MOLECULAR ROTATION-VIBRATION CALCULATIONS USING
MASSIVELY PARALLEL COMPUTERS

Jamse Y. Mussa.! Jonathan Tennyson.! C.J. Noble.? and R.J. Allan®

'Department of Physics and Astronomy. University
College London. London WC1E 6BT. UK
“Daresbury Laboratory, Daresbury, Warrington WA4 4AD. UK

Introduction

Calculations of rotation-vibration spectra of small molecules by direct solution of
the nuclear motion Schrodinger equation are beginning to make a major impact in the
area of experimental spectroscopy!. However. although the techniques used to solve
these problems are now well developed. there are applications. even for three atom
svstems on a single potential energy surface. which present a formidable computational
challenge. Such svstems mayv possess 10° — 10 bound states.

One class of methods which have proved verv successful at treating large nuclear
motion problems are based on a particular finite element representation of the problem
known as the Discrete Variable Representation®. Here we describe how the DVR3D
package of Tennvson and co-workers®. has been ported to massively parallel computers
in manner appropriate for rackling large problems. Wu and Hayves * have also addressed
the problem of performing rotation-vibration calculations for three atom systems on
a Cray T3D machine. Our method is designed to tackle larger problems than theirs
and is therefore represents a more radical change from algorithms used on sequential
machines. A preliminary version of the algorithm discussed here has been published”.

PDVR3DR : an overview

The DVR3D program suite? contains a number of modules. Program DVR3DRJ
solves the rotationless ./ = 0 vibrational problems using either atom-diatom Jacobi
coordinates or Radau coordinates. It also solves the effective “vibrational” problems
required for a two-step treatment of the rotational excitation problem®. Programs
ROTLEV3 and ROTLEV3B are driven by DVR3DRJ and solve the fully coupled
rotation-vibration problem respectively for Jacobi and a svimmetrized grid in Radau co-
ordinates. A final module. DIPOLE3. computes transition dipoles but will not concern
us here.

[n this article parallel versions ot the programs DVR3DRJ and ROTLEV3B are
presented. However parallelization requires a number of changes in the solution algo-
rithm which were best achieved by splitting program DVR3DRJ. The parallel version

thus consists of PDVR3DR and PROTLEV3R which solve the nuclear motion problem
for symmetrized Radau coordinates with a bisector embedding’, and PDVR3DJ and
PROTLEV3J which are appropriate for Jacobi coordinates. Parallelizing the Radau
co-ordinate program is the more difficult task and the only one we discuss here.

When determining parallelization procedures it is necessary to consider both the
construction of the scientific problem being addressed and the architecture of the com-
puter being employed. The codes themselves are not molecule or problem specific but
it is helpful to use specific examples as these define typical limits of a calculation. Here
we consider water at its dissociation limits as the prototype system to be treated in
svmmetrized Radau coordinates. The DVR3D programs have been adapted relatively
easilv to run verv efficiently on parallel shared memory architectures. However these
machines have few processors and the benefits in throughput are limited.

The intended architecture is a parallel message passing computer. PDVR3DR and
PROTLEV3R are designed for parallel and distributed memory computers which use
a Single Program Mlultiple Data (SPMD) loading strategy. Particular architectures
used are the 26-processor IBM SP2 machine at Daresbury Laboratory, the Edinburgh
Paralle] Computer Centre (EPCC) Cray Machines — the T3D which has 512 processors,
and the T3E swhich has 256 application processors —, and finally the 128 processor
Cray-T3E in Bologna. For algorithmic reasons. described below, PDVR3DR program
is usually run on 64 or 128 processors of the T3D, 16 to 64 of the EPCC Cray-T3E.
8 to 16 of the Duresbury IBN SP2 and 16 to 128 of the Bologna Cray-T3E while
PROTLEV3R can use any number of processors.

Originally the programs were written using PVM?® but we switched to MPI® when
this became available. The DVR3D program suite was written in FORTRANT77, but
modifications use Fortran 90 constructs.

The T3D and the SP2 were used for developmenr purposes. Since the intention
of the work is to build and diagonalize large Hamiltonian matrices, our work has been
done mainlv on the T3D and T3E’s. The results presented here are for the Cray-T3D,
similar results were obtained on the IBM SP2 when the size of the problem matched

the available memory.

Vibrational Calculations

For an A B, molecule, Radau coordinates!'® consist of two symmetry related stretch-
ing coordinates and an included angle. For molecules, such as water, where the central
atom is significantly heavier than the others (m >> mpg), these coordinates are simi-
lar to those given by the two AB bond distances. r, and 75, and the ABA bond angle,
f. Coordinates (ri,ro,) are represented using DVR grids («, 5, 7).

The DVR3D programs use sequential diagonalization and truncation®? to cre-
ate a compact final Hamiltonian matrix. For such schemes, the order in which this
diagonalization and truncation is performed can be crucial in determining computa-
rional requirementst!. Because the Radau coordinate symmetrization procedure used
bv DVR3DRJ is based on symmetrizing DVR grid points and not basis functions'?, the
stretches need to be treated equivalently and hence together, and the logical choice is
to treat the angular 6 coordinate last.

The basic method of distributing the DVR calculation over N processors was to
place 7 (n, = number of angular grid points) on each processor. Since 7 = 1 is

N

faster than % > 1, this coordinate was usually represented by either n, = 64 or 128

active’ grid Apoints, but calcualtions where n., = 48,80,96 have also been performed.
In the standard energy-selected diagonalization and truncation procedure, the number

of functions used to construct the final Hamiltonian varies with . This algorithm leads
to an poorly load-balanced calculation, so the selection criterion was modified. In the
modified version, an equal number of eigenstates of the two-dimensional problem, n??,
were retained for each angular ‘active’ grid point. Inactive grid points were simply
dropped from the calculation. One could include all v grid points in a calculation, but
for water geometries near linear OHH configurations are very high energy, and indeed
the Tennyson and Sutcliffe” strategy for implementing the bisector embedding involves
dropping at least the point nearest linearity. In practice our water calculations drop
about 10% of the points, but tests we have performed on ozone involved dropping more
than half. For ozone points are dropped from both ends of the angular grid.
Construction and diagonalization of intermediate. 2D Hamiltonians is performed
simultaneously on each processor using a standard diagonalizer. Ve use NAG routine
FO2ABF '3 for this purpose. In this approach, labelled SDTA for Sequential Diago-

nalization Truncation Approach, the size of the final Hamiltonian, HSPTA is given
by
N3P =n?P x n, (1)
and
HSDTA — EZD + C(2D)Lc(2D)T (2)

Where E2P are the eigenvalues of the 2D Hamiltonian in («, 3) at each angular grid
point ~ and C'?P) are the corresponding eigenvectors. L represents the angular kinetic
energy terms® 2.

Construction of the final 3D Hamiltonian matrix requires all the vectors, C]?’D(aﬁ ;
~).j = 1.n*P_ obtained for the n., active angular grid points. A strip of the Hamiltonian
is constructed on each processor which guarantees that one set of vectors is always
correctly located. For blocks off-diagonal in +, a second set of vectors has to be imported
from another processor if they are not locally available.

Time-wise the most critical step is diagonalization of the final 3D Hamiltonian. A
survev of available parallel diagonalizers has been conducted by Allan** and discussed
by us®.

Standard real symmetric diagonalisers, of which PeIGS* proved the best, limit the
size of calculation which could be attempted due particularly to workspace considerations®.
We therefore explored the possibility of using iterative diagonalisation procedure. Such
an approach has been advocated by a number of other workers* !, although, in con-
trast to many other studies. we require eigenvectors as well as eigenvalues. The parallel
iterative eigensolver PARPACK!" is designed to obtain a few eigenvalues of a large
sparse matrix. To diagonalize the Hamiltonian matrix, H. iteratively, as is usual. one
needs to perform the matrix-vector product

v = Hx (3)

However. there are three options as far as this operation is concerned:

a) H is obtained without any indermediate diagonalisation and truncation. In this
approach the Hamiltonian is mainly block diagonal. Operation (3) can therefore be
performed without forming H by using only the non-zero elements since the zero el-
ements o not contribute. This operation is now given by y = (elements > 0)x and
takes advantage of the natural sparseness of the DVR based Hamiltonian. Such an
approach has been used very successfully on sequential machines'®. It involves treating
very sparse matrices of dimension 100.000 or larger. On parallel machines vector x is
distributed over the processors and broadcast to the other processors. BLAS routines
are used to give y. This procedure is very efficient and requires little interprocessor

communication.
b) H is obtained by the SDTA procedure. It is possible to use the iterative diagonaliser
to diagonalize the same matrix as we tested the real symmetric diagonalisers on®. x is
distributed as in (a) and y is obtained by using BLAS2 routine sgemv.
¢) x is distributed as in (a) and H is obtained by the SDTA procedure, not formed
explicitly. Thus

y = HSPTA¢ (E2D + C(zD)LC(zD)T)X (4)

y = E®Px + (C?PILC*P)T)x (5)

One virtue of method (a) is that in its simplest form it is very easy to program.
However the svmmetrisation of the radial grids points employed by DVR3D presents
a significant complication as it destrovs much of the structural simplicity of the un-
contracted Hamiltonian matrix. This simplicity is important for the efficiency of this
algorithm!®. For this reason we implemented this method without using the radial
svmmetry. In this case the size of the matrix is given as the product of the number of
grid points nyngn,. Distributing the matrix as before over the angular grid, v, there
is a local memory balance between the number of eigenvectors required and the size
of the matrix stored on each processor. The maximum size for which we performed
calculations was for 100 eigenstates of a matrix of dimension 102400. These proved
considerably more expensive to obtain than method (bj. One reason for the difference
is that the speed of PARPACK convergence is dependent on the eigenvalue distribution

of the Hamiltonian matrix*. For us the speed of convergence is related to the HSPTA
Hamiltonian eigenvalues distribution via
Nsuw — Nw
r | Asuw lw ’ (6)

‘ /\maz - /\suw I

Where suw is the smallest unwanted eigenvalue. (w is the largest eigenvalue required.
and maz is the largest eigenvalue of the Hamiltonian matrix. Larger r gives faster the
convergence. The SDTA affects neither Ay, nor Ay, but it reduces the Apqz. So the
SDTA increases r and one can say then that the SDTA procedure not only reduces
the size of the Hamiltonian. but is also improves the conditioning of the matrix and by
doing so it speeds up convergence.

An advantage of (c) over (a) is faster convergence, and its advantage over (b) is
less memory requirement. However, it has a disadvantage over (b) in that the number
of matrix-vector operations needed is much bigger. Since the calculation is a trade-
off between memory requirement and CPU-time. and our main concern when using
PARPACK as the eigensolver is the CPU-time rather than memory, only (a) and (b)
have been implemented. Implementing (c¢) would be straightforward and can be done
if needed.

Using the PARPACK to diagonalise the contracted Hamiltonian, method (b), has
one immediate advantage over use of PeIGS. PARPACK has little workspace require-
ment meaning that. in practice. matrices of twice the size could be diagonalized.

Rotational Excitation

Eigenvectors from the vibrational step of the calculation are required as a basis
for computing rotationally excited states. It is necessary to transform the eigenvectors
obtained from the final STDA diagonalization back to vectors which give the amplitude
of the wavefunction on the original, raw grid points. As only h (< N3P) eigenvectors

need to be transformed, it is necessary to redistribute the eigenvectors so that those
required are spread equally between the processors.
The transformation can be written
nZD
dify, = > C2P (B 7)CPP (). i=1,2,3...h. (7)

j=1

The 2D vectors. C*” are mapped on to processors using 7 as they are generated during
the Hamiltonian construction. The 3D vectors. C*”, are mapped by distributing vec-
tors between processors. The multiplication is performed using MPI broadcast-reduce
routines. If one wants to analvse the wavefunctions of the vibration. the results are
saved on disk. Since I/O is not parallel, one processor is used to perform the I/0 to
avoid bottle-necks. When considering states of rotational excitation .J, it is necessary
to repeat all the above steps for each k, the projection of J on the body-fixed z-axis,
required. In general, if both even and odd Wang paritv rotational states are to be
calculated using the same first step vectors, then J + 2 separate calculations are per-
formed, one for £ = 0,1,....J plus an extra k£ = 1 calculation as this must be treated
as a special case”

Saving the transformed eigenvectors in eq. (7) for each k ° causes disk space prob-
lems for even low .J calculations. For example. we have access to 2GB only of disk space
and to accurately calculate J = 2 up to dissociation requires 3.5 GB for the transformed
eigenvectors. Therefore, PDVR3DR has been modified to keep transformed eigenvec-
tors in core and then construct the off-diagonal blocks in %, which are contributed by
the Coriolis operators. Hyw. In addition to overcoming the disk space problem, there
is another benefit to this — computationally, there is no limit to how many J’s one
can calculate provided there is enough CPU-time. However. in real memory terms this
costs 30 to 50 M Bs extra for a tvpical calculation.

For symmetrized Radau coordinates. symmetry considerations dictate that the
Cartesian axes of the svstem should be placed so = bisects the angle # and the z axis is
then in the plane of the molecule and perpendicular to z. This is the so-called bisector
embedding’. In this embedding. the Coriolis coupling links blocks of the matrix labeled
bv k with those for with A =1 and & £ 27.

The block construction step consists of a series of transformations of the form

B =<k i|Hy k. i >= 5 d¥, Hyw(asyy)dLk, (8)

adyy'

using the vectors created in eq. (7). The Coriolis operators are diagonal in the radial
DVR’s. (). but not in the angular DVR. ~. Full details are given elsewhere® 7. The
transformation uses A (< N3P) cigenvectors from each & calculation'®. In the present
procedure it was assumed that /7 is the same for all .

Because a four-dimensional transformation. eq. (8). is used to construct each ma-
trix element. this step can be quite time consuming. It is therefore necessary to consider
carefully how one might parallelize it. Goldfield and Grav!” mapped the triatomic re-
arrangement reaction problem using A (or €2) blocks. However in our case there is
insufficient memory to treat more than one .J at a time and only for large J are there
enough k& blocks to make distributing over the processors a possibility. Alternatively
one can distribute over the stretching coordinates () or the angle v or the eigenvec-
tors h. Parallelizing over (ad) is difficult because of the symmetrization. Conversely
parallelizing over ~ is superticially attractive as this is done in the first step and the
number of ¥'s has already been chosen to map conveniently onto the number of proces-
sors. However there are problems with distributing on +y. In this mode, each processor

Figure 1. Structure of the fully coupled Hamiltonian diagonaliseded by PROTLEV3R. Only
non-zero elements. those on the diagonal and shaded blocks, for the lower triangle are computed.
The blocks are spread over the processors as indicated in the enlargements.

will build contributions to everv element of the block, which will have to be assembled
on a single processor once constructed. More seriously, a typical set of h vectors d*
takes about 0.5 GB of memory, so these vectors must be distributed. This method leads
to an excessive amount of inter-processor communication. We therefore distribute the
building of the blocks over the A/ processors by placing a —% bra and % ket vectors
on each processor. Each processor thus builds rows (columns) of each block, see eq.
(8). This is done using the vectors in local memory for the bra and for portion of the
ket and vectors from other processors for the other portion of the ket. These following
steps show how this is done:
Step 1: For k=0; create d*=Y using eq. (7).
Step 2: For k=1; create d*=' using eq. (7

form BF=UF=l using eq. (8), & =
Step 3: Fork=2toJ: create d¥ using eq. (7).

form BF* using eq. (8). A =k+2.

replace d*=2 by d* L

form B*¥ using eq. (8). A =k + L
This algorithm ensures that not more than three sets of vectors, d*. are retained in
memory at one time.

The diagonal elements. which correspond to the eigenvalues generated in each &
calculation, and the built blocks, B*¥*', are sent to one processor which then writes
them to disk. Both the data transfer between processors and writing on the disk are
done in big chunks to avoid any an unnecsssary overheads.

In the final step of the solution procedure, PROTLEV3B, off-diagonal and diag-
onal elements are read back from the disk. The fully coupled Hamiltonian is then
formed by distributing the blocks and the diagonal elements over the processors. The

resulting structure, see Fig. 1, is appropriate when the matrix is to be diagonalized it-
eratively(suitable for both (a) and (b)). This algorithm for treating rotationally excited
states is an improvement on our previous procedure® because it considerably reduces
I/O and disk storage both of which are a serious problem with the old procedure.

Performance

As shown in ref. 5, PDVR3DR scales verv well when building the Hamiltonians as
the number of processors is increaded. However. it scales less well when diagonalizing
the Hamiltonian on 128 processors or more. This is due to that PeIGS(the diagonaliser
used for the scaling test)which is based on Householder transformation. There are
several reasons for this:

e \ost time is spent in the Householder reduction of the Hamiltonian to tridiagonal
form.

o Repeated inverse iteration and orthogonalisation is used to give orthogonal eigen-
vectors. This can result in both poor load balancing in its algorithm and in

creating large overheads.

e Finally, a matrix of 3200 is used for the scaling so the message-passing latency
must also be an other factor as the number of processors increases. This factor
must be less important as the size of the Hamiltonian increases beccause of the
trade-off between the latency and the bandwidth.

Conclusion

We have developed parallel programs for treating the vibration-rotation motion
of three-atom svstems using either Jacobi or Radau coordinates. These programs are
based on the published DVR3D program suite® which is designed for computers with
traditional architectures. Significant algorithmic changes were required. in particular
to reduce I/O and disk usage in the original programs and to produce a load balanced
algorithm. The new suite shows good scalability and can be used for more challenging
calculations. However diagonalization remains a bottleneck in these calculations. Tests
of presently available software favour the use of iterative diagonalisation procedures,
although further significant improvements in real svmmetric matrix diagonalizers could
alter this view.

Our parallel DV'R suite has enabled us to calculate all the bound vibrational states
of water in one wall clock hour using the EPCC Cray T3D. Using the modifications
discussed above we have been able to calculate bound rotation-vibration states of water
all the way to dissociation for ./ > 0. Previously such calculations took times measured
in days or even in weeks. Results for bhoth rotationless and rotationally excited states
are being prepared for publication®?.

Acknowledgments

This work was performed as part of the ChemReact High Performance Comput-
ing Initiative (HPCI) Consortium. We thank members of HPCI Centre at Daresbury
Laboratory for their help.

REFERENCES

—

WD O

10.
11.

12.
13.
14.

16.
17.

18.
19.
20.

O.L. Polyansky, N.F. Zobov, S. Viti, J. Tennyson, P.F. Bernath and L. Wallace, Science, 277
(1997) 346.

Z. Bacic and J. C. Light, Ann. Rev. Phys. Chem. 40 (1989) 469.

J. Tennyson. J.R. Henderson and N.G. Fulton, Computer Phys. Comms. 86 (1995) 175.

X.T. Wu and E.F. Hayes. J. Chem. Phys. 107 (1997) 2705.

H.Y. Mussa, J. Tennyson. C.J. Noble, R.J. Allan, Computer Phys. Comms. 108 (1998) 29

J. Tennyson and B.T. Sutcliffe. Mol. Phys. 58 (1986) 1067.

J. Tennyson and B.T. Sutcliffe, Intern. J. Quantum Chem. 42 (1992) 941.

“Parallel Virtual Machine”. The PVM3 Users’ Guide and Reference Manual is available from
netlib2.cs.utk.edu/pvm3/ug.ps via anonymous ftp

“Message Passing Interface”. The MPI Standard is available from netlib2.cs.utk.edu by anony-
mous ftp. Note: it is a very large document!

B.R. Johnson and W.P. Reinhardt, J. Chem. Phys. 85 (1986) 4538.

J.R. Henderson. C.R. Le Sueur, S.G. Pavett and J. Tennyson, Computer Phys. Comms. 74
(1993) 193.

J. Tennyson and J.R. Henderson, J. Chem. Phys. 91 (1989) 3815.

NAG Fortran Library Manual, Mark 17, Vol. 4 (1996).

R.J. Allan and 1.J. Bush, Parallel Application Software on High Performance Computers: Paral-
lel Diagonalization Routines. Edition 3 (Daresbury Laboratory HPCI Centre. 22/8/96) available
on WWW URL http://www.dci.clrc.ac.uk/Publications

G. Fann, D. Elwood and R.J. Littlefield, PeIGS Parallel Eigensolver System, User Manual
available via anonymous ftp from pnl.gov.

M.J. Bramley and T. Carrington Jr. J. Chem. Phys. 99 (1993) 8519.

K. Maschhoff and D. Sorensen A portable implementation of ARPACK for distributed memory
parallel architectures Preliminary proceedings, Copper Mountain Conference on Iterative Meth-
ods (1996)

J. Tennyson. J. Chem. Phys. 98 (1993) 9658.

E.M. Goldberg and S.K. Gray, Computer Phys. Comms. 98 (1996) 1.

H.Y. Mussa and J. Tennyson, to be published.

