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Cycling glial precursors—‘‘NG2-glia’’—are abundant in the developing and mature central nervous system
(CNS). During development, they generate oligodendrocytes. In culture, they can revert to a multipotent
state, suggesting that theymight have latent stem cell potential that could be harnessed to treat neurodegen-
erative disease. This hope has been subdued recently by a series of fate-mapping studies that cast NG2-glia
as dedicated oligodendrocyte precursors in the healthy adult CNS—though rare, neuron production in the
piriform cortex remains a possibility. Following CNS damage, the repertoire of NG2-glia expands to include
Schwann cells and possibly astrocytes—but so far not neurons. This reaffirms the central role of NG2-glia in
myelin repair. The realization that oligodendrocyte generation continues throughout normal adulthood has
seeded the idea that myelin genesis might also be involved in neural plasticity. We review these develop-
ments, highlighting areas of current interest, contention, and speculation.
NG2-glia in Perspective: The Neuron-Glial Dichotomy
The story of NG2-glia begins nearly thirty years ago, with the

discovery of a class of glial precursors—‘‘O-2A progenitors’’—

that could generate oligodendrocytes or type-2 astrocytes in

cultures of perinatal rat optic nerve cells (Raff et al., 1983).

(Two types of glial fibrillary acidic protein [GFAP]-expressing

astrocytes, type-1 and type-2, were recognized in culture; only

type-2 astrocytes arose from O-2A progenitors.) O-2A progeni-

tors express a range of defining molecular markers including

the nerve/glial antigen-2 (NG2, a proteoglycan core protein)

and the platelet-derived growth factor receptor (alpha subunit,

PDGFRa). Using these and other markers, the natural history of

O-2A progenitors began to be revealed. It was shown that

O-2A progenitors first develop in the ventricular germinal zones

of the embryonic spinal cord and brain and disseminate through

the developing CNS by proliferation and migration, becoming

more-or-less uniformly distributed throughout the CNS soon

after birth in rodents (reviewed by Miller, 1996; Richardson

et al., 2006). After birth, O-2A progenitors associate with axons

and generate myelinating oligodendrocytes, which are required

for fast and efficient propagation of action potentials.

Cells with an antigenic phenotype that closely resembled peri-

natal O-2A progenitors were also identified in adult optic nerves

(ffrench-Constant and Raff, 1986; Wolswijk and Noble, 1989).

These behaved as bipotential oligodendrocyte-astrocyte

precursors in culture, just like their perinatal counterparts, but

were found to divide, migrate, and differentiate more slowly

(Wren et al., 1992). The existence of these ‘‘adult O-2A progen-

itors’’ was immediately recognized to have important implica-

tions for the repair of demyelinating damage such as occurs

during multiple sclerosis. Cells that express Pdgfra mRNA,

presumed to correspond to adult O-2A progenitors, were also

visualized throughout the mature brain in situ (Pringle et al.,
1992). Thesewere surprisingly numerous—around 5%of all cells

in the CNS (Pringle et al., 1992; Dawson et al., 2003). Using anti-

bodies against NG2 (Stallcup and Beasley, 1987; Diers-Fenger

et al., 2001), a continuous network of NG2 immuno-positive cells

and cell processes was revealed, extending through all parts of

the adult brain and spinal cord (Butt et al., 1999; Ong and Levine,

1999; Nishiyama et al., 1999; Chang et al., 2000; Horner et al.,

2000; Diers-Fenger et al., 2001; Dawson et al., 2003). The abun-

dance and ubiquitous distribution of these NG2+ cells was visu-

ally striking—shocking, even—and they came to be regarded as

a novel ‘‘fifth neural cell type’’ after neurons, oligodendrocytes,

astrocytes and microglia (Nishiyama et al., 1999; Chang et al.,

2000; Butt et al., 2002, 2005; Dawson et al., 2003; Peters,

2004). NG2 and PDGFRa are also expressed by pericytes asso-

ciated with the CNS vasculature (NG2+ and PDGFRa+ pericytes

appear to be distinct). However, double immunolabeling has

shown that PDGFRa+ and NG2+ nonvascular cells are essentially

one and the same population (e.g., Nishiyama et al., 1996; Diers-

Fenger et al., 2001; Dawson et al., 2003; Rivers et al., 2008).

Therefore, in this review we refer to the latter as ‘‘NG2-glia’’ to

distinguish them from pericytes.

In the meantime, attempts to identify type-2 astrocytes in the

developing CNS in vivo had stalled, so a consensus arose that

type-2 astrocytes were an artifact of culture. The term ‘‘O-2A

progenitor’’ gradually passed out of general use and was

replaced by ‘‘oligodendrocyte precursor’’ (OLP) or ‘‘oligoden-

drocyte precursor cell’’ (OPC) to reflect the then-prevailing

view (in the 1990s) that these cells are dedicatedmainly or exclu-

sively to oligodendrocyte production during normal develop-

ment and presumably also in the adult. The nature of type-2

astrocytes and their relationship to real cells in vivo was—and

still is—an interesting conundrum. The relationship between

OLPs in the perinatal CNS and NG2-glia in the adult was also
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not immediately obvious. Although it seemed likely that the adult

cells were descended by lineage from their perinatal counter-

parts this was not formally demonstrated until later, with the

advent of genetic fate-mapping approaches in transgenic mice

(see below). In this article we refer to both the perinatal and adult

cells as NG2-glia.

The sheer number of NG2-glia in the adult brain and their

uniform distribution in both gray and white matter seemed coun-

terintuitive. Given their presumed role as oligodendrocyte

precursors, should they not be concentrated in white matter

where they would presumably be in most demand for myelinat-

ing axons? Why should so many precursor cells persist in the

mature adult brain in any case? Moreover, the complex

process-bearing morphology of NG2-glia in vivo seemed more

in keeping with differentiated cells than immature precursors.

Perhaps NG2-glia served a dual purpose—as a source of oligo-

dendrocytes during development but fulfilling some more

homeostatic or ‘‘functional’’ role in the adult (Nishiyama et al.,

1999; Butt et al., 2002; Wigley et al., 2007; Nishiyama et al.,

2009). Anatomical studies revealed that NG2-glia form close

contacts with neurons—with axons at nodes of Ranvier and in

close proximity to synapses at neuronal cell bodies (Butt et al.,

1999, 2002; Wigley and Butt, 2009). The hypothesis was born

that NG2-glia, or a subset of them, might be involved in some

aspects of information processing, in partnership with neurons.

This idea took off—and NG2-glia became really ‘‘exciting’’—

when electrophysiologists weighed in. It was already known

that NG2-glia express some ion channels and neurotransmitter

receptors and that glutamate can influence their proliferation

and differentiation in culture (Barres et al., 1990; Patneau et al.,

1994; Gallo et al., 1996). However, the first demonstration that

NG2-glia in the hippocampus receive long-range synaptic input

from neurons in vivo sent waves through the research commu-

nity (Bergles et al., 2000). Synaptic communication between

neurons and NG2-glia, both glutamatergic and GABAergic,

was subsequently demonstrated in the cerebellum and cerebral

cortex, both in gray and white matter (Lin and Bergles, 2002;

Chittajallu et al., 2004; Káradóttir et al., 2005; Lin et al., 2005;

Salter and Fern, 2005; Paukert and Bergles, 2006; Kukley

et al., 2007; Ziskin et al., 2007; Hamilton et al., 2009). Physical

synapses were identified between NG2 glia and unmyelinated

axons in the corpus callosum (Kukley et al., 2007; Ziskin et al.,

2007). Some NG2-glia were found to display spiking sodium

currents in response to an initial depolarization (Chittajallu

et al., 2004; Káradóttir et al., 2008; Mangin et al., 2008; De Biase

et al., 2010). Suddenly, NG2-glia appeared exotic, ambiguous—

glial in form (since they do not possess axons) but with some

electrical properties akin to neurons. Their chimeric nature also

contributed to the idea that NG2-glia, in their ‘‘other’’ role as

precursor cells, might be more malleable than previously imag-

ined and perhaps capable of transforming into neurons as well

as glia.

NG2-glia as Multipotent Neural Stem Cells?
One study in particular launched the idea of NG2-glia as latent

neural stem cells. This was the demonstration that NG2-glia puri-

fied from early postnatal (P6) rat optic nerves can apparently be

reprogrammed into multipotent stem cells by first treating with
662 Neuron 70, May 26, 2011 ª2011 Elsevier Inc.
fetal calf serum (FCS) or bone morphogenetic proteins (BMPs)

to generate type-2 astrocytes, followed by growth in basic fibro-

blast growth factor (bFGF) to generate free-floating balls of

cells (neurospheres) containing neural stem cells (Kondo and

Raff, 2000). Individual cells from these neurospheres could

give rise to colonies containing a mixture of neurons, astrocytes,

and oligodendrocytes, judged by immunolabeling with cell

type-specific antibodies (Kondo and Raff, 2000). This study

suggested that NG2-glia are more plastic than previously

believed and suggested an explanation for previous reports

that newborn rat optic nerve cells can generate neurons in

culture, even though optic nerves do not normally contain

neurons (Omlin and Waldmeyer, 1989).

These developments took place against a backdrop of ex-

ploding interest in stem cells of all sorts and neural stem cells

in particular. A landmark series of papers had shown that sube-

pendymal astrocytes (‘‘type-B cells’’) in the subventricular zone

(SVZ) of the adult rodent forebrain are in fact neural stem cells

that generate migratory neuroblasts (‘‘type-A cells’’) destined

for the olfactory bulb (Doetsch et al., 1999). These neuroblasts

follow the ‘‘rostral migratory stream’’ (RMS) from the SVZ to

the olfactory bulb, where they differentiate into new olfactory

interneurons of various types throughout adult life. It seemed

(and still seems) possible that the type-2 astrocytes formed by

culturing optic nerve NG2-glia with FCS or BMPs (Kondo and

Raff, 2000)might be functionally analogous to the subependymal

astrocytes (stem cells) of the SVZ. SVZ stem cells, hippocampal

stem cells, and cultured type-2 astrocytes all express the glial

fibrillary acidic protein (GFAP), for example, and all generate

neurosphere-like bodies when cultured in the presence of

bFGF. Subsequent reports that SVZ stem cells and their imme-

diate progeny express NG2 and PDGFRa—as also do type-2

astrocytes—lent support to this interpretation (Belachew et al.,

2003; Aguirre and Gallo, 2004; Jackson et al., 2006). Taken

together, these observations implied that SVZ stem cells,

type-2 astrocytes and parenchymal NG2-glia might all be close

relatives.

The world of glia was up-ended. No longer were glial cells

simply the ‘‘support cells of neurons’’ but rather the precursors

of neurons, with neuron-like character of their own. Revolu-

tionary ideas need firm foundations, so several labs geared

up to test the differentiation fates of NG2-glia directly in vivo,

using Cre-lox technology in transgenic mice. The first wave of

such studies is now published and the conclusion is clear, if

chastening: by far the most common differentiation products of

parenchymal NG2-glia are oligodendrocytes, both in the normal

and injured adult CNS. Some NG2-expressing cells produce

astrocytes during embryonic development but not in the normal

adult CNS. In the damaged CNS, the situation is a little more

encouraging; following focal demyelination, for example, NG2-

glia can generate remyelinating Schwann cells and possibly

some astrocytes in addition to oligodendrocytes. However, the

notion of NG2-glia as neuronal precursors has taken a significant

blow. Although NG2-glia have some limited lineage plasticity—

a source of continuing optimism for therapeutic applications—

they are, by and large, precursors of myelinating cells. This shifts

attention back to the therapeutic potential of NG2-glia in demy-

elinating conditions such as multiple sclerosis and spinal cord
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injury. It also raises a raft of intriguing new questions concerning

the role of myelination during normal adulthood.

Cre-lox Fate Mapping: Potential Pitfalls
The general principles of Cre-lox fate mapping are as follows.

Mice expressing Cre recombinase under transcriptional control

of a gene that is active in NG2-glia (e.g., Pdgfra, NG2, Olig2,

Plp1) are generated by conventional transgenesis using a

plasmid or bacterial artificial chromosome (BAC) or else by

homologous recombination in ES cells (knockin). These are

crossed with a Cre-conditional reporter line—e.g., Rosa26-lox-

STOP-lox-GFP, where Rosa26 is a ubiquitously active promoter,

lox the recognition site for Cre recombinase, STOP a series of

four cleavage/polyadenylation sites (which effectively stop

mRNA production) and GFP a cassette encoding green fluores-

cent protein. In double-transgenic offspring (e.g., NG2-Cre:

Rosa26-GFP), Cre-driven recombination within the reporter

transgene activates expression of GFP irreversibly in NG2-ex-

pressing cells and all of their descendants, which are identified

retrospectively by immunolabeling for GFP together with cell

type-specific markers. This version of the technique, using stan-

dard Cre, labels NG2-glia as they come into existence during

early development and therefore labels all of the progeny of

NG2-glia up to the time of analysis. An important modification

is to use CreER*, a fusion between Cre and a mutated form of

the estrogen receptor (ER*) that no longer binds estrogen at

high affinity but can bind 4-hydroxy tamoxifen (4HT), ametabolite

of the anti-cancer drug, tamoxifen. After binding 4HT, CreER*

translocates from the cytoplasm (where unliganded ER is nor-

mally sequestered) to the nucleus, triggering recombination

and reporter gene activation. This version of the technique allows

NG2-glia to be labeled inducibly (by administering tamoxifen or

4HT to themice) at a defined stage of development or adulthood,

and the course of division and differentiation of the NG2-glia

charted subsequently (Figure 1).

While this sounds straightforward, there are pitfalls. First

among these is the transcriptional specificity of the Cre trans-

gene, which rarely if ever targets exclusively the precursor cells

of interest. Ideally, one should compare and integrate data

from independent mouse lines that express Cre (or CreER*)

under different transcriptional control—e.g., under either Pdgfra

or NG2 control in the present context of NG2-glia. Another tech-

nical issue relates to the kinetics of Cre recombination—this

depends on the structure of the reporter transgene (e.g.,

distance between lox sites) as well as the level and duration of

Cre expression. Often, a larger proportion of the target cell pop-

ulation can be labeled using a ‘‘good recombiner’’ like Rosa26-

YFP (Srinivas et al., 2001) compared to a ‘‘poor recombiner’’

like Rosa26-eGFP (Mao et al., 2001). The commonly used

Z/EG (Novak et al., 2000) and Rosa26-LacZ (Soriano, 1999) lie

somewhere between these. There seems to be a threshold of

Cre expression, below which very little recombination of the

reporter gene occurs; this threshold is lower for a good re-

combiner than a poor recombiner. This effect can introduce

additional cell-type selectivity; for example, if a given mouse

line expresses Cre in two types of cell, but more highly in one

than the other, then reporter gene activation can effectively be

restricted to the more highly-expressing cells. This can be useful
in some circumstances; for example, it is probably the reason

that Olig2-CreER* drives recombination and reporter gene acti-

vation mainly in NG2-glia and not in differentiated oligodendro-

cytes (Dimou et al., 2008). However, in other situations it might

introduce unwanted bias, e.g., by subdividing the NG2-glia pop-

ulation in some unpredictable way. In short, Cre-lox fate

mapping studies need to be interpreted with care and an open

mind, each study considered on its own merits.

It is worth noting here that differences in the tamoxifen induc-

tion protocol—whether tamoxifen or 4HT is used, whether it is

administered by injection or gavage, or whether it is adminis-

tered once or several times, for example—can also affect the

efficiency of recombination independently of the reporter mouse

line employed. While this will result in a greater or lesser fraction

of NG2-glia becoming labeled, it will have no effect on the level of

expression of the reporter in individual cells because that is

determined purely by regulatory elements in the reporter trans-

gene itself. The flip side of this is that the reporter transgene

(e.g., Rosa26-based) is not necessarily expressed to the same

high level in all cell types, which in principle could lead to

under-estimation of certain cell types among the labeled

progeny of NG2-glia, although there is no evidence that this

has been a problem in the studies reviewed below.

NG2-glia GenerateOligodendrocytes but Not Astrocytes
during Normal Adulthood
Initially, constitutively active Cre was used in NG2-Cre BAC

transgenic mice to label the progeny of NG2 glia during brain

and spinal cord development (Zhu et al., 2008a, 2008b). As ex-

pected, a large proportion of myelinating oligodendrocytes

was found among the GFP-labeled progeny of perinatal NG2-

glia. In addition, significant populations of GFP-labeled proto-

plasmic astrocytes were found in the gray matter of the ventral

forebrain and spinal cord, though not in white matter. No other

labeled cells were identified—in particular, no neurons. A

follow-up study from the same group, usingNG2-CreER* instead

of NG2-Cre, allowed the progeny of NG2-glia to be traced in the

postnatal as well as the embryonic brain (Zhu et al., 2011). When

tamoxifen was administered at embryonic ages (E16.5), a similar

result was obtained as before—NG2-glia generated mainly

oligodendrocytes but also some protoplasmic astrocytes in

ventral brain territories. Using a reporter line (Z/EG) that recom-

bines inefficiently, Zhu et al. (2011) labeled a sparse subset of

embryonic NG2-glia that over time generated discrete clusters

(presumed clones) of sibling cells. They found that labeled cell

clusters contained either astrocytes or oligodendrocyte lineage

cells but not both, suggesting that different subsets of NG2-

glia in the embryonic CNS are specialized for production of

only ventral astrocytes or only oligodendrocytes. When tamox-

ifen was administered to postnatal mice (P2, P30, or P60)

a different result was obtained—this time no astrocytes were

found among the progeny of NG2-glia—concurring with

previous experience from other labs that had used different

CreER* lines (see below). These data imply that there are two

distinct subtypes of NG2-glia—‘‘astrogenic’’ and ‘‘oligo-

genic’’—in the early developing CNS, the astrogenic population

being depleted during late embryonic development. A feasible

explanation might go as follows. Neuroepithelial precursors
Neuron 70, May 26, 2011 ª2011 Elsevier Inc. 663



Figure 1. Compendium of Images of NG2-glia and Their Differentiated Progeny in Transgenic Mice
(A) Low-magnification epifluorescence image of the cerebral cortex of a P13 Sox10-GFPmouse showing the near-uniform distribution of oligodendrocyte lineage
cells, mainly NG2-glia.
(B) A single NG2-glial cell in the cerebellum of a P45 Pdgfra-CreER* : Rosa26-YFP mouse, identified by intrinsic fluorescence in a vibratome section, dye-filled
through a micropipet with Alexa Fluor 488 to reveal whole cell morphology and imaged by two-photon microscopy (Rivers et al., 2008).
(C) Adye-filledmyelinating oligodendrocyte in the corpus callosumof aPdgfra-CreER* :Rosa26-YFPmouse, inducedwith tamoxifen at P45and examined28days
later (P45 + 28) in the two-photon microscope (Rivers et al., 2008). This adult-born oligodendrocyes has >50 internodes. Reproduced from Rivers et al. (2008).
(D) A myelinating oligodendrocyte in the optic nerve of a Pdgfra-CreER* : Tau-mGFPmouse at P60 + 28. Membrane-tethered mGFP reveals full cell morphology
including the myelin sheaths.
(E) Amyelinating oligodendrocyte in the cortical grey matter of a Pdgfra-CreER* : Tau-mGFPmouse, showingmany short randomly orientated myelin internodes,
contrasting with the multiple aligned internodes in white matter.
(F) Remyelinating oligodendrocytes in a Pdgfra-CreER* : Rosa26-YFP focally-demyelinated spinal cord (Zawadzka et al., 2010). The mice were induced with
tamoxifen on four consecutive days starting at�P75, lysolecithin (1% v/v) was injected stereotaxically 4 days after the final dose and the animals were analyzed
3 weeks later by epifluorescence microscopy. Oligodendrocyte cell bodies are visualized with anti-GFP (green) and myelin sheaths with anti-PLP (red). Note that
cytoplasmic YFP is largely excluded from compact myelin, presumably for steric reasons.
(G) Remyelinating Schwann cells within a focal ethidium bromide (0.1% w/v)-induced lesion in Pdgfra-CreER* : Rosa26-YFP spinal cord (Zawadzka et al., 2010).
Schwann cells are visualized by immunolabelling for GFP (green) and the Schwann cell-specific protein Periaxin (red).
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(radial glia) in the ventral ventricular zone first divide asymmetri-

cally to maintain their own numbers while giving rise to prolifera-

tive NG2-glia, which migrate away from the ventricular surface,

generating oligodendrocytes during early postnatal develop-

ment and persisting as oligogenic NG2-glia into adulthood.
664 Neuron 70, May 26, 2011 ª2011 Elsevier Inc.
Then, just prior to birth, the remaining radial glia transform

directly into astrocytes, expressing NG2 transiently as they do

so; these astrocytes undergo limited cell division and settle in

ventral territories close to their region of origin. Direct trans-

differentiation of radial glia is a normal mode of astrocyte
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generation in the developing cortex, for example (Mission et al.,

1991). The given scenario is consistent with a study using Olig2-

CreER*, in which some astrocytes as well as oligodendrocytes

(andmotor neurons) were found among the progeny ofOlig2-ex-

pressing neuropithelial precursors in the embryonic ventral

spinal cord (Masahira et al., 2006).

Whatever the precise sequence of events during prenatal glio-

genesis, it now seems likely that NG2-glia do not generate astro-

cytes during normal healthy adulthood. Several Cre-lox

studies—using Pdgfra-CreER* (two independent lines: Rivers

et al., 2008; Kang et al., 2010), NG2-CreER* (Zhu et al., 2011;

see above), and Olig2-CreER* (Dimou et al., 2008) converge on

that conclusion. While some reporter-positive astrocytes were

observed in the cortical graymatter in theOlig2-CreER* line, their

number did not increase significantly between 8 and 65 days

post-tamoxifen administration, indicating that they were not

generated continuously from dividing NG2-glia (Dimou et al.,

2008). It appears that the Olig2-CreER* transgene is expressed

in some protoplasmic astrocytes in the normal gray matter,

resulting in labeling of some of these in addition to NG2-glia.

A subsequent study from the same lab (Simon et al., 2011)

marked NG2-glia in a different way, by long-term BrdU labeling

of 2- to 3-month-old mice, and confirmed that no astrocytes

were found among their differentiated progeny.

Neuron Genesis from NG2-glia—Fact or Fantasy?
NG2-glia exposed to appropriate environmental signals in

a culture dish appear to revert to a multipotent state, from which

they can generate neurons as well as oligodendrocytes and

astrocytes (Kondo and Raff, 2000). This sparked the widespread

hope that NG2-glia can be a regenerative resource for neurode-

generative diseases that involve neuronal as well as glial loss. A

number of studies have encouraged this hope by describing

neuronogenic properties of NG2-glia in the normal rodent

CNS. For example, NG2-glia in the neocortex and piriform

cortex have been reported to express Doublecortin (Dcx), an

established marker of migratory neuronal progenitors in the

forebrain SVZ/ RMS and hippocampus (Tamura et al., 2007;

Guo et al., 2010). Some NG2+ cells in the piriform cortex have

been found to express Sox2 and Pax6 (Guo et al., 2010), two

more neural stem cell markers. Conversely, SVZ and hippo-

campal stem cells have been reported to express NG2

(Belachew et al., 2003; Aguirre and Gallo, 2004) and PDGFRa

(Jackson et al., 2006) and to actively transcribe a CNP-GFP

transgene (Belachew et al., 2003; Aguirre and Gallo, 2004;

Aguirre et al., 2004). However, not all of these observations

have survived scrutiny. For example, other labs have failed to

confirm NG2 or PDGFRa antibody labeling of SVZ or hippo-

campal stem cells (Komitova et al., 2009) or to detect NG2 or

PDGFRa promoter activity in these stem cell populations in

BAC transgenic mice (Rivers et al., 2008; Zhu et al., 2008a;

Kang et al., 2010). While antibody-labeling experiments are

notoriously difficult and artifact-prone, genetic labeling should

be more predictable—so one might imagine—and therefore

capable of providing an unequivocal answer to the question

‘‘do NG2-glia generate neurons’’? However, Cre-lox fate

mapping studies have still not completely eliminated the contro-

versy around this question.
Using Pdgfra-CreER*: Rosa26-YFP mice, our lab found that

although NG2-glia generate predominantly Sox10-positive

oligodendrocyte lineage cells during normal adulthood, some

Sox10-negative, YFP+ cells appeared and accumulated in

layers 2 and 3 of the anterior piriform cortex (aPC) (Rivers

et al., 2008). The cells acquired NeuN reactivity and morpholog-

ically resembled piriform projection neurons. The scale of

neuron genesis was small; we estimated that only �1.4% of

the neurons present in layers 2/3 of the aPC were generated

in the �200 days after P45 (Rivers et al., 2008). Two things

pointed to their being generated continually from precursor

cells: (1) they were not observed until around 1 month after

tamoxifen administration, suggesting that they differentiated

slowly from NeuN-negative precursors and (2) they steadily

increased in number between 28 and 210 days posttamoxifen.

It is difficult to imagine how YFP-labeled PC neurons could

continue to accumulate months after tamoxifen administration

had ceased, unless they were generated from a population of

precursor cells that had recombined the YFP reporter gene at

the time of tamoxifen addition. They could not have been

generated from SVZ stem cells because no YFP+ PC neurons

were found in Fgfr3-CreER*:Rosa26-YFP mice, which marks

all GFAP+ SVZ stem cells and their neuronal progeny in the

olfactory bulb, for example (Rivers et al., 2008; Young et al.,

2010). We were unable to colabel the YFP+ neurons with

BrdU, even after months (100 days) of BrdU exposure via the

drinking water, indicating that they might have formed by direct

transformation of long-term-quiescent precursors. Since we

found that �50% of NG2-glia did not incorporate BrdU over

the same time scale (this is controversial), we suggested that

the new PC neurons were formed by transdifferentiation of

postmitotic NG2-glia (Rivers et al., 2008; Psachoulia et al.,

2009). Another possibility is that the new aPC neurons were

produced from some other pool of Pdgfra-expressing precur-

sors, as yet unidentified. Pdgfra is expressed by large numbers

of cells outside of the CNS so the new neurons could conceiv-

ably originate from precursors that enter the CNS via the

circulatory system. Alternatively, they might be generated from

Pdgfra+ perivascular cells within the CNS. (NG2+, PDGFRb+)

perivascular pericytes have been reported to generate neurons

and glia in culture in response to bFGF (Dore-Duffy et al., 2006),

so it is conceivable that PDGFRa+ pericytes might have similar

stem cell-like properties.

One other study has reported PC neurons from NG2-glia

(Guo et al., 2010). This study used Plp1-CreER*: Rosa26-YFP

mice to follow fates of NG2-glia in the healthy adult CNS. Plp1

is expressed in differentiated oligodendrocytes as well as

NG2-glia, so Guo et al. (2010) could not address questions about

new oligodendrocyte production; however, like Rivers et al.

(2008), they did observe YFP-labeling of PC projection neurons.

Their labeled neurons first became apparent 17 days posttamox-

ifen and increased in number for at least 180 days. Control

experiments using GFAP-CreER*: Rosa26-YFP mice to mark

SVZ stem cells ruled out the possibility that the newly-labeled

PC neurons were SVZ-derived. Thus, there are strong parallels

between the experiments and data of Guo et al. (2010) and our

own (Rivers et al., 2008), except that Guo et al. (2010) described

their neurons in the posterior piriform cortex (pPC) (Bregma
Neuron 70, May 26, 2011 ª2011 Elsevier Inc. 665
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levels �2.3 mm to �1.1 mm), whereas ours were predominantly

in the aPC.

Using their own independently generated line of Pdgfra-

CreER* mice, Kang et al. (2010) failed to detect production of

long-term surviving GFP+ neurons in the PC or elsewhere in

the forebrain. The reason for this difference between their study

and ours (Rivers et al., 2008) is not clear. Since the Pdgfra BACs

used for transgenesis were different (ours contained �55 kb

upstream and �74 kb downstream of the Pdgfra gene, theirs

�70 kb upstream and �40 kb downstream) it is conceivable

that they might have inherently different transcriptional speci-

ficity—e.g., our BAC but not theirs might contain a regulatory

element required for expression of the Pdgfra-CreER* transgene

in a particular set ofPdgfra-expressing neuronal precursors. This

presupposes that the putative Pdgfra+ precursors are some-

thing other than NG2-glia, since both Pdgfra-CreER* transgenes

are demonstrably expressed in NG2-glia. Alternatively, it might

depend on where one looks —we quantified piriform neuron

production in the aPC (Bregma levels +0.22 mm to +1.2 mm)

(Rivers et al., 2008 and unpublished), whereas Kang et al.

(2010) examined pPC (Bregma �1.9 mm to +0.5 mm).

Other groups have reported small numbers of reporter-posi-

tive neurons (NeuN+) throughout the forebrain—particularly the

ventral forebrain—at short times after CreER* induction, but dis-

counted these as probably resulting from sporadic CreER*

expression in the neurons themselves (Dimou et al., 2008;

Kang et al., 2010; Guo et al., 2010; Zhu et al., 2011). In one study

YFP+, NeuN+ neurons were observed for only a few days

following 4HT injection into NG2-CreER*: Rosa26-YFP mice

(Zhu et al., 2011), suggesting that these neurons were eliminated

from the CNS after a short time or else became NeuN

negative (or YFP negative). The aPC neurons that we observed

(Rivers et al., 2008) are distinct from these and, whatever their

origin, cannot easily be explained by sporadic activation of the

CreER* transgene in neurons (Kang et al., 2010; Zhu et al.,

2011), or by some aspect of the tamoxifen protocol (Simon

et al., 2011).

Further experiments will be required to resolve the ambiguity

around PC neuron genesis. For example, it will be useful to

establish whether there is a real difference between the two

Pdgfra-CreER* lines (Rivers et al., 2008; Kang et al., 2010). If

there is, then differences in the transcriptional specificity of the

two transgenes might give clues to the origin of the PC neurons

observed by Rivers et al. (2008). The transcriptional specificity of

the Plp1 promoter-proximal fragment used in Plp1-CreER*

(Guo et al., 2010) also needs to be examined. This is a fragment

of the Plp1 gene (2.4 kb of 50 sequence plus exon1 and intron1)

(Doerflinger et al., 2003), and it cannot be assumed to exactly

mimic endogenous Plp1 expression—which itself is not entirely

oligodendrocyte lineage specific, being expressed in a subset

of multipotent precursors during development (Delaunay et al.,

2009; Guo et al., 2009; Kang et al., 2010) as well as in some

differentiated neurons (Nery et al., 2001; Miller et al., 2009).

This potentially complicates interpretation of fate mapping

studies (Guo et al., 2009, 2010). It is quite important to get to

the bottom of these discrepancies because, at the very least, it

will refine our understanding of the Cre-lox system and its poten-

tial shortcomings.
666 Neuron 70, May 26, 2011 ª2011 Elsevier Inc.
In any case, there seems to be something interesting going on

in the PC. There has been a steady trickle of evidence for

neuronal progenitors/immature neurons residing there. For

example, cells in the PC have been reported to express Double-

cortin, polysialated NCAM, Sox2, and other markers of neural

precursor cells (Seki and Arai, 1991; Hayashi et al., 2001; Nacher

et al., 2001, 2002; Pekcec et al., 2006; Shapiro et al., 2007;

Bullmann et al., 2010; Guo et al., 2010). There have also been

reports of continued neuron genesis in the adult rodent and

primate PC and its modulation by olfactory stimulation (Bernier

et al., 2002; Pekcec et al., 2006; Shapiro et al., 2007; Arisi

et al., 2011). Another possibility is that the immature neuron

markers might be indicative of neuronal de-differentiation and

remodeling in response to changing inputs from the olfactory

bulb (OB) (Seki and Arai, 1993; Nacher et al., 2001), since

the aPC (otherwise known as the primary olfactory cortex)

is the primary target for output neurons (mitral cells) of the OB.

The internal OB circuitry is continually changing throughout life,

due to the addition of new OB interneurons from the SVZ, so

perhaps the whole olfactory system including the aPC is in

a constant state of flux.

Do NG2-glia Generate Reactive Astrocytes after Injury?
NG2-glia are known to react to injury by proliferating, upregulat-

ing NG2 expression and generating remyelinating oligodendro-

cytes when required (reviewed by Levine et al., 2001). Since their

differentiation potential is known to be influenced by their

environment in vitro (Kondo and Raff, 2000), it is possible that

they might display a broader range of fates following CNS

injury or disease, when their microenvironment is likely to be

altered by inflammatory cells and possibly through breach of

the blood-brain barrier. Therefore, it is of great interest to

discover the fates of NG2-glia in various experimental models

of disease or traumatic injury.

There has now been a handful of genetic fate mapping studies

of NG2-glia during various experimental pathologies in mice.

These include experimental autoimmune encephalomyelitis

(EAE) (Tripathi et al., 2010), acute gliotoxin-induced focal demy-

elination (Zawadzka et al., 2010), spinal cord section (Barnabé-

Heider et al., 2010), cortical stab wound (Dimou et al., 2008;

Komitova et al., 2011), and a mouse model of inherited amyotro-

phic lateral sclerosis (ALS; motor neuron disease) (Kang et al.,

2010). All these studies found that NG2-glia respond to injury

by proliferating and accumulating at the site(s) of damage, and

that their major differentiation products are new oligodendro-

cytes. In addition to oligodendrocytes, modest astrocyte

production was also reported in some but not all of these

studies—the main source of reactive astrocytes being preexist-

ing astrocytes, not NG2-glia. One study does not conform to this

pattern. This is a study of cell generation following a cold-

induced injury to the cerebral cortex (Tatsumi et al., 2008), in

which the major product of NG2-glia appeared to be proto-

plasmic ‘‘bushy’’ astrocytes, not oligodendrocytes (see below).

NG2-glia derived neurons were not found in any of these studies,

however. The main features of all the fate-mapping studies

discussed in this review are summarized in Table 1.

Following a cortical (gray matter) stab injury in adult Olig2-

CreER*: Z/EGmice, Dimou et al. (2008) reported oligodendrocyte



Table 1. Summary of Cre-lox Fate-Mapping Studies Discussed in this Article

CreER* Inducer Reporter Condition

% of NG2-glia

Labeled

Cell Types Generated

OL AS N Other

Pdgfraa tam R-YFP normal 45–50 +++ � + (aPC)

Pdgfrab 4HT Z/EG normal 40–45 +++ � �
R-YFP normal �90 nd nd �
Z/EG ALS (SC) ? +++ � �

Pdgfrac tam R-YFP EAE (SC) �30 +++ +/� �
Pdgfrad tam R-YFP focal demyelination �40 +++ +/� � Schwann cells

NG2e 4HT Z/EG normal <2 +++ � �
R-YFP normal �45 +++ � �

NG2f 4HT Z/EG cortical stab <2 +++ +/� nd

Olig2g tam Z/EG+R-GFP normal ? +++ +/� �
Z/EG+R-GFP cortical stab ? +++ +/� �

Olig2h 4HT R-GAP43-GFP cryoinjury ? � + �
Olig2i tam R-LacZ, R-YFP axotomy (SC) �40 +++ � �
Plp1j tam R-YFP normal 10 nd nd + (pPC)

R-YFP, Rosa26-YFP etc. (see text for references); SC, spinal cord; ALS, amyotrophic lateral sclerosis; aPC, anterior piriform cortex; pPC posterior piri-

form cortex; OL, oligodendrocyte lineage; AS, astrocytes; N, neurons; nd, not done. +/� indicates that some astrocytes were found but that thesewere

infrequent (<5% of reporter-positive cells) and/or could be explained by recombination in a subset of astrocytes soon after tamoxifen administration.
a Rivers et al. (2008).
b Kang et al. (2010).
c Tripathi et al. (2010).
d Zawadzka et al. (2010).
e Zhu et al. (2011).
f Komitova et al. (2011).
gDimou et al. (2008).
h Tatsumi et al. (2008).
i Barnabé-Heider et al. (2010).
j Guo et al., (2010).
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generation but little or no astrocyte production. An accumulation

of GFAP+ BrdU+ reactive astrocytes was found in the vicinity of

the lesion, as expected, but these were mostly reporter-negative

(i.e., not NG2-glia derived). Very similar results to these were re-

ported following cortical stab wounds in NG2-CreER*: Rosa26-

YFP mice (Komitova et al., 2011). A subsequent BrdU fate

mapping study (Simon et al., 2011) failed to find evidence for

any astrocyte production from dividing NG2-glia after cortical

stab injury. The emerging consensus from these studies is that

the reactive (hypertrophic, strongly GFAP+) astrocytes that form

the glial ‘‘scar’’ around sites of injury in the cortex are derived

predominantly or exclusively from pre-existing astrocytes, not

from NG2-glia. This conclusion has been supported by comple-

mentary experiments in which astrocytes were labeled specifi-

cally by injecting aGLAST-CreER* lentiviral vector into the cortex

of reporter mice, and their fates followed before and after cortical

stab injury (Buffo et al., 2008). Before injury, the labeled astro-

cytes were quiescent (did not incorporate BrdU after a long label)

but, after injury, they started dividing and generated many new

astrocytes, but not other cell types, at the site of the wound.

This also seems to be what happens after spinal cord injury.

Barnabé-Heider et al. (2010) made a transverse cut through the

dorsal funiculus of the spinal cord, severing the ascending and

descending axon tracts. They observed new oligogenesis but

insignificant astrocyte production from NG2-glia (marked using
Olig2-CreER*), despite a robust astrocytic reaction/gliosis.

Most interestingly, they identified two separate components

of the astrocytic reaction—a localized accumulation of GFAP+

astrocytes at the core of the lesion site in the dorsal funiculus

and a more diffuse accumulation/gliosis around the lesion site

and throughout the spinal cord at the level of the injury. These

two components had different cellular origins; the ‘‘core’’ astro-

cytes were derived from multipotent stem cells in the ependy-

mal zone surrounding the central canal of the cord (labeled

with FoxJ1-CreER*), whereas the ‘‘diffuse’’ astrocytes were

derived from pre-existing astrocytes in the parenchyma

(labeled with Connexin30-CreER*). It is curious that Barnabé-

Heider et al. (2010) found that all protoplasmic astrocytes in

the spinal cord were Olig2-immunoreactive in their experi-

ments. Despite this, the Olig2-CreER* transgene did not drive

recombination in astrocytes, perhaps because the level of

CreER* expression was below threshold (see above, under

heading ‘‘Cre-lox Fate Mapping: Potential Pitfalls’’). While this

worked out well for Barnabé-Heider et al. (2010), it does raise

the possibility that Olig2-CreER* might trigger recombination

in astrocytes in addition to oligodendrocyte lineage cells in

some circumstances.

In marked contrast to the above is a study by Tatsumi et al.

(2008), who followed the fates of NG2-glia following freeze-

thaw lesions in the cerebral cortex. They used Olig2-CreER*
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mice (the same line used by both Dimou et al. [2008] and

Barnabé-Heider et al. [2010]) tomark presumptive NG2-glia prior

to injury and reported a robust proliferative response followed by

production of ‘‘bushy’’ protoplasmic astrocytes between one

and 2 weeks postinjury. Astrocytes appeared to be the major

differentiated product of NG2-glia in this injury model; oligoden-

drocytes were not observed. However, in this study, as in that of

Dimou et al. (2008), Olig2-CreER* triggered recombination in

some protoplasmic astrocytes in addition to NG2-glia in the

uninjured cortex (�20% of reporter-positive cells were astro-

cytes at short times after 4HT administration; Tatsumi et al.,

2008). This leaves open the possibility that the reactive astro-

cytes formed after injury were derived from division of pre-exist-

ing astrocytes. Tatsumi et al. (2008) discounted this idea

because they failed to find BrdU-labeled GFAP+ astrocytes

shortly after injury but it is possible that there could have been

a delayedmitogenic response of astrocytes or slow upregulation

of GFAP in previously GFAP-negative astrocytes, either of which

might have obscured a transient population of BrdU+ astrocytes.

Nevertheless, the apparent absence of oligodendrocyte produc-

tion in the experiments of Tatsumi et al. (2008) marks their study

out from the others; perhaps the particular environment of the

freeze-thaw injury, as compared to stab injury for example,

inhibits NG2-glia from differentiating into oligodendrocytes. It is

important to confirm or refute this observation through cryo-

lesioning experiments in different CreER* mouse lines, because

it could perhaps provide a link to late-stage multiple sclerosis

lesions, in which inhibition of oligodendrocyte differentiation is

thought to contribute to remyelination failure.

Other researchers have examined the response of NG2-glia

during experimentally induced demyelination. In a gliotoxin-

induced focal demyelination model, Zawadzka et al. (2010)

found robust remyelination from NG2-glia (labeled using

Pdgfra-CreER*: Rosa26-YFP)—as expected from previous

studies (Redwine and Armstrong, 1998; Watanabe et al., 2002;

Dawson et al., 2003; reviewed by Franklin and ffrench-Constant,

2008; Figure 1F). A small proportion of YFP+ cells were Aqua-

porin-4+ astrocytes (�3%), but the great majority of reactive

astrocytes were derived from Fgfr3-expressing cells (ependymal

cells and/or preexisting astrocytes) (Young et al., 2010), because

they were YFP-labeled in Fgfr3-CreER*: Rosa26-YFP mice

(Zawadzka et al., 2010). Schwann cells, the myelinating cells of

the peripheral nervous system (PNS), are commonly found in

remyelinating CNS lesions including some human multiple scle-

rosis lesions. Often these remyelinating Schwann cells surround

blood vessels, which in the past has been taken to suggest that

they enter the CNS from the PNS, using the vessels as a migra-

tion route. However Zawadzka et al. (2010) found that most re-

myelinating Schwann cells (Periaxin+) in their CNS lesions were

YFP+ in Pdgfra-CreER*: Rosa26-YFP mice, suggesting that

they were derived from NG2-glia (Figure 1G). In strong support

of this, the CNS-resident Schwann cells were also labeled in

Olig2-Cre: Rosa26-YFP animals—Olig2 is not thought to be ex-

pressed outside of the CNS. Moreover, almost no CNS Schwann

cells, but many Schwann cells in peripheral nerves, were labeled

in Pzero-CreER*: Rosa26-YFP mice. (Pzero is expressed in

migrating neural crest and differentiated Schwann cells, but

not in the oligodendrocyte lineage.)
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Schwann cells were not a minor side product of NG2-glia

because 56% of all YFP+ cells in ethidium bromide-induced

lesions were Periaxin+ Schwann cells. (Despite this, most new

myelin is oligodendrocyte derived, because Schwann cells

each remyelinate only a single internode, whereas oligodendro-

cytes remyelinate many.) To our knowledge, this is the clearest

example to date of lineage plasticity among NG2-glia in vivo.

Since both oligodendrocytes and Schwann cells are myelinating

cells, relatively subtle reprogramming might be required to cross

between them.

In a different demyelinating model—experimental autoim-

mune encephalomyelitis (EAE), which causes more diffuse and

widespread demyelination than gliotoxin injection—Tripathi

et al. (2010) found robust production of NG2-glia-derived oligo-

dendrocytes but very fewSchwann cells. In EAE, there is a strong

inflammatory component to the pathology that is not present in

gliotoxin-induced demyelination, suggesting that the local

microenvironment in demyelinated lesions exerts a strong influ-

ence on the direction of differentiation of NG2-glia. Only a small

fraction of YFP+ cells (1%–2%) were GFAP+ astrocytes in EAE, in

keeping with the results from focal demyelination (Zawadzka

et al., 2010). A relatively high proportion (�10%) of YFP+ cells

in this EAE study could not be identified, despite much effort

with antibodies against microglia, macrophages, B or T cells,

neutrophils, vascular endothelial cells, pericytes, neurons, astro-

cytes, oligodendrocytes, and Schwann cells.

No astrocyte production from NG2-glia was detected in

a mouse model of hereditary ALS (Kang et al., 2010), despite

extensive astrocytosis in the ventral horns of the spinal cord

where motor neuron degeneration occurs. These authors did,

however, observe proliferation and accumulation of NG2-glia

and differentiated oligodendrocytes—an unexpected result,

since oligodendrocyte involvement in ALS pathology was not

previously suspected.Whether reactive NG2-glia are specifically

involved in myelin repair in ALS or an incidental byproduct of

tissue damage or inflammation is not known.

The gathering consensus seems to be that NG2-glia remain

largely committed to the oligodendrocyte lineage in the healthy

CNS and in most pathological situations. Exceptions are (1) the

still-unresolved question of low-level neuron genesis in the

piriform cortex during normal adulthood, (2) robust Schwann

cell generation following gliotoxin-induced demyelination, and

(3) production of a few GFAP+ astrocytes in some but not all

injury studies. Overall, lineage flexibility seems to be strongly

biased toward myelinating lineages. This injects a healthy dose

of realism and tempers our hopes for NG2-glia as a panacea

for neurodegenerative disease. It remains possible that NG2-

glia might have the potential to generate neurons but do not

readily reveal that potential in the environment of the damaged

CNS—at least not those conditions that have been examined

so far. Pharmacological interventions that can redirect differenti-

ation toward neurons might be found in the future, but it will not

be an easy fix. On the other hand, the data reaffirm the central

role of NG2-glia in myelin repair, in demyelinating conditions

such as multiple sclerosis or spinal cord injury. It has also been

useful to learn that the great majority of reactive astrocytes are

in most cases not descended from NG2-glia, but from paren-

chymal astrocytes that re-enter the cell cycle and, in the spinal
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cord, from ependymal cells around the central canal. The latter

cells represent a relatively unexplored population that is a key

target for future investigation. It will be important to discover

whether these cells retain, or can be induced to recapitulate,

some of the neuronogenic flavor of their forebears in the embry-

onic neuroepithelium.

Oligodendrocyte Generation and Myelin Dynamics
in the Adult
Most newly formed oligodendrocytes in the postnatal forebrain

survive long-term and myelinate axons. Myelin formation has

been demonstrated by microinjecting live YFP+ cells in tissue

slices with a fluorescent dye that can spread throughout the

cell and expose its full morphology. Like this, newly-formed

mature oligodendrocytes that elaborate up to �50 internodes

have been visualized in the adult corpus callosum (Rivers

et al., 2008; Figure 1C). Newly formed oligodendrocytes with

myelinating morphology were also identified using reporter

mice that express a membrane-tethered form of GFP (Kang

et al., 2010; Zhu et al., 2011; Figure 1D). That most new oligoden-

drocytes survive long-term (at least in the corpus callosum)

can be inferred by comparing the rate of new cell production

(through division of NG2-glia) with the rate of accumulation

of differentiated oligodendrocytes, given that the absolute

number and density of NG2-glia does not change dramatically

during the first year of life (Psachoulia et al., 2009). The cell

cycle dynamics of NG2-glia is known from cumulative BrdU

labeling experiments (Psachoulia et al., 2009; Simon et al.,

2011; see below).

The scale of adult oligogenesis has been something of

a surprise. Rivers et al. (2008) calculated that �29% of all differ-

entiated oligodendrocytes (identified by CC1 immunolabeling)

that are present in the corpus callosum of �8-month-old mice

are generated in the 210 days after P45 (Pdgfra-CreER*:

Rosa26-YFP). Zhu et al. (2011) found that�30% of CC1-positive

oligodendrocytes in the corpus callosum of �4-month-old mice

were formed in the 60 days after P60 (NG2-CreER*: Rosa26-

YFP). Comparing these estimates, one might conclude that no

more oligodendrocytes are formed after 4 months of age, but

Psachoulia et al. (2009) showed clearly that new myelinating

oligodendrocytes are still being formed at a low rate even at

8 months. There are a lot of uncertainties in such calculations,

(e.g., potential variation in recombination efficiencies from

experiment to experiment and at different ages) but, neverthe-

less, it is clear that oligodendrocyte differentiation continues

well into adulthood (Figure 1E), though at a steadily decreasing

rate (Rivers et al., 2008; Lasiene et al., 2009; Psachoulia et al.,

2009; Kang et al., 2010; Simon et al., 2011; Zhu et al., 2011).

NG2-glia in the cortical gray matter also continue to generate

oligodendrocytes into adulthood, although the overall rate of oli-

gogenesis in the cortex is considerably less than in the corpus

callosum at most ages (Rivers et al., 2008; Kang et al., 2010;

Simon et al., 2011; Zhu et al., 2011).

It is not known yet whether adult myelin genesis is required to

replace myelin that degenerates through normal ‘‘wear and tear’’

or whether it adds to existing myelin. Only around 30% of axons

in the corpus callosum of 8-month-old mice are fully myelinated

(Sturrock, 1980), so there is plenty of scope there and in other
major white matter tracts for de novo myelination of previously

naked axons. There is evidence from cumulative [3H]-thymidine

labeling that oligodendrocytes accumulate modestly in the

mouse corpus callosum during the first year, without significant

turnover, supporting the idea of de novo myelination (McCarthy

and Leblond, 1988). Electron microscopy also shows that the

number of myelinated axons in the rodent corpus callosum

increases well into adulthood (Nuñez et al., 2000; Yates and

Juraska, 2007). If adult-born myelin is laid down exclusively on

naked axons, we would expect not to findmany newmyelinating

oligodendrocytes in fiber tracts that consist predominantly of

myelinated axons, such as the optic nerve (Honjin et al., 1977);

this remains to be tested. On the other hand, myelin turnover is

suggested by the observation that average internode length

decreases with age, shorter internodes being regarded as

a hallmark of remyelination following myelin loss (Lasiene et al.,

2009). Perhaps de novo myelination and myelin replacement

go on concurrently in different parts of the CNS or within axon

tracts, such as the corpus callosum, that contain a mixture of

myelinated and unmyelinated axons. If myelin turnover turns

out to be commonplace, how neural pathways can cope with

continual loss and replacement of oligodendrocytes would

need to be understood, because the loss of even one myelin

internode has been predicted to cause conduction block (Koles

and Rasminsky, 1972; Waxman and Brill, 1978; Smith et al.,

1982). Whether action potentials are blocked or delayed will

depend on the geometry of the affected fibers, including inter-

node length and axon diameter (e.g., Bostock and Sears,

1976; Waxman and Brill, 1978; Bakiri et al., 2010). Nevertheless,

given that one oligodendrocyte usually myelinates many axons,

significant problems might be anticipated from oligodendrocyte

turnover. Perhaps new internodes can intercalate between exist-

ing internodes—i.e., remyelination might initiate at nodes of

Ranvier and gradually expand lengthwise, pushing aside the ex-

isting internodal sheath(s) while maintaining continuity of myelin.

This brief discussion exposes gaps in our knowledge of basic

myelin dynamics that need to be filled before we can hope to

understand myelin maintenance and plasticity.

Speculations on the Role of Adult Myelination
in Learning and Memory
Personal experience tells us that learning a complex motor

skill—riding a bicycle, playing a musical instrument, learning

a dance step or a sporting activity—requires a great deal of

time and practice. On the other hand a motor skill, once learned,

is difficult to lose and stays with us throughout our active life. The

extended learning experience and long decay time seem consis-

tent with the production and long-term survival of new cells.

Could new myelin formation during postnatal life play a part in

motor learning? Motor learning is an example of unconscious

or ‘‘nondeclarative’’ learning, which includes habituation and

classical conditioning (e.g., fear conditioning and Pavlovian

conditioning). Nondeclarative learning and memory is an ancient

system that is well developed in invertebrate animals—for

example, the gill retraction reflex that has been studied in Aplysia

and other marine molluscs. Studies of this and related

phenomena have established that even very small nervous

systems have the capacity to learn and remember past
Neuron 70, May 26, 2011 ª2011 Elsevier Inc. 669



Neuron

Review
experience and that such memories are an intrinsic part of the

circuits involved in the behavioral response, not something that

is generated or stored remotely (Carew and Sahley, 1986). The

general idea is that, during repetitive use, circuit connectivity

becomes strengthened so that the neurons comprising the

circuit acquire a lower threshold for firing and become more

likely to fire again in future—so-called ‘‘Hebbian learning.’’

How does this happen at a cellular and molecular level? It is

well established that repetitive firing can induce changes to the

molecular composition of the active synapses and that this can

increase the strength of communication between pre-and

post-synaptic cells (Milner et al., 1998). Synaptic strengthening

is an established mechanism of long-term potentiation (LTP),

a cellular correlate of learning and memory in both invertebrates

and vertebrates (Bliss and Collingridge, 1993). With the evolution

of myelin, vertebrates might have acquired an additional way of

modulating circuit activity—by myelinating the interconnecting

axons, if previously unmyelinated. New myelination would be

expected to increase dramatically the speed of transmission of

action potentials and alter the intrinsic circuit properties. Myeli-

nation would also provide neurotrophic and physical support

to the circuit neurons and make for long-term survival.

There is some evidence that adult myelin genesis might

contribute to motor learning in humans. For example, it has

been reported that extensive piano practice (Bengtsson et al.,

2005) or juggling (Scholz et al., 2009) can cause long-term

changes to the structure of white matter tracts, including parts

of the corpus callosum, as revealed by magnetic resonance

imaging (MRI). It has also been reported that white matter struc-

ture is altered in children skilled in abacus use, which involves

actual and imagined visuomotor activity (Hu et al., 2011).

There is also evidence that training in working memory tasks

results in changes in the structure of frontoparietal white

matter (Takeuchi et al., 2010; for reviews see Fields, 2008;

Ullén, 2009).

For new myelin to be involved in activity-dependent learning,

there needs to be a mechanism for regulating oligodendrocyte

generation and myelination according to circuit activity. Such

a mechanism seems to exist. Recently, Li et al. (2010) showed

that electrical stimulation of neurons in the motor cortex led to

activity-dependent stimulation of proliferation of NG2-glia in

the descending pyramidal (corticospinal) tract. Previously,

Barres and Raff (1993) had shown that silencing retinal ganglion

neurons, by injecting tetrodotoxin into the developing eye,

inhibited proliferation of NG2-glia in the newborn rat optic nerve.

Inhibition could be overcome by implanting PDGF-expressing

cells next to the nerve, suggesting that electrical activity in retinal

ganglion cell axons might normally regulate the supply of mito-

gens to NG2-glia—possibly by triggering its release from optic

nerve astrocytes (Barres and Raff, 1993). This suggests one

mechanism by which NG2-glia might sense electrical activity,

which, at some threshold, might trigger them to divide and differ-

entiate into myelinating oligodendrocytes. A more direct mecha-

nism involving synaptic communication between axons and

NG2-glia can also be envisaged—for example, synaptic

signaling might regulate the intrinsic response of NG2-glia to

PDGF or othermitogens. Testing these ideaswill be an important

task for the future.
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Does the Decreasing Rate of New Myelin Genesis
Contribute to Age-Related Cognitive Decline?
There is an accumulating body of evidence that some measures

of general cognitive ability correlate with white matter volume

and integrity. For example, cognitive ability and white matter

volume increase in parallel into the fourth decade of life and

both decline thereafter (Bartzokis et al., 2001; Mabbott et al.,

2006; Hasan et al., 2008; Ullén et al., 2008; Zahr et al., 2009;

Bartzokis et al., 2010). The reasons behind these age-related

changes are unknown but they could conceivably relate to

changes in the ability of NG2-glia to proliferate and generate

new oligodendrocytes as the brain matures and ages.

We recently measured the cell cycle time (Tc) of NG2-glia in

the postnatal mouse brain by cumulative BrdU labeling

(Psachoulia et al., 2009) and reported that Tc increases dramat-

ically with age, from�2 days on postnatal day 6 (P6) to >70 days

at P240 (8 months of age) in the cerebral cortex. An age-related

increase in the cell cycle time of NG2-glia in the mouse spinal

cord has also been reported (Lasiene et al., 2009). The length-

ening cell cycle results from the cells’ spending more and

more time in the early G1 phase of the cycle (Geha et al., 2010;

Simon et al., 2011). The decreasing rate of cell division correlates

well with the decreasing rate of oligodendrocyte production with

age (Psachoulia et al., 2009)—as expected, since new oligoden-

drocytes must ultimately come from precursor cell divisions. If

we assume that oligodendrocytes have a long but finite lifetime

in vivo, it could be that as the division rate of NG2-glia deceler-

ates and, with it, the rate of oligodendrocyte production, a critical

age is reached beyond which the rate of new myelin production

does not keep pace with accelerating myelin loss. If so, finding

a way to maintain the proliferative rate of NG2-glia in old

age might help maintain white matter integrity and slow down

age-related mental decline.

Conclusion
Recent experiments indicate that NG2-glia are, first and fore-

most, oligodendrocyte precursors in the healthy adult CNS.

Thus, it is clear that NG2-glia are distinct from neural stem cells

that generate hippocampal or olfactory neurons throughout life.

Whether they can generate rare neurons in the piriform cortex, as

reported by two labs recently, is still unresolved. Following CNS

injury, NG2-glia undergo a burst of local proliferation before

giving rise to oligodendrocytes and possibly some astrocytes.

Following gliotoxin-induced focal demyelination in the spinal

cord, they also generate significant numbers of remyelinating

Schwann cells. The great majority of reactive astrocytes at sites

of damage are not derived from NG2-glia, but from pre-existing

astrocytes that re-enter the cell cycle and—in spinal cord—from

stem-like cells in the ependymal zone around the central canal.

That NG2-glia are mainly precursors of myelinating cells refo-

cuses our attention on the their crucial role in remyelination

following demyelinating disease or injury. We are also drawn to

the role of myelin genesis during normal healthy adulthood,

whichmight play a role in some forms of neural plasticity—motor

skills learning, for example. The fact that NG2-glia react rapidly

to injury suggests that they might also respond to systemic

modulation. Indeed, their cell cycle and/or differentiation rate

can be influenced by prolactin levels during pregnancy (Gregg
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et al., 2007) or by physical exercise (Simon et al., 2011). There-

fore, a key research focus for the future is the potential role of

adult myelination in learning and memory and how that might

be affected by the environment.
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