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Astrocytes serve roles essential for normal neurological function such as 
regulation of synapse formation, maintenance of the blood-brain-barrier 
(BBB) and neuronal homeostasis (1, 2). Although astroglia are regional-
ly heterogeneous in terms of gene expression and their electrical and 
functional properties (3–5), astrocyte diversification and migration re-
main poorly understood. Two generally recognized types of astrocytes 
are fibrous astrocytes (FAs) of white matter that express Glial Fibrillary 
Acidic Protein (GFAP), and protoplasmic astrocytes (PAs) of grey mat-
ter that normally express little or no GFAP. Aldh1L1-GFP and AldoC 
are more recently described markers of both PAs and FAs (6, 7). Em-
bryonic astrocytes derive from radial glia (8–10) and several lines of 
evidence indicate that glial sub-type specification in the ventral spinal 
cord is determined according to a segmental template (11). For example, 
bHLH proteins Olig2 and SCL regulate oligodendrocyte versus astrocyte 
precursor cell fate in the pMN and p2 neuroepithelial progenitor do-
mains, respectively (12), and homeodomain proteins Nkx6.1 and Pax6 
regulate the region-specific molecular phenotype of FAs in the ventral 
spinal cord (13). 

How do astrocytes disseminate from their sites of origin in the ven-
tricular zone (VZ)? Two distinct modes of astrocyte migration have been 
reported. Retroviral fate mapping of neonatal SVZ progenitors (14) and 

transplantation of glial precursors (15) 
suggest that astrocytes can migrate 
long distances and in multiple direc-
tions, implying that astrocytes derived 
from radial glia (or other precursors) in 
different VZ domains might intermix 
(fig. S1A). Consistent with this model, 
some PAs have been proposed to de-
rive from migratory NG2 cells (16). In 
contrast, astrocytes might distribute 
stringently into “segmental” territories 
correlating with their domains of origin 
in the patterned VZ (8–10), without 
secondary tangential migration. Alt-
hough little is known about regulation 
of astrocyte progenitor migration dur-
ing development, Stat3 signaling and 
Cdc42 have been shown to function in 
reactive astrocyte invasion of lesions 
after injury (17, 18). 

Establishing how astrocytes are al-
located to different territories is key to 
understanding how they might develop 
to support regionally diversified neu-
rons. We first investigated this in vivo 
by conditional reporter fate mapping of 
radial glia and their progeny in distinct 
dorsal-ventral (DV) spinal cord do-
mains (fig. S1B, table S2). Labeling 
for the reporter protein together with 
markers of neurons (NeuN), 
oligodendrocytes (Olig2) or fibrous 
astrocytes (GFAP) allowed us to com-
pare production of these cell types 
across domains (table S1, Fig. 1, fig. 
S1) (19). 

We found that FAs from the p3 
progenitor domain (defined by Nkx2.2-
creERT2) invariably remained close to 
the ventral midline (Fig. 1A). The 
pMN domain (Olig2-tva-cre) generat-
ed mainly oligodendrocyte precursor 

cells (OPs), which migrated extensively (Fig. 1B,H), and some FAs [4% 
of all GFP+ cells in spinal cord at postnatal day 7 (P7)] (fig. S1D, table 
S1) (20), that settled in ventral white matter (Fig. 1B). For intermediate 
and dorsal domains, we used cre driven by Ngn3, Dbx1, Msx3, Math1 or 
Pax3 regulatory sequences (Fig. 1C,D; table S1, fig. S1E-H). These data 
indicate that all spinal cord GFAP+ FAs distribute radially, in register 
with the DV position of their neuroepithelial precursors. 

PAs and FAs are morphologically and functionally distinct (21, 22). 
We employed Aldh1L1-GFP astrocyte-specific reporter mice (7) and 
antibodies recognizing AldoC (6), which mark both PAs and FAs but 
few, if any, neurons or Olig2+ cells (Fig. 1E,F; fig. S2E; fig. S3A,B; 
Movie S1). Fate mapping of BLBP-cre expressing precursors (fig. 
S3C,D) demonstrated that PA and FA are generated from radial glia 
and/or their progeny. PAs and FAs originating from the same precursor 
domain came to rest within overlapping territories. For example, com-
bining Pax3-cre with the Aldh1L1-GFP reporter confirmed that all 
Pax3-derived PAs and FAs remained confined to dorsal spinal cord (Fig. 
1G). Despite reports that FAs and PAs develop via distinct pathways 
(16, 23, 24), we did not observe any domain dedicated to either FAs or 
PAs. 

We next attempted to disrupt radial astrocyte distribution. First, be-
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cause embryonic pMN-derived OPs disperse in all directions (Fig. 1I) 
(25), we tested whether this domain might similarly promote tangential 
astrocyte migration. In Olig2 null embryos the pMN domain is trans-
formed into a p2-like domain that generates astrocytes instead of OPs 
(26). In the E18 Olig2-cre-null spinal cord, we found increased numbers 
of “p2-type” astrocytes (fig. S1I) but, nonetheless, these remained spa-
tially constrained within the ventral cord (Fig. 1I-N). While all domains 
examined produced astrocytes, they showed different potential for the 
generation of astrocytes versus oligodendrocytes (fig. S1J), most dramat-
ically illustrated by Olig2-null animals. Time-lapse imaging of spinal 
cord slice cultures revealed exclusively radial movement of Aldh1L1-
GFP cells (fig. S3E,F), even after a heterotopic transfer of GFP-labeled 
VZ progenitors into unlabeled slices (fig. S3G-K). Together, these data 
reveal a strictly segmental investment of the developing spinal cord by 
astrocytes (fig. S1A). 

Might astrocytes undergo secondary tangential migration at later 
stages or during adulthood? Ngn3 transcripts are transiently expressed in 
intermediate neural tube from E12.5-14.5 (fig. S2A-D). As shown (Fig. 
2A, fig. S2E,F), intermediate domain PAs derived from embryonic 
Ngn3-cre labeled radial glia persisted up to six months without attrition 
or migration. We induced Nkx2.2-creERT2:Rosa26-YFP mice with 
tamoxifen (E10-12, after generation of p3-derived neurons) and visual-
ized the labeled astrocytes one year later (Fig. 2B). Even at this ad-
vanced age, FAs and PAs were confined in a tight ventromedial 
distribution. These findings show that the long-term distribution of as-
trocytes in the adult spinal cord is determined during embryogenesis by 
their site of origin in the VZ (fig. S2G). 

We attempted to disrupt the normal “segmental” pattern of astro-
cytes by acute injury-induced gliosis in adult Rosa26 -tdTomato condi-
tional reporters crossed into Nkx2.2-creERT2 (induced at E14) or Dbx1-
cre backgrounds. However, no ventrally derived astrocytes migrated into 
a dorsal stab wound after 12 or 28 days, despite the lesion tract passing 
very close to the labeled astrocytes (Fig. 2C-F). 

A possible explanation for the lack of mobility was that all astrocyte 
niches were fully occupied, preventing immigration from other domains. 
Previously, we achieved selective elimination of OPs using Diphtheria 
toxin A (DTA) under Sox10 transcriptional control (27). We generated an 
analogous Aldh1L1-based system in which the non-recombined 
transgene expresses eGFP, whereas cre exposure deletes eGFP and 
promotes DTA expression (Fig. 3A). Intercrosses with Pax3-cre mice 
resulted in perinatal lethality (10% survivors observed versus 25% ex-
pected). The dorsal spinal cord (corresponding to the Pax3 domain) of 
P25 animals showed atrophy, reduction in the total number of Aldh1L1-
expressing cells, loss of neuropil and congested neurons (Fig. 3C,D; fig. 
S4A). We did not observe increased inflammation, gliosis or BBB per-
meability in these mice (fig. S4A,C), suggesting that remaining astro-
cytes were sufficient for structural maintenance. While ventral astrocytes 
might have invaded to rescue the dorsal cord, this possibility was ruled 
out because they would have continued to express GFP. The mild pheno-
type of Pax3-cre:Aldh1L1-DTA animals suggested astrocyte depletion 
rather than ablation. We quantified astrocyte depletion by crossing 
Aldh1L1-DTA with BLBP-cre, active in radial glia. Double-transgenics 
died at birth, but at E17.5 we observed 43% excision of transgene GFP 
and a 28% reduction in AldoC+ astrocytes (fig. S4B). It is possible that 
some astrocytes survived because they are resistant to attenuated DTA 
(27); alternatively, BAC transgene expression might be variegated. 

We tested whether astrocyte depletion could be used to assess local 
neuronal support functions using Olig2-cre:Aldh1L1-DTA mice, which 
were suitable because motor neurons (MNs, derived from pMN) are 
invested with several synaptic terminal types (Fig. 3E). While we found 
a ~30% depletion of AldoC+ astrocytes in the ventral horns at P28 (fig. 
S4C), the number and size of MNs was unaffected (fig. S5A,B). We 
counted choline acetyl-transferase (CHAT)+ synaptic relays over the 

entire surface of MN soma but found no significant differences between 
DTA and control mice (fig. S5C). Similarly, we found no change in the 
number of vGluT2-PSD95+ excitatory pre-synaptic inputs (fig. S5F). In 
contrast, there was a significant (p = 0.006) decrease in functional 
vGluT1-PSD95+ excitatory inputs from proprioceptive axons and a sig-
nificant increase (p = 0.004) in vGAT-gephyrin+ inhibitory inputs in 
DTA mice (Fig. 3H-K,S5D,E). Thus, pMN-derived astrocytes are re-
quired for genesis and/or maintenance of certain types of synapses on 
MNs and this function cannot be rescued by astrocytes from adjacent 
domains. 

Is localized investment of astrocytes a general phenomenon through-
out the CNS? We analyzed intercrosses of Emx1-cre, Dbx1-cre or 
Nkx2.1-cre drivers, which label dorsal, intermediate and ventral fore-
brain precursor cells, respectively, with a conditional Rosa-tdTomato 
reporter line or Aldh1L1-GFP. Forebrain astrocytes all demonstrated DV 
restriction associated with their domains of origin without detectable 
secondary migration (Fig. 4A-N,S7A), even after injury (fig. S6). We 
observed many GFP+ cortical interneurons in Nkx2.1-cre:Rosa-
tdTomato mice that migrate from the medial ganglionic eminence during 
development (Fig. 4K-N). In sharp contrast, astrocytes derived from 
Nkx2.1-cre territory remained ventral (Fig. 4J,L,N). 

Our transgenic cre-loxP approach labeled broad progenitor domains. 
For higher resolution, we targeted foci of radial glia by Adenovirus-cre 
infection of the cortical surface of P1 Z/EG reporter mice (28), and ana-
lyzed the forebrains by GFP immunolabeling at P4 and P28 (Fig. 4O-S; 
fig. S7B). At P4, GFP+, AldoC+ immature astrocytes were found in 
close association with infected radial glial fibers (Fig. 4O). At P28, we 
observed restricted labeling of ependymal and astrocyte-like cells in the 
VZ and Sub-VZ along with a trail of astrocytes distributed along the 
former trajectory of the radial glial processes (Fig. 4P-R). This experi-
ment was performed repeatedly (n = 77) to label dorsal-ventral and ros-
tral-caudal regions comprehensively. Three-dimensional reconstructions 
of findings are summarized in Fig. 4S and Movies S2-5. In every case, 
we found that the distribution of labeled astrocytes corresponded closely 
to the trajectories of the processes of their radial glial ancestors, in keep-
ing with other findings in cortex (29). 

Although certain astrocyte functions might be common throughout 
the CNS (e.g., formation of the BBB), other functions subserve the local 
neuronal circuitry and might be domain-specific. In the present study we 
tested (1) whether astrocytes generated in different domains become 
intermixed or remain spatially segregated, (2) whether neurons are func-
tionally dependent on astrocytes that are generated from the same pro-
genitor domains, and (3) whether such domain-specific roles can be 
rescued by astrocytes from adjacent regions. Our data indicate that astro-
cytes migrate from the VZ in a strictly radial fashion, reminiscent of the 
columnar distribution of cortical projection neurons (30), forming well-
defined, stable spatial domains throughout the CNS. We found no evi-
dence for secondary tangential migration of FAs or PAs during devel-
opment, adulthood or following injury. Consistent with our findings, a 
recent study shows postnatal cortical astrocyte generation from local, 
non-radial glial precursors (31). The restricted distribution of forebrain 
astrocytes following neonatal adenovirus infection results in exquisite 
maps reflecting the original trajectory of their radial glial precursors. It 
follows that astrocytes might serve as a scaffold and retain spatially en-
coded information established during neural tube patterning, e.g. for 
purposes of axon guidance. 

Astrocytes in various spatial domains might become specialized for 
interactions with their own particular neuronal neighbors as result of 
common patterning mechanisms. We selectively removed a fraction of 
pMN-derived astrocytes by targeted expression of DTA and found that 
numbers of certain synapses on MNs were significantly altered. Our 
findings show that astrocytes from neighboring progenitor domains were 
unable to invade and rescue the depleted area, indicating essential re-
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gion-specific neuron-astrocyte interactions. The transgenic tools we have 
developed allow for genetic manipulation of specific astrocyte sub-
groups, e.g., to mis-specify their positional fate while leaving early VZ 
patterning and neuronal sub-type specification intact. Our findings 
demonstrate that region-restricted astrocyte allocation is a general CNS 
phenomenon and reveal intrinsic limitations of the astroglial response to 
injury. They further suggest that astrocytes might act as stable reposito-
ries of spatial information necessary for development and local regula-
tion of brain function. 
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Fig. 2. Absence of tangential astrocyte 
migration in adult spinal cord even after 
injury. (A) Bushy GFP+ PAs in Ngn3-
cre:Z/EG cord persisted > 6 months of age. 
(B) Astrocytes in Nkx2.2-creERT2 (induced 
E10-11):Rosa26-YFP cords remain ventrally 
restricted at one year. (C-F) Post-stab 
gliosis does not recruit astrocytes from 
adjacent domains. Fate mapped astrocytes 
(arrows) in Rosa26-tdTomato on the Nkx2.2-
creERT2 (induced E14; C,D) or Dbx1-cre 
(E,F) background remain confined to ventral 
or intermediate cord, respectively, 12dpl and 
28dpl. Intense GFAP staining indicates 
lesion site (dashed lines, white arrowheads 
indicate needle trajectory). 

Fig. 1. Segmental distribution of fibrous and 
protoplasmic astrocytes in spinal cord. (A) 
Nkx2.2-creERT2 (tamoxifen induction E10.5-
E12.5):Rosa26-YFP fate map shows YFP+, 
GFAP+ cells at the ventral midline at P0. (B) 
In P2 Olig2-tva-cre:CAG-GFP mice, 
astrocytes remain in register with pMN 
whereas Olig2+ OPs distribute widely. (C) 
Ngn3-cre:Z/EG P1 cord shows intermediate 
wedge of astrocytes. (D, G, G’) At P2, FAs 
and PAs in Pax3-cre animals remain 
dorsally restricted. (E,F) Aldh1L1-GFP co-
expression with GFAP+ (FAs) and AldoC+ 
(FAs and PAs) cells. (H-N) Astrocytes from 
Olig2cre/+ spinal cord have a restricted 
ventral distribution. In Olig2cre/cre nulls, we 
observe significantly (*p<0.0001) increased 
p2 type (GFAP+, Pax6+, AldoC+) astrocytes 
(fig. S1), which fail to migrate from the 
ventral domain. Scale bars = 200 μm. 
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Fig. 3. Regional astrocyte depletion results in neuronal abnormalities. (A) Cartoon of Aldh1L1-DTA transgene; 
cre excises eGFP-Stop cassette allowing DTA transcription. (B) Regions targeted by Pax3-cre or Olig2-cre. 
(C,D) Pax3-cre:Aldh1L1-DTA mice show absence of GFP, neuropil and congested appearance of NeuN (red) 
neurons in dorsal cord. (E) Cartoon of MN soma and synapse subtypes. (F,G) We observed no differences in 
the number of cholinergic CHAT or vGlut2 (fig. S5) synapses. (H,I) Numbers of excitatory vGluT1-PSD95 
synapses were significantly decreased while (J,K) inhibitory vGAT-Gephyrin synapses were significantly 
increased in bigenic animals compared with controls. For quantification, see fig. S5. 
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Fig. 4. Region-restricted astrocyte investment from forebrain radial glia. (A-D) Emx1-creERT2 (induced E17):Rosa26-tdTomato 
labeled cells; note (A’) distribution of astrocytes (green) confined to cortical plate and corpus callosum. Red box indicates 
region of cortex analyzed in B-D. (E-I) Distribution of Dbx1-cre astrocytes in striatum. (J-N) Distribution of Nkx2.1-creERT2 
(induced E17) astrocytes in ventromedial forebrain. Red box in cortex indicates fate-mapped interneurons. (O-S) Distribution of 
astrocytes after radial glial Ad-cre infection of P1 Z/EG reporter mice in the forebrain regions indicated analyzed at P4 or P28. 
Astrocytes were recognized by morphology and AldoC immunolabeling. We injected dorsal (n=20), ventral (n=21), medial 
(n=19), and cortical (n=17) brain regions (red arrows). No tangential astrocyte migration was observed. PALv, ventral pallidum. 
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