3B on units KVEC or KVEC2. An additional four lines of standard input are required:

Line 1: NAMELIST/PRT/
ZPRINT[F] = T supplies extra print out for debugging purposes.
ZTRA[T] = T writes property data to stream ITRA.
ZFORM[F] = T use formatted writes to stream ITRA.
ZFIT[T] = T potential energy fit being performed.

= F standard expectation value run.
ZSTART[F] = T initiates the output file ITRA;

= F writes data to the end of existing file on stream ITRA.
(Only used if ZFIT= F.)
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IKET[11] input stream from DVR3DRJZ/ROTLEV3/ROTLEV3B (unformatted).
ITRA[12] output stream for properties (if ZTRA= T).
ITRA0[28] derivatives computed by XPECT3 for ground state.

(Only used if ZFIT= T.)

Line 2: TITLE (9A8)
A 72 character title.

Line 3: LPOT, NPROPIN, NPRT, NV1 (5I5)
LPOT number of Gauss–Legendre quadrature points.

(Ignored ifJ = 0.)
NPROPIN[1] number of properties to be considered.
NPRT [NPROPIN]total possible number of properties.
NV1[all] number of eigenfunctions considered.

Line 4: (IPROP(I), I =1, NPROPIN) (20I5)
Pointers to the properties in array IPROP to be considered. Default is 1,2, . . . , NPROPIN.
Values must be unique and in the range 1 to NPRT.

8. Test runs

Short scripts, input data and associated output files have been included with the programs for four d
cases. These cases, ensure that there is a test run for each module, are as follows:

HCN tests use the potential and dipole surfaces of Van Mourik et al.[55]. The calculations use scattering c
ordinates and run modules DVR3DRJZ, ROTLEV3, DIPOLE3 and SPECTRA. These runs are a cut down
of the calculations reported by Harris et al.[56].

Water tests use the potential energy surface of Shirin et al.[57] and a preliminary version of the dipole surfac
of Lynas-Gray et al.[58]. A properties file used by Shirin et al. for their fits of the potential using spectroscopic
is also given. The calculations use Radau coordinates with a bisector embedding and run modules DVR
ROTLEV3, DIPOLE3 and XPECT3.

H+
3 in Jacobi coordinates uses the global H+

3 potential of Polyansky et al. (Fit 2)[59] and the dipole surface o
Röhse et al.[60]. This calculation runs modules DVR3DRJZ, ROTLEV3, DIPOLE3 and SPECTRA.

H+
3 in Radau coordinates with a perpendicular embedding. This calculation uses the same potential as

H+
3 test run. It runs modes DVR3DRJZ and ROTLEV3Z only.
All test runs require Basic Linear Algebra Subroutines (BLAS) and LAPACK routine dsyev[51]. The programs

have been tested using several compilers. The test runs use the Intel Fortran compiler which we found sig
better than others we tested for use under Linux. This compiler can be downloaded free. To keep run tim
not all the results in the test runs are fully converged.
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Appendix A

This appendix gives a derivation of the line strength calculation algorithm used in DIPOLE3. The deriva
based upon that of Miller et al.[47] for an FBR but exploits the properties of a DVR to yield an algorithm wh
is significantly more efficient. This derivation is applicable to ‘standard’,r1 and r2 embeddings, as well as th
bisector embedding but does not apply to the perpendicular embedding.

J is the total angular momentum, withk the projection ofJ onto thez-axis.M spans the magnetic sub leve
of the wavefunction. The angular part of the wavefunction is represented in an angular (FBR) basis given

|JM,k, j,p〉 =
(

2J + 1

8π2

)1/2

Θj0(θ)DJ
M0(αβγ )∗, k = 0,p = 0,

(A.1)= (−1)k
(2J + 1)1/2

4π
Θjk(θ)

(
DJ

M−k(αβγ )∗ + (−1)pDJ
Mk(αβγ )∗

)
, k > 0, p = 0,1.

Below thelth eigenfunction for the symmetry block defined by angular momentumJ and rotational parityp is
denoted by|JM,p, l〉. Its value is given at radial grid pointsα,β by dJki

jαβ , see Eq.(36), wherej runs over angula
functions of the form of Eq.(A.1).

The line strength S(f − i) for a particular transition from an initial statei to a final statef is given by

(A.2)S(f − i) =
∑

M ′M ′′τ

(
T M ′M ′′τ

if

)2
,

where

(A.3)T M ′M ′′τ
if = 〈J ′

M ′ ,p′, l′|µs
τ |J ′′

M ′′ ,p′′, l′′〉
andµs

τ is theτ component of the space-fixed dipole moment. Inour choice of body-fixed coordinates, only thez
andx components are non-zero. The body-fixes dipole moment,µm(r1, r2, θ ) transforms to a tensor of rank on
into space fixed coordinates:

(A.4)µs
τ =

+1∑
ν=−1

µm
ν (r1, r2, θ)D1

τ,ν (αβγ )∗,

giving

T M ′M ′′τ
if = 〈J ′

M ′ ,p′, l′|µm
ν (r1, r2, θ)D1∗

τ,ν |J ′′
M ′′ ,p′′, l′′〉

(A.5)

=
+1∑

ν=−1

J ′∑
k′=p′

∑
m′n′j ′

J ′′∑
k′′=p′′

∑
m′′n′′j ′′

〈J ′
M ′ , k′,m′, n′, j ′,p′|µm

ν (r1, r2, θ)D1∗
τ,ν |J ′′

M ′′ , k′′,m′′, n′′, j ′′,p′′〉.

This equation can be separated into angular and radial parts. The treatment of the radial part is straightfor
has been discussed previously[46]. Considering the angular part

(A.6)
+1∑

ν=−1

J ′∑
k′=p′

J ′′∑
k′′=p′′

∑
j ′j ′′

d
J ′p′l′
j ′α′β ′d

J ′′p′′l′′
j ′′α′′β ′′ 〈J ′

M ′ , k′, j ′,p′|µm
ν (r1, r2, θ)D1∗

τ,ν |J ′′
M ′′ , k′′, j ′′,p′′〉.

Substituting in the angular functions(A.1), multiplied out and exploiting the properties of the angular alge
gives:

T M ′M ′′τ
if = (−1)

2

M ′
(2J ′ + 1)1/2(2J ′′ + 1)1/2[(−1)J

′′+J ′+1 + (−1)p
′+p′′]
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entical
×
+1∑

ν=−1

J∑
k=p′′

(−1)k
J ′ 1 J ′′

−M ′ τ M ′′
J ′ 1 J ′′

−ν − k ν k

(A.7)×
∑
j ′j ′′

d
J ′p′l′
j ′α′β ′d

J ′′p′′l′′
j ′′α′′β ′′

∫
µm

ν Θ∗
j ′k′(θ)Θj ′′k′′(θ)d cosθ.

Evaluating the angular integral withM-point Gauss–Legendre quadrature is equivalent to transforming the w
functions back to a DVR on a grid of Gauss–Legendre (i.e.,k = 0) points using transformation(11) to give new
coefficientsaJpi

kαβγ .

T M ′M ′′τ
if = (−1)

2

M ′
(2J ′ + 1)1/2(2J ′′ + 1)1/2[(−1)J

′′+J ′+1 + (−1)p
′+p′′]

×
+1∑

ν=−1

J ′′∑
k=p′′

(−1)k
(

J ′ 1 J ′′
−M ′ τ M ′′

)(
J ′ 1 J ′′

−ν − k ν k

)
(A.8)×

∑
αβγ

a
J ′p′l′
k′αβγ

a
J ′′p′′l′′
k′′αβγ

µm
ν (αβγ ).

Finally summing over all degenerate magnetic substates and summing the dipole components gives the final
pression for the linestrength:

S(f − i) = 1

4

[
(2J ′ + 1)(2J ′′ + 1)

][
(−1)J

′′+J ′+1 + (−1)p
′+p′′]2

(A.9)×
[ +1∑

ν=−1

J ′′∑
k=p′′

a(k + ν, k)(−1)k
(

J ′ 1 J ′′
−ν − k ν k

)∑
αβγ

c
J ′p′l′
k′αβγ

c
J ′′p′′l′′
k′′αβγ

µm
ν (αβγ )

]2

,

wherea(k + ν, k) is defined by Eqs.(56) and (57). This form of the dipole involves dipole transition integra
which can be expressed in the computationally most efficient, general form�Iψi(I)µ(I)ψf (I), whereI runs
over integration points, as advocated by Schwenke[6].

It should be noted that the phase factors in Eq.(A.9) give the rigorous selection rules:

�J = 0, p′ 	= p′′,
(A.10)�J = 1, p′ = p′′

which all transitions must obey. Apart from further symmetry-induced selection rules for systems with id
atoms, these are the only selection which rigorously apply.
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