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MECHANISM DESIGN: SOME DEFINITIONS AND RESULTS

Mechanism design is the science of designing rules of a game to achieve a 
specific outcome, even though each participant may be self-interested.  This is 
done by setting up a structure in which each player has an incentive to behave as the 
designer intends.

Mechanism designers commonly try to achieve the following basic outcomes: 
truthfulness, individual rationality, budget balance, and social welfare.  However, it is 
impossible to guarantee optimal results for all four outcomes simultaneously in many 
situations.

DEFINITIONS

Let si be player i’s strategy, Si her strategy set, and i her type space.

Mechanism: A mechanism,  = (s1, … , s, g()), is a collection of  strategy sets, 
(s1, …, s), and an outcome function, g: s1  …  s  X, where X is the outcome set

Social choice function: A social choice function is a function f: 1  …    X that, for 
each possible profile of the agents’ types (1  …  ), assigns a collective choice 
f(1, …, )  X

Implementation: The mechanism  implements social choice function f() (in Bayesian 
Nash equilibrium) if there is an equilibrium strategy profile, *, that induces a 
Bayesian Nash equilibrium in the game associated with  s.t. (such that) 
g(1*(1), …, *()) = f(1, …, )  (for all) (1, …, )  1  …  

Direct Revelation Mechanism: A direct revelation mechanism is a mechanism in which 
Si = i  i and g() = f()    1  …  

Truthful Implementation: The social choice function is truthfully implementable if truth 
telling by each agent constitutes an equilibrium of 
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RESULTS

The Revelation Principle For Bayesian Nash Equilibrium: Suppose  (there exists) a 
mechanism,  = (s1, … , s, g()), that implements the social choice function f() in 
Bayesian Nash equilibrium.  Then f() is truthfully implementable in Bayesian Nash 
equilibrium.

The intuition of the Revelation Principle is simple: If a player protects her private 
information using a particular strategy, manipulating the rules of the game to 
exogenously provide the same protection of her private information encourages the 
player to reveal her private information.

Is it possible to design a mechanism such that truth telling is optimal?

Vickrey-Clarke-Groves Mechanisms: A Vickrey-Clarke-Groves (VCG) mechanism is a 
direct mechanism in which (i) the ‘total-value-maximising’ outcome is always 
chosen, (ii) each player pays an individual-specific payment, pi, equal to the 
opportunity cost of their presence, and (iii) payments are equal to the sum of the 
individual specific payment and a common payment, h-i, which is the payment made 
if they report they are indifferent.

The VCG mechanism maintains the incentive to bid truthfully when multiple identical 
goods are being auctioned (in contrast to, say, a uniform price auction).  It demands 
each player in the auction pays the opportunity cost that their presence 
introduces to all the other players.  However, the VCG mechanism is vulnerable to 
collusion by losing bidders, to shill bidders, and it does not necessarily maximise seller 
revenues.  It is also only generally functional for quasi-linear preferences.

Which mechanisms provide the same expected revenue?

Revenue Equivalence: Any allocation mechanism in which (i) the bidder with the highest 
value always wins, (ii) the bidder with the lowest possible value expects zero 
surplus, (iii) where all bidders are risk neutral, and (iv) drawn from a strictly 
increasing and atomless distribution, will lead to the same expected revenue for the 
seller (and each type of agent can expect the same surplus across auction types).

Although we will not present a formal proof here, the intuition is as follows: By the 
Revelation Principle, we know that the social choice function that is (indirectly) 
implemented by the equilibrium of any auction procedure must be Bayesian 
incentive compatible.  Thus, we can establish the result by showing that if two 
Bayesian incentive compatible social choice functions in this auction setting have the 
same transfer functions (y1(), …, y()) and the same payoff values, (u1(1), …, u()), 
then they generate the same expected revenue for the seller.  To show this we can 
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derive an expression for the seller’s expected revenue from an arbitrary Bayesian 
incentive compatible mechanism.

Note that the proof of revenue equivalence can be derived directly from the incentive 
compatibility constraint.

If we can design truth-telling mechanisms all of which yield equal revenues, why 
does mechanism design matter?  The conditions under which the VCG 
mechanisms function and under which the revenue equivalence result holds are 
restrictive.  In many cases, we will not even be able to guarantee an efficient 
allocation using any mechanism.

Myerson-Satterthwaite Impossibility Theorem: Consider a bilateral trade setting in which 
the buyer and the seller are risk neutral, the valuations 1 and 2 are independently 
drawn from the intervals [1, 1]   and [2, 2]   with strictly positive densities 
and (1, 1)  (2, 2)  .  Then there is no Bayesian incentive compatible social 
choice function that is ex post efficient and gives every buyer type and every seller 
type non-negative expected gains from participation.

Again, no formal proof is provided.  The intuition is as follows: The gains of trade in a 
private value auction cannot everywhere be positive since the Bayesian Nash 
equilibrium is for parties to report untruthfully so to increase their expected 
payoff.  By doing this they create regions of types in which the individual rationality 
constraint is violated for some participant.

Mechanisms fail to guarantee efficiency due to the presence of private 
information.  Once signals held by various agents (their private information) is 
correlated, there may be scope for regaining an efficient outcome, but is not 
assured.

Cremer and McLean (1988): If the signals held by various agents are correlated, it is 
possible to design transfer devices whereby the belief held by agent i is elicited for 
free.  When j’s belief about i’s signal completely determines the signal held by i, a 
welfare-maximising allocation can be (approximately) implemented.

Jehiel-Moldovanu (2001): In general, in multi-object auctions with heterogenous objects 
and common rather than private values, no mechanism whatsoever can allocate the 
goods efficiently if either complementarities, substitutability, or allocative 
externalities are present.



QuickTime™ and a
 decompressor

are needed to see this picture.

Page 4 of 4

MATHEMATICAL NOTE

In his ‘Putting Auction Theory to Work’, Paul Milgrom argues that “Many of the key 
results of mechanism design theory can be derived from the envelope theorem and 
stated as a restriction on a derivative or a restriction on an integral.”  To approach 
mechanism design from this perspective, it is important to understand the Integral Form 
Envelope Theorem, and its applications.

The Integral Form Envelope Theorem (Milgrom): Suppose that u(x,): [0,1]   has the 
properties that:

i)  a real valued function u2(x,t) s.t.  x  X, [a,b]  [0,1], u(x,b) –u(x,a) =  u2(x,s) ds
ii)  an integrable function b: [0,1]   (that is  b(s)ds  ) s.t. |u2(x,t)|  b(t)  x 

X and almost all t  [0,1]
iii) X*(t)  argmaxxX u(x,t)   for almost all t  [0,1]
Then for any selection x*(t) from X*(t), V(t) = u(x*(t),t) = u(x*(0),0) + u2(x*(s),s)ds

Applying the Integral Form Envelope Theorem to the special case of quasi-linear 
preferences and Bayes-Nash equilibria yields:

Myerson’s lemma: Consider a standard independent private values model, and suppose 
that  is a Bayes-Nash equilibrium of the game corresponding to (, N, S, , [0,1]N, 
v, ) (standard definitions apply; see book for details) with full performance (x, p).  
Then the expected payoff satisfy Vi() = Vi(0) + Ei[z(t) | ti=s] (dvi/ds) ds.
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