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Two-tier transcriptional control of oligodendrocyte
differentiation
Huiliang Li1, Ye He2, William D Richardson1 and Patrizia Casaccia2

Oligodendrocytes (OLs) are the myelin-forming cells of the

central nervous system (CNS). They differentiate from

proliferative OL precursor cells that migrate from the embryonic

neuroepithelium throughout the developing CNS before

associating with axons and elaborating myelin. Recent

research into the regulation of OL differentiation has uncovered

a two-stage mechanism of transcriptional control that

combines epigenetic repression of transcriptional inhibitors

with direct transcriptional activation of myelin genes. This ‘two-

pronged’ approach creates a fail-safe system of genetic control

to ensure orderly and unambiguous expression of the

myelination program during development and during repair of

demyelinated lesions.
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Introduction
Oligodendrocytes (OLs), the myelinating cells of the

central nervous system (CNS), are generated from

migratory oligodendrocyte precursors (OLPs) that start

life as pluripotent neuroepithelial precursors (NEPs) in

the ventricular zone of the embryonic neural tube [1,2].

Regionally restricted signalling molecules (e.g. SHH and

BMPs) act on NEPs to initiate OLP development. Mito-

gens and chemo-attractants (e.g. PDGF and FGF) act on

OLPs, causing them to proliferate and migrate away from

the ventricular zone throughout the developing CNS. At

their final resting sites, signals in the local environment

trigger OLPs to associate with axons and differentiate

into myelinating OLs. At each stage, the transcriptional

machinery and the chromatin state of OLPs become

modified to activate or repress specific programs of gene

expression. This review focuses on the transcriptional

control of terminal OL differentiation and execution of

the myelination program.

OL differentiation has been regarded as a default program,

because OLPs cultured in defined medium without mito-

gens can exit the cell cycle, change shape and express

myelin proteins in the absence of axons [3]. This simple

observation suggests a model of OL differentiation that is

based on de-repression of a constitutively repressed state.

A ‘de-repression’ model is increasingly supported by the

molecular evidence and also fits with more general ideas

about how neural cell types are determined in the devel-

oping neural tube [4]. A picture is emerging of a two-step

mechanism of transcriptional control. First, transcriptional

repressors of myelin genes are inactivated by physical

sequestration and/or by histone modification and chroma-

tin condensation. Second, positive activators of myelin

gene transcription are brought into play. This ‘de-repres-

sion/activation’ system of transcriptional regulation pre-

sumably ensures that OL lineage progression takes place in

an orderly sequence, preventing differentiated patterns of

gene expression from being induced prematurely or in the

wrong cells. Moreover, compacting and silencing early

stage genes as an integral part of the differentiation pro-

gram makes for an inherently robust and stable system,

designed to maintain the differentiated OL phenotype

over the lifetime of the organism. We have attempted to

organise this article along parallel lines, first outlining

transcriptional repression/de-repression, then activating

the myelination program. We apologise to those whose

work has been omitted because of space constraints.

Transcriptional repression of the myelination program

Notch/Hes pathway

In OLPs, Notch signalling can be activated by Jagged-1, a

membrane-bound Notch ligand that is present on CNS

axons [5]. Notch signalling is generally believed to repress

OL differentiation. Conditional Notch-1 knockout in OL

lineage cells led to premature OL differentiation in grey

matter of the mouse spinal cord [6] and Notch-1 (+/�)

mutant mice displayed increased myelin basic protein

(MBP) and proteolipid protein (PLP) expression at post-

natal day 15 (P15) and P35 [7]. A repressive role for Notch

in Schwann cells has also been reported recently [8].

It is likely that Notch acts through transcriptional repres-

sion. Indeed HES5, a downstream target of Notch signal-

ling, is a powerful repressor of myelin gene expression [9].
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It represses Mbp transcription directly, by forming repres-

sive complexes with histone deacetylases (HDACs) and

indirectly, by inhibiting transcription of activators such as

ASCL1 and by physical sequestration of SOX10 and

ASCL1 [9]. In keeping with its repressive role, Hes5

knockout mice have increased postnatal expression of

myelin genes including Mbp [9]. However, another study

argues that Notch pathway activation mediated by Con-

tactin/F3, an alternative axonal membrane-bound Notch

ligand, can enhance OL differentiation [10]. Consistent

with this, Contactin/F3 is highly expressed in demyeli-

nated axons in patients with chronic multiple sclerosis

and Notch-1 is activated in OLPs in these patients [11].

Moreover, following axotomy in zebrafish CNS, Contac-

tin 1a is re-expressed both in OLs and the axotomised

neurons [12]. Thus, the role of Notch-1 signalling in OL

differentiation is currently controversial and remains to be

clarified.

Wnt/TCF7L2/b-catenin pathway

WNT3A was originally reported to block differentiation

of OLPs in explant cultures of rodent spinal cord [13].

Moreover, constitutively activating the canonical Wnt

pathway by overexpressing an active form of b-catenin

in OL lineage cells or by using APCmin mutant mice

(which lack a critical Wnt signalling inhibitor), has

recently been shown to inhibit OL differentiation

[14��]. The transcription factor TCF7L2 (also known

as TCF4) has been identified as a downstream effector

of the canonical Wnt signalling pathway, through its

ability to bind to b-catenin [15]. A role for TCF7L2 in

OL development was originally proposed by He et al.
[16��], who found that Tcf7l2 mRNA was overexpressed

after birth in a mouse model of hypo-myelination (the Yy1

conditional knockout described below), compared to wild

type. It was also reported that TCF7L2 can inhibit the

expression of a luciferase reporter gene driven by the

Mbp promoter in transfected cells [16��]. TCF7L2 has

recently been identified by two other groups as a critical

modulator of OL differentiation in vivo during develop-

mental myelination [14��,17��] as well as during the

remyelination of ethidium bromide-induced demyeli-

nated lesions [14��]. Constitutive activation of b-catenin

also impaired remyelination in vivo [14��]. TCF7L2

expression was observed in multiple sclerosis (MS)

lesions of human patients, suggesting that Wnt-mediated

repression of OL differentiation might underlie the

chronic failure of remyelination that characterises late-

stage MS [14��].

BMP/ID pathway

The Inhibitor of Differentiation (ID) gene products act

downstream of BMP signalling. ID2 and ID4 are

expressed in OL lineage cells and form heterodimers

with OLIG1, OLIG2 or ASCL1, sequestering those fac-

tors and inhibiting OL differentiation until the appro-

priate time [18]. In keeping with this model,

overexpressing Id2 or Id4 impairs myelin gene expression

[19,20], while ablating Id4 results in premature OL

differentiation [21,22]. ID-induced repression of myelin

gene expression and OL differentiation is thought to be

relieved eventually by the formation of an inhibitory

complex between the transcription factor Yin Yang1

(YY1) and HDACs (see below).

De-repression of transcription and the role of histone

deacetylation

Developmental programs of gene expression require lo-

ng-range chromatin remodelling in addition to specific

binding of transcription factors to regulatory elements in

the vicinity of individual genes. Histone deacetylation is

the first step of chromatin condensation (compaction),

which represses gene expression in a global manner by

sterically excluding the transcriptional machinery. A

series of experiments has demonstrated that deacetyla-

tion of histone H3 by HDACs is necessary for OLPs to

differentiate into OLs both in vitro and in vivo. Treatment

of OLPs with trichostatin A (TSA), an HDAC inhibitor,

prevented myelin gene expression without affecting cell

cycle exit [23]. Similarly, myelination was inhibited in
vivo when the HDAC inhibitor valproic acid (VPA) was

administered systemically to neonatal rat pups during the

first two postnatal weeks [24]. In zebrafish, inhibition of

Hdac1 gene activity by the injection of specific antisense

morpholinos or by the mutation of the Hdac gene pre-

vented OL differentiation [25]. Isoform specificity was

demonstrated by silencing experiments in cultured

primary OLPs that identified Hdac1 and Hdac2 but

not other Hdac isoforms as critical for the differentiation

[26��]. Recently, experiments with conditional Hdac

knockouts, generated by crossing floxed Hdac1 and

Hdac2 mice with Olig1-Cre transgenic mice, have

emphasised the importance of histone deacetylation in
vivo [17��]. Hdac1:Hdac2 double mutants (but not the

single mutants) developed severe hypo-myelination lead-

ing to tremor and postnatal lethality [17��].

The role of HDACs in OL differentiation has been

attributed to their ability to form repressive complexes

that inhibit expression of transcriptional inhibitors of

differentiation, effectively dis-inhibiting myelination by

‘repressing the repressors’ of the program [16��,26��]. For

example, HDAC1 binds to YY1 to repress transcription of

Id4 and Tcf7l2 [16��]. HDACs also repress Hes5, possibly

by binding to distinct recruiters [9,26��].

Recent studies have further identified HDAC1 and

HDAC2 as important inhibitors of the negative effect

of Wnt signalling on OL differentiation [17��]; by com-

peting with b-catenin for binding to TCF7L2, they

prevent transcription of Id2/4. HDACs have also been

implicated in the inhibition of Notch signalling by com-

peting with NICD for binding to CBF1, thereby prevent-

ing transcription of Hes5 [27]. HDACs are therefore

480 Neuronal and glial cell biology

Current Opinion in Neurobiology 2009, 19:479–485 www.sciencedirect.com



Author's personal copy

emerging as central points of convergence for multiple

signal transduction pathways that control OL differen-

tiation [28].

Transcriptional activators of the myelination program

Nuclear hormone receptors

In vitro experiments suggested that activation of retinoic

acid receptors (RARs and RXRs) and thyroid hormone

receptors (THR) is required for OLP differentiation

[29,30]. In keeping with these experiments, an in situ
hybridisation-based screen revealed a sharp increase of

THR-b mRNA in remyelinating mouse spinal cord

[14��]. Also, the zebrafish neckless mutant, which lacks

the retinoic acid synthetic enzyme RALDH2

(ALDH1A2), was shown to be defective for MBP expres-

sion and myelin compaction during normal development

[31]. Consistent with a role for TH signalling in regulating

OL differentiation, hypo-thyroid and hyper-thyroid rats

have delayed and accelerated myelination, respectively,

although mice that lack both THR-a and THR-b have

only slightly delayed optic nerve myelination [32]. RAR/

RXR and THR are ligand-dependent transcription fac-

tors that bind directly to DNA [33], but their downstream

gene targets are currently unknown.

Basic helix–loop–helix transcription factors: OLIG1/2 and

ASCL1

OLIG1 and OLIG2 are basic helix–loop–helix (bHLH)

transcription factors that have been defined as important

regulators of OL development [34]. These factors have

been regarded as transcriptional repressors but they prob-

ably can be activators also, depending on their post-

transcriptional modifications (they have many potential

phosphorylation sites) and their choice of co-factors. In

spinal cords of OLIG1/2 double knockout mice, OL

lineage cells are completely missing [35,36]. In OLIG2

null spinal cord, OLs as well as motor neurons fail to

develop, although in hindbrain and forebrain a small

number of OLPs do exist, suggesting that OLIG2 and

OLIG1 are partially redundant during OL development

[35]. The first OLIG1 knockout mouse to be described

was developmentally normal but unable to remyelinate

after experimental demyelination [35,37]. However, a

subsequent study using a different OLIG1 null mouse

found a severe and ultimately lethal developmental

defect in OL differentiation and myelination [38]. This

discrepancy remains to be resolved.

ASCL1 (MASH1) is another bHLH transcription factor

that is required for OL development [39–41]. ASCL1 has

a biphasic expression pattern — it is expressed highly in

the VZ during ventral patterning, followed by a decrease

during OLP specification and another peak during OL

terminal differentiation [42�]. Consistent with this,

fewer OLPs are initially generated in the spinal cords

of ASCL1 null embryos [43]. Then, although OLP num-

bers recover after birth, expression of myelin genes is

significantly diminished [42�]. These results are consist-

ent with in vitro evidence showing that co-expression of

ASCL1 with OLIG2 or NKX2.2 can activate myelin

gene promoters [19] and induce OLP differentiation

[42�]. In vitro data have demonstrated that OLIG1 can

activate expression of the myelin genes Plp, Mbp and

Mag [38]; for Mbp this is because of a physical inter-

action between OLIG1 and SOX10 that stimulates Mbp

transcription [44�]. An interaction between OLIG2 and

SOX10 in mouse has also been reported [45] (note,

however, that OLIG2 and SOX10 do not interact in

zebrafish [44�]).

High mobility group (HMG) transcription factors: the SOX

family

SOX proteins include more than 20 family members with

an HMG domain. Of those, SOX10 is one of the most

critical determinants for OL terminal differentiation and

myelin gene expression [46], while SOX5 and SOX6 are

expressed in OLPs and downregulated during OL differ-

entiation [47]. Sox10 null mice have severely impaired

OL differentiation [46] and Sox10 expression is sufficient

to induce ectopic OLP differentiation when electropo-

rated into chick spinal cord [48�]. SOX10 directly controls

the expression of myelin genes Mbp and Plp [46]. Sox10

can also interact with the thyroid hormone receptor-

associated protein complex 230 (TRAP230, also known

as MED12) [31,49], suggesting a link with TH signalling

(see above and Figure 1). The expression patterns of Sox8

and Sox9 are partially overlapping with, though not

identical to, that of Sox10 [50] and their role in OL

differentiation appears to be subsidiary to Sox10

[51,52]. Sox17 is also expressed in the OL lineage in

mouse spinal cord and is involved in the induction of

myelin gene expression in vitro [53].

Transcriptional control of oligodendrocyte differentiation Li et al. 481

Figure 1

A speculative model for transcriptional activation of myelin gene

expression. SOX10, thyroid hormone receptor (THR), THR-associated

protein 230 (TRAP230/MED12) and OLIG1/2 might conceivably form a

transcriptional activating complex that could further synergise with

ZFP488 and MRF/GM98. NKX2.2 might also bind to OLIG2, although its

effect on myelin gene expression is not yet clear. YY1 can activate

myelin promoters but its interactions with other transcription factors are

still to be clarified.
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Zinc-finger transcription factors: YY1, ZFP488 and MTY1

YY1 is a zinc-finger protein and a member of the GLI-

Kruppel family of transcription factors. A role for YY1 in

OL development was originally described by Berndt et al.
[54], who found that ubiquitously expressed YY1 recog-

nises the myelin Plp promoter in vitro and in vivo and

directly enhances its transcription. Association of YY1

with other molecules is dependent on the acetylation

status of the molecule itself and on the presence of

specific extracellular signals favouring OL differentiation

[16��,55]. YY1 binding to HDACs represses gene expres-

sion, while binding to histone acetyl transferases leads to

transcriptional activation. In conditional knockouts

generated by crossing Yy1 (flox) and Cnp-cre mice,

OLP development was arrested at an immature stage

characterised by hypo-myelination and de-repression of

transcriptional inhibitors such as ID4, SOX11 and

TCF7L2. This suggested that in OLPs YY1 mainly

formed repressive complexes with HDAC1 [16��] but

did not rule out the possibility that, at later developmen-

tal stages, it might also act as an activator of gene

expression [54].

Another zinc-finger transcription factor involved in OL

differentiation is ZFP488, which starts to be expressed at

the onset of OL differentiation. Specific knock-down of

Zfp488 expression using siRNA downregulated myelin

gene expression, while co-electroporating Zfp488 and

Olig2 in the chick neural tube induced ectopic OL

differentiation [56].

Myelin transcription factor 1 (MYT1) is a zinc-finger

protein that can bind to the promoter region of the Plp

gene [57]. Overexpression of dominant-negative MYT1

inhibits OL terminal differentiation [58]. In addition, it

has been suggested that MYT1 might recruit HDACs

482 Neuronal and glial cell biology

Figure 2

An intricate gene regulatory network controls OL differentiation. The crosstalk between extrinsic signals, transcription factors and chromatin modifiers

determines the balance between repressive signals that inhibit OL differentiation and de-repressive signals that stimulate OL differentiation. Of all the

factors described in this review, only those with two or more connections are illustrated in this figure. Red indicates repression and green represents

activation. Dashed lines represent speculations; double-headed arrows indicate physical interactions. Reference numbers are marked on each

pathway.
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through SIN3B, a transcriptional repressor that is also

expressed in OLP [59].

NDT80 domain transcription factor: MRF

Myelin-gene Regulatory Factor (MRF), also called Gene

Model 98 (GM98), is a homologue of the product of

human gene C11Orf9 [60] and contains an NDT80

DNA binding domain. It was originally identified as a

gene expressed in post-mitotic OLs but not in astrocytes,

neurons or Schwann cells [61��]. Electroporation of Mrf in

chick spinal cord induced ectopic expression of myelin

genes and the effect was enhanced by co-electroporation

with Sox10. Conditional ablation of this gene in using

Olig2-cre or Cnp-cre mouse lines resulted in severe hypo-

myelination as a result of impaired OL differentiation. It

was noted that expression of MRF progressively increases

in the white matter during the first two postnatal weeks

and peaked at the third week, following a temporal

pattern that resembles that of the master gene Krox20

in Schwann cells [61��]. On the basis of these data, it has

been proposed that MRF might play an analogous role in

the CNS to that played by KROX20 in the PNS [61��,62],

although it remains to be determined whether the regu-

lation of myelin genes is direct or indirect [61��]. Intrigu-

ingly, the presence of a highly conserved YY1 binding site

in the first intron of the MRF gene suggests the possib-

ility that YY1 might act as a regulator of MRF gene

expression.

Homeodomain transcription factors: NKX2.2 and NKX6.2

Although the homeodomain protein NKX2.2 is expressed

throughout the OL lineage including early migratory

OLPs, it seems to function mainly or exclusively during

OL differentiation. In Nkx2.2 null mice, Plp and Mbp

expressions are delayed and reduced in white matter and

absent in grey matter [63]. Whether NKX2.2 directly

controls myelin gene expression is not known. In vitro
studies suggest that NKX2.2 can drive the Plp promoter

to express a reporter gene [63], while simultaneously

repressing the activity of Mbp promoter-driven reporters

[64]. Another homeodomain protein, NKX6.2, is also

expressed during OL maturation and has been shown

to regulate the axon–OL interaction at myelin paranodes

[65].

Conclusions
This review summarises what has been learned about

transcriptional regulation of OL differentiation, revealing

the existence of a complex regulatory network (Figure 2).

The crosstalk between extrinsic signals, transcription

factors and chromatin modifiers modulates the balance

between repressive signals that sustain progenitor status

and prevent differentiation, and de-repressive signals that

favour OL differentiation and myelination. These devel-

opmental pathways are frequently reactivated during

remyelination, so lessons learned about developmental

myelination might ultimately lead to new therapeutic

approaches to Multiple Sclerosis and other demyelinating

diseases.
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