
Growing Up as a
(Software) Engineer

Jim Cownie
July 2020 for UCL Knowledge Quarter Social

Objectives

1. Have a fun discussion
2. Give you some questions to think about
3. Tell you some illustrative stories (that do have a point besides

being amusing)
4. Tell you not to worry

1. You don’t need to plan what you’ll be doing in ten or twenty years
2. You do need to enjoy what you’re doing
3. You don’t need to become a manager

2© Jim Cownie CC-BY 4.0

Introduction

I am going to give you questions to think about
And some answers
My answers may be wrong
My answers are based on experience in industry (not academia)

I hope the experience (and questions) remain relevant even if my examples
are based on my experiences

I am “male, pale and stale” (Sorry, but there’s not much I can do
about that).

3© Jim Cownie CC-BY 4.0

My Experience is Old

I first wrote code for an IBM 1130 16b minicomputer (FORTRAN IV,
punch cards, mid 1970s)
I started full time work in 1979 at Inmos
Much has changed in 40 years

But, no-one (without a time-machine) can have had the
experience you will have, so we have to look backwards!

4© Jim Cownie CC-BY 4.0

What Have I Done?
Inmos (1979-1984)

Worked on CAD tools for the Transputer (“Fat Freddy”)
Wrote the microcode assembler, bits of compilers, OS, …

Meiko (1984-1995)
Wrote a code generator in BCPL for a Fortran compiler targeting the Transputer
Represented Meiko on the HPF forum and the MPI-1 forum
Caused profiling interfaces to be in MPI (and owned that chapter)

BBN/Etnus (1995-2005) (from Bristol reporting to Cambridge,MA)
Worked on parallel debugging (“Totalview”)

Intel (2005-2019) (from Bristol reporting to US Central Time)
OpenMP® runtimes
Transactional memory
Etc…

5© Jim Cownie CC-BY 4.0

What Did I Achieve?
MPI profiling interface

A hack, but a good one
I reckon it has paid my CO2 dues by enabling tuning of MPI codes

OpenMP stuff
Speculative locks
monotonic/nonmonotonic schedule distinction

Made some hardware architects understand shared-memory parallel
processing a bit better
Intel Senior Principle Engineer; ACM Distinguished Engineer
Worked on fun things, had fun, helped people (I hope!)

6© Jim Cownie CC-BY 4.0

What Changes and
What Doesn’t

7© Jim Cownie CC-BY 4.0

Hardware Changes

Then:
§ Memory was near (1 cycle

away)
– No need for caches

§ Cores were simple
§ Dennard scaling applied

Now:
§ Memory is a l..o..n..g way away

(and not all equally far)
§ Caches matter hugely
§ Cores are big, complicated, and

trying to guess what you want to
do

§ Dennard scaling is dead

8© Jim Cownie CC-BY 4.0

Dennard Scaling

The good part of Moore’s Law (the physics!)
For MOS when there is no leakage:

When the transistor density doubles, clock rate can go up 1.4x, while
power consumption stays the same (despite having twice the number
of transistors running faster).

Ceased to apply ~2005 (because leakage became significant)
Þ Clock speed bounded
Þ Energy consumption becomes critical
Þ Drive to many core machines

© Jim Cownie CC-BY 4.0 9

Hardware Constants

The speed of light (1ft ~= 1ns)
The performance limits are still often not the ones people expect
§ To first approximation, “It’s always data movement”
Some hardware folk still say
§ “It’s only software” or “That’s a SMOP (Simple Matter Of

Programming”)
And we now have more history to prove that they’re still wrong!

10© Jim Cownie CC-BY 4.0

Software Changes
Then:
§ The BCPL compiler could

bootstrap itself in 64KiB
§ Linux did not exist
§ C (derived indirectly from BCPL)

was a new language
§ Register allocation was an

unsolved problem
§ Source code control was a new

idea (SCCS)

Now:
§ LLVM is > 5.5M lines of code
§ Compilers are smarter
§ We have 100s of programming

languages (Julia, Chapel, …)
§ We have github
§ Python is way better than

BASIC

11© Jim Cownie CC-BY 4.0

Software Constants

Fortran still matters (more later)
Some of the same code is still running in important applications
Compilers and runtime systems remain important
Software is still fun to work on and develop

12© Jim Cownie CC-BY 4.0

Things Get Forgotten/Ignored

We had Occam (based on CSP) in 1984
– Parallel language
– Deterministic (until you use ALT, so you can see the non-determinism)
– Naturally supports clusters

Now we have
– OpenMP: subject to races, doesn’t support clusters
– MPI: a library rather than a language
– But Golang and Rust may be moving in the right direction J

13© Jim Cownie CC-BY 4.0

Useful Questions to
Ask Yourself

14© Jim Cownie CC-BY 4.0

Questions:
Why am I doing this?
What should I be doing?
Who is the customer (who is paying)?
Which metrics matter?
What do I want to do? (Do I want to manage people?)
How do I become visible?
How much work do I have to do?
How do I plan my career?

15© Jim Cownie CC-BY 4.0

Example:
Why am I optimising this code?
Possible answers:

My manager told me to. (But why did she do that?)
We need it to run fast. (Who is “we”?)
It’s an interesting problem I’ve snuck the time to look at.
A manager’s bonus five levels above me depends on it.
We’ll sell more compilers if this works better.
More customers will buy our machines if this benchmark
runs well (according to a salesperson…)

16© Jim Cownie CC-BY 4.0

What is the Real Problem?

Do we need to make this function run faster?
Is there a better way to solve the real problem?
Has someone else already solved the real problem?
E.g.

Don’t waste time improving a hand-written linear algebra
routine; instead use an optimized BLAS

17© Jim Cownie CC-BY 4.0

Who is Paying (and for What)?

Follow the money!
In industry this is the ultimate answer…

What you are doing must add value that causes someone
to pay more for something your company is selling
That may not directly be your code, though!

18© Jim Cownie CC-BY 4.0

Who is Really the Customer (1) ?

Q: Why are supercomputers like dog-food?
A: Because in neither case does the ultimate consumer make the
purchasing decision.

User is programmer/scientist
Purchaser is lab-director/university/funding agency/politician who wants a
braggable entry on the Top500 list
This is why we have perverse hardware with too much FP and not enough
memory BW

Metrics matter and have unforeseen consequences.
19© Jim Cownie CC-BY 4.0

Who is Really the Customer (2) ?

Consider the compiler team in a hardware vendor
The compiler is given away for free (or close to free)
How is working on it justified?
Who is paying for all the people working on it?

Enemies and Opponents
“Your enemies are on your side; those are your opponents”

Compiler team funding depends on internal company
politics; they must sell their work to management.

20© Jim Cownie CC-BY 4.0

We’re Getting to “The Five Whys”

Developed by Toyota to root cause problems
Normally asking “Why?” five times takes you high enough…
Even once is useful, e.g. when answering StackOverflow questions:
§ “My OpenMP code fails like this…”
§ The problem is very often

– “I have written bad code to do something that OpenMP or a library could do
much better.”

– e.g. reductions, linear algebra operations, …

The right answer is “Don’t do that.”
21© Jim Cownie CC-BY 4.0

One Advantage of Interpreted Languages

No sane person will write their own BLAS routines in Python!
Better integration of libraries into the language
Expectation that there will be a library to do (at least some of) what
you want

“The best code is the code you do not have to write.”
“A couple of months in the laboratory can frequently save a
couple of hours in the library.”

22© Jim Cownie CC-BY 4.0

Which Metrics Matter?

This is a general question, we’ll look at programming languages as
an interesting example…
Possible metrics:

– (Most obvious, easy to find): Number of programmers/fashionability (e.g.
Tiobe Index, Github Language Popularity Index)

– (Less obvious, harder to find): Amount of CPU resources consumed by
code written in the language

23© Jim Cownie CC-BY 4.0

The answer is that for all HPC questions: “It depends…”

Programming Language Metrics

C, 16.5%

Java, 15.1%

Python,
9.1%

C++,
6.2%C#,

5.3%

Visual Basic,
5.2%

JavaScript,
2.5%

R, 2.4%

PHP, 1.9%

Swift, 1.4%

Everything
Else, 34.5%

Tiobe Programming Community Index
Q2/2020

C is first,
C++ is fourth,

Fortran is … fiftieth
(below Ada, Haskell, Lua,
“Classic Visual Basic”, …)

24© Jim Cownie CC-BY 4.0

=> Fortran is irrelevant, right?

UK HPC Machine Use
Archer Machine Use by Language

Q1/2020

69.9%

11.2%

11.1%

6.5%

1.3%

Kathleen Machine Use by Language
Q1/2020

Fortran
C
Unknown
C++
Python

25© Jim Cownie CC-BY 4.0

=> Fortran is critical

Where do HPC Hardware Vendors need to
Focus?
Archer has 4920x2socket nodes => 9840 sockets

– 60% of that => 5904 sockets running Fortran!
If Archer2 use is the same, then 60%x5848x2 ~=7000 => ~$35M
Kathleen has 192x2socket nodes => 384 sockets

– 70% of that => ~270 sockets running Fortran!
So Fortran isn’t dead, but instead it’s important.

=> Fortran programmers and compiler/tools writers will be
needed (and probably in short supply…)

26© Jim Cownie CC-BY 4.0

Who is Your Enemy?

The person who keeps submitting annoying bugs in your code?
– Absolutely not!
– They are using your code and care enough to help you to improve it

That team at other university who are working on the same problem
and might publish first?

– What would the funding agency who is funding you both like?
– How can we solve the science problem sooner?

Respect your opponents, try not to have enemies.
27© Jim Cownie CC-BY 4.0

Open Source or Not?

In industry
Advantages:

Open sourcing code provides leverage and a shared codebase that
can be jointly maintained (no sane company wants to maintain 5M
lines of code!)
Easy to find people to employ who already know the codebase
Can use other people’s code (e.g. ANL developing Clang code)

Disadvantages:
License must be appropriate (BSD-style, not GNU style)

28© Jim Cownie CC-BY 4.0

Open Source in Research

Advantages:
Reproducibility

Becoming more and more important. Conferences/journals require
reproduction “artefacts” to enable others to verify results.

More eyes on the code
Allows co-operation and avoids time spent re-inventing a square wheel
Eases commercial spin outs (=> use a BSD-style license)
Reduces funding cost if multiple teams need not write equivalent code

29© Jim Cownie CC-BY 4.0

Open Source in Research
Disadvantages:
I don’t want people to see my horrid code…

Well, don’t write horrid code!
That group at other university might use it, and they are my enemy
because they’re competing for the same funding.

Who is paying you both? What would they prefer?
Where might you want to work next?

I’m hoping to start a spin-out and license the code from the university so I
don’t want everyone to have my code

Wouldn’t you rather have the code for free and have others help you to
develop it? (A BSD-style license lets you keep some code secret).

30© Jim Cownie CC-BY 4.0

How Can I Grow?
Become more visible

– Decide that you are not as introverted as you thought you were
– Publish your code
– Help people to use it

If you’re using open-source code
– Report bugs
– Help to fix things
– Push your fixes/enhancements upstream

Think about how to present results at the right level
Contribute to “industry” (OpenMP, MPI, SYCL,…) and “real” standards
(C++, Fortran, …)
Join professional organisations (ACM, BCS, Society of Research Software
Engineering)

31© Jim Cownie CC-BY 4.0

Standards

Sound frightening; lots of weird experts debating intricate details of
OpenMP or C++ or …
But

They need contributions
You don’t have to speak out until you are ready
It’s valuable, visible, work
They recognise that they are also too “pale, stale and male”

You can (and should) sell this to your organisation:
“We rely on this technology so need to know what is coming and influence it”
“We need open standards to avoid vendors getting their hand in our wallet!”

32© Jim Cownie CC-BY 4.0

You do NOT Need a Plan

I never had one
I followed my nose and took interesting jobs when people
approached me (or asked people I was already working with on one
occasion)
Do stuff which interests you (you do not have to be a manager)
Get involved in standards

– The community needs input
– It will make you friends for life (that’s how I know Jack Dongarra, Bill Gropp,

Rusty Lusk, Torsten Hoefler, Michael Klemm, …)

33© Jim Cownie CC-BY 4.0

You Should NOT Need to Work All the Time

Keep work on work machines
Don’t install work email/slack/… on your phone
Keep the work machine in the office (try to have a separate office
even if you are working from home)
Don’t turn the work machine on other than during office hours
Don’t agree to meetings at stupid times even if you work for a US
company
Unless you really want to, don’t work on SW in your own time

34© Jim Cownie CC-BY 4.0

Conclusions
Try to Follow Dr Phil’s CLANGERS
Connect
Learn
(be) Active
Notice
Give back
Eat well
Relax
Sleep

Be helpful
Don’t be tribal
Respect your opponents
Don’t have enemies
Do interesting things
Decide you can speak out in
public
Follow your nose

Have Fun, do What You Enjoy. Good Luck!
35© Jim Cownie CC-BY 4.0

Questions, Discussion, Why I am an idiot…

© Jim Cownie CC-BY 4.0 36

Backup

37© Jim Cownie CC-BY 4.0

Interesting Languages (in HPC)
One new language: Julia

Can run interactively (“Jupyter”)
Can get compiled-language performance
Less fashionable than Python/R but on the rise
Could be a language to get in on early

One old language: Fortran
Still hugely important, as we saw:

VASP is #1 consumer of cycles on Archer
UK Met Office code is all Fortran

Not fashionable, but that’s potentially good:
If you are one of 10 experts that’s better than being one of 1000
There will be high demand for Fortran compiler experts

38© Jim Cownie CC-BY 4.0

Other Random Things to Think About

§ Work out how to present your results in a way which the target
audience will understand

– Not: “I halved the time spent in OpenMP dynamic scheduling by 50%.”
– But: “Important code now runs 5% faster than before.”

§ Read Tufte (“The Visual Display of Quantitative Information”) and
follow his rules

§ Never use omp_set_num_threads(constant)that implies
– You don’t expect the code to run on anyone else’s machine
– You expect to throw the code away before you replace your machine

39© Jim Cownie CC-BY 4.0

References
Dennard Scaling: https://en.wikipedia.org/wiki/Dennard_scaling
Tiobe index: https://www.tiobe.com/tiobe-index/
Github language popularity: https://madnight.github.io/githut/#/pull_requests/2020/2
LLVM size: David Wheeler’s sloccount (https://dwheeler.com/sloccount/) on llvmorg-9.0.0.

Total Physical Source Lines of Code (SLOC) = 5,657,032

Library/Lab quotation: Frank Westheimer
Archer usage data: Adrian Jackson (Thanks!)
https://twitter.com/adrianjhpc/status/1281314767563558912
Archer2 spec: https://www.archer2.ac.uk/about/hardware.html

40© Jim Cownie CC-BY 4.0

https://en.wikipedia.org/wiki/Dennard_scaling
https://www.tiobe.com/tiobe-index/
https://madnight.github.io/githut/
https://dwheeler.com/sloccount/
https://twitter.com/adrianjhpc/status/1281314767563558912
https://www.archer2.ac.uk/about/hardware.html

References (2)

AMD Rome 64C price approximation: https://www.tomshardware.com/uk/news/amd-epyc-
rome-2-cpu-price-specs,40119.html (I used $5000/socket, despite “As for the flagship 64-
core models, Newegg listed them between $6,650 and $7,220 .”)
Kathleen usage data from Owain Kenway (Thanks!)
CLANGERS: www.drphilhammond.com
ACM: https://www.acm.org
Society of Research Software Engineering: https://society-rse.org/
Tufte: “The Visual Display of Quantitative Information”
https://www.edwardtufte.com/tufte/books_vdqi

© Jim Cownie CC-BY 4.0 41

https://www.tomshardware.com/uk/news/amd-epyc-rome-2-cpu-price-specs,40119.html
http://www.drphilhammond.com/
https://www.acm.org/
https://society-rse.org/
https://www.edwardtufte.com/tufte/books_vdqi

