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Solving scattering problems

Model problem - Helmholtz equation:

(∆ + k2)u = 0, k = wavenumber =
frequency

wavespeed
=

2π

wavelength

Solution methods:

increasing frequency

Numerical methods

(FEM, BEM,...)

Asymptotic methods

(Geometrical Optics,

ray tracing, GTD,...)

controllably accurate
computationally infeasible
at high frequencies

computational cost
independent of frequency

accurate only at high
frequencies
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Hybrid Numerical-Asymptotic (HNA) methods

Fuse conventional numerical methods with high frequency asymptotics
to create algorithms that are controllably accurate and computationally feasible
over the whole frequency range.

Key idea: enrich the FEM/BEM approximation space with oscillatory functions

v(x, k) ≈ v0(x, k) +

M∑
m=1

vm(x, k) eikψm(x),

v0 is some known leading order asymptotic behaviour

ψm, m = 1, . . . ,M are specified phase functions, from asymptotics

vm, m = 1, . . . ,M are unknown amplitude functions, found numerically

×≈

Expectation: If v0 and ψm are chosen appropriately, vm, m = 1, . . . ,M , will be
slowly varying, and less expensive to approximate than v
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Why do mathematicians like FEM/BEM?

FEM = Finite Element Method, BEM = Boundary Element Method
(“Method of Moments”)

General

Systematic

Flexible

Controllably accurate

Established frameworks for error analysis

. . .



Basics of FEM

Starting point: Partial Differential Equation (PDE) written in “weak form”:

Given l ∈ V ∗, find u ∈ V such that a(u, v) = l(v), ∀v ∈ V

FEM example:

Γ

Ω

−(∆ + k2)u = f

u = 0

−(∆ + k2)u = f in Ω with u = 0 on Γ

a(u, v) :=

∫
D

(∇u · ∇v − k2uv) dx, V = H1
0 (D)

l(v) =

∫
D

fv dx, V ∗ = H−1(D)
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Basics of BEM

Starting point: Boundary Integral Equation (BIE) written in “weak form”:

Given l ∈ V ∗, find φ ∈ V such that a(φ, ψ) = l(ψ), ∀ψ ∈ V

BEM example:

n Γ

D

(∆ + k2)u = 0

u = 0
us := u− ui outgoing at infinity

ui = eikd·x

|d| = 1

u(x) = ui(x)−
∫

Γ

Φ(x,y)
∂u

∂n
(y) ds(y), x ∈ D

S
∂u

∂n
= ui on Γ, Sφ(x) :=

∫
Γ

Φ(x,y)φ(y) ds(y), x ∈ Γ

a(φ, ψ) := 〈Sφ, ψ〉 =

∫
Γ

(Sφ)(y)ψ(y) ds(y), V = H−1/2(Γ)

l(ψ) =

∫
Γ

ui(y)ψ(y) ds(y), V ∗ = H1/2(Γ)
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Basics of FEM/BEM

“Continuous” problem:

Find u ∈ V such that a(u, v) = l(v), ∀v ∈ V

To approximate this numerically, choose a finite dimensional subspace VN ⊂ V
and consider the “discrete” problem:

Find uN ∈ VN such that a(uN , vN ) = l(vN ), ∀vN ∈ VN

Let {φj}Nj=1 be a basis for VN . Write uN =
∑N
j=1 ujφj , then

Au = l, Aij = a(φj , φi), u =

 u1

...
uN

 , l =

 l(φ1)
...

l(φN )


Well-posedness and quasi-optimality

If a(·, ·) is “nice” (continuous and coercive) then the continuous and discrete
problems both have unique solutions satisfying∥∥u− uN∥∥

V
≤ C min

vN∈VN

∥∥u− vN∥∥
V
← Best approx. error in VN
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How to choose VN for wave problems?∥∥u− uN∥∥
V
≤ C min

vN∈VN

∥∥u− vN∥∥
V

This holds for any finite-dimensional VN ⊂ V .

Conventional choice:

VN = {piecewise polynomials on a triangulation of Ω (or Γ)}

Problem: requires N = O
(
kd
)

(FEM) or N = O
(
kd−1

)
(BEM)

to keep minvN∈VN

∥∥u− vN∥∥
V

fixed as k →∞

Alternative choice:

VN = {piecewise polynomials × oscillatory functions}

Attraction: if chosen correctly, oscillatory functions should approximate the
solution more efficiently (i.e. with smaller N) than piecewise polynomials alone
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Hybrid Numerical-Asymptotic (HNA) methods

Choose oscillations based on high frequency asymptotics of solution

FEM e.g. Giladi and Keller (2001).

BEM e.g. Chandler-Wilde, Langdon, Hewett, Groth, Gibbs, Melenk, Graham,
Dominguez, Smyshlyaev, Bruno, Huybrechs, Vandewalle, Ganesh, Hawkins...

Many mathematical challenges:

high frequency behaviour of solution

estimation of minvN∈VN

∥∥u− vN∥∥
V

find a “nice” (continuous and coercive) formulation, for error analysis

evaluation of Aij = a(φj , φi) (highly oscillatory integrals)

HNA methodology well-understood for BEM for 2D convex scatterers.

Current work: generalise to 3D, penetrable and nonconvex scatterers.
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High frequency asymptotics - convex polygons

u(x) = ui(x)−
∫

Γ

Φ(x,y)
∂u

∂n
(y) ds(y), x ∈ D

Γj

Lj

Pj

Pj+1

Ω

ui = eikd·x

|d| = 1

According to Geometrical Optics/Geometrical Theory of Diffraction,
on a “lit” side

∂u

∂n
∼ 2

∂ui

∂n︸ ︷︷ ︸
incident + reflected

+A+eiks +A−e−iks︸ ︷︷ ︸
diffracted

, k →∞

where s is arc length along the side, measured from Pj
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High frequency asymptotics - convex polygons

u(x) = ui(x)−
∫

Γ

Φ(x,y)
∂u

∂n
(y) ds(y), x ∈ D

Γj

Pj

Pj+1

Ω

ui = eikd·x

|d| = 1

On an “unlit” (or “shadow”) side

∂u

∂n
∼ A+eiks +A−e−iks︸ ︷︷ ︸

diffracted

, k →∞



Regularity results - convex polygons

Theorem (Hewett, Langdon, Melenk (2013))

Let Ω be a convex polygon. Then on any side Γj

∂u

∂n
(x(s)) = Ψ(x(s)) + v+

j (s)eiks + v−j (Lj − s)e−iks, 0 < s < Lj ,

where

(i) Ψ := 2∂u
i

∂n if Γj is lit and Ψ := 0 otherwise,

(ii) v±j (s) are analytic in Re [s] > 0, with

|v+
j (s)| ≤ Ck2

{
|ks|π/Ωj−1, 0 < |s| ≤ 1/k,

|ks|−1/2, |s| > 1/k,

where Ωj is the exterior angle at the vertex Pj .

To form HNA approximation space VN , replace v±j by piecewise polynomials
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Best approximation error - convex polygons

Theorem (Hewett, Langdon, Melenk (2013))

Under appropriate assumptions on the piecewise polynomial approximation, there
exist constants C, τ > 0, independent of k, such that

min
vN∈VN

∥∥∥∥∂u∂n − vN
∥∥∥∥
L2(Γ)

≤ Ck2 e−τ
√
N .

Result
We can provably achieve any required approximation accuracy with N growing
only like log2 k as k →∞, rather than like k, as for a conventional BEM.
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Numerical results - convex polygon

Plot the field arising from the numerical boundary solution:

uN (x) := ui(x)−
∫

Γ

Φ(x,y)

(
∂u

∂n

)N
(y) ds(y), x ∈ D

k = 10 k = 10
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Numerical results - convergence of uN

Theorem

(Relative maximum error in D) ≤ Ck2 e−τ
√
N

(Here p ∝
√
N is the maximum polynomial degree used)

Accuracy actually improves as k gets larger!



Nonconvex polygons

High frequency asymptotic behaviour on Γ is more complicated:

Multiple reflections Partial illumination

Theorem (Chandler-Wilde, Hewett, Langdon, Twigger (2012))

For a class of nonconvex polygons we can achieve any required accuracy of
approximation with N growing only like log2 k as k →∞.
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Transmission problems - penetrable scatterers

Joint work with S. Groth and S. Langdon
(EPSRC CASE award with Met Office, Industrial supervisor A. Baran)

Motivating application: scattering by ice crystals in cirrus clouds

First steps: 2D acoustic case,
convex polygon

High frequency asymptotic solution
involves infinitely many
refractions/reflections/diffractions

Infinitely many phases to
consider, even for a convex
scatterer

u1(x) = ui(x) +

∫
Γ

(
u1(y)

∂Φ1(x,y)

∂n(y)
− Φ1(x,y)

∂u1(y)

∂n(y)

)
ds(y), x ∈ Ω1,

u2(x) =

∫
Γ

(
Φ2(x,y)

∂u2(x)

∂n(y)
− u2(y)

∂Φ2(x,y)

∂n(y)

)
ds(y), x ∈ Ω2,

Here Ω1 is exterior (k1), Ω2 is interior (k2)



HNA approximation space - GO terms

Compute Geometrical Optics (GO) approximation using a beam tracing algorithm:

Using this alone in integral representation corresponds to Physical-Geometrical
Optics Hybrid (PGOH) method of Bi et al (’11), see also Yang and Liou
(’95,’96,’97), Muinonen (’89). We want to include diffracted field.
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HNA approximation space - diffraction terms

Problem! No closed form solution yet
known for canonical diffraction problem
(transmission wedge), cf. Rawlins ’99

Use “heuristic” choice of phases for
diffracted field

Need to include oscillations at both
interior and exterior wavenumbers

Compare GO alone with (1) adding
diffraction from adjacent corners
and (2) adding diffraction from
opposite corners too

Compute “numerical best approximation errors” by comparison with a reference
solution computed using a standard BEM

(Full HNA BEM currently being implemented)

In our experiments we use fix N = 168 and vary k = 5, 10, 20, 40, 80, 160



Best approx. errors on the boundary

Refractive index is k2/k1 = 1.31 + ξi

Smaller ξ (less absorption) ⇒ need to include more diffracted terms
Smaller k (lower frequency) ⇒ need to include more diffracted terms



Best approx. errors: far-field pattern

Refractive index is k2/k1 = 1.31 + 0.05i



3D problems

Scattering by a planar screen in 3D

Complexity of high frequency
asymptotics similar to that of
the 2D transmission problem

Numerical best approximation results are promising

Currently implementing a BEM (with J. Hargreaves, Salford)

Analysis would have to be in H̃−1/2(Γ). Already have:

- full NA for 2D problem of multiple collinear screens
(with S. Langdon and S. Chandler-Wilde)

- k-explicit continuity and coercivity results for 2D and 3D case
(with S. Chandler-Wilde)



Conclusions and outlook

High frequency scattering problems are numerically challenging

FEM/BEM offers a flexible approximation strategy but conventional
approximation spaces are computationally expensive

Hybrid numerical-asymptotic (HNA) approach: reduce the number of
degrees of freedom required by enriching the approximation space with
oscillatory basis functions chosen based on high frequency asymptotics

HNA methodology applies generically in scattering problems

Application to a particular problem requires specific knowledge about high
frequency asymptotic behaviour

Have proof of concept for nonconvex, penetrable and 3D scatterers

Possible approach for attacking “real-world” problems: try a combination of
conventional and HNA methods (Gibbs, Langdon, Chandler-Wilde)
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