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Outline of talk:

e seismic imaging (Schlumberger Gould Research)
e high-frequency Helmholtz, variable wave speed

e Conventional FE discretization, efficient solvers?
e lterative method: GMRES convergence rates?

e preconditioners based on absorption

e brief summary of mathematical results

e numerical experiments

Chandler-Wilde, IGG, Langdon, Spence Acta Numerica 2012:
Numerical-asymptotic boundary integral methods in
high-frequency scattering

See also Dave Hewett’s talk
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Seismic inversion

Inverse problem: reconstruct material properties of subsurface
(characterised by wave speed ¢(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

Aut =28 = f orits elastic variant
C

2
—Au — (w) u=f, w = frequency
c

solve for v with approximate c.



Seismic inversion

Inverse problem: reconstruct material properties of subsurface
(wave speed ¢(z)) from observed echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

0%u , . .
—Au + e = f orits elastic variant

Frequency domain:

wL\ 2
—Au — () u=f, w = frequency
c

solve for v with approximate c.
Large domain of characteristic length L.

effectively high frequency



Marmousi Model Problem

Nurmerical solution Warmousi wave speed
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e Time domain: explicit finite difference methods (slow)
e Frequency domain: large linear systems for each w

e Solver of choice (2007) based on principle of limited
absorption (Erlangga, Osterlee, Vuik, 2004)...

e This work: develop better solvers, (parallel algorithms?)



Model interior impedance problem

—Au—Fkwu = f in boundeddomain
gZ—iku = g on I:=9Q

Results all hold for truncated sound-soft scattering
problems in Q' (large R)



Linear algebra problem

e weak form

a (u,v) = / (Vu.Vv — k? uv) —ik:/uv
r

Q
= fv+/gv
Q r

o finite element discretization

Au:= (S— k2 M —ikMP)u = £
Often: h ~k~! but pollution effect:
need h~k2??, h~k 32 22

Less dispersion: higher order FD or FE methods



Linear algebra problem

e weak form with absorption k> — k2 + ie,

a-(u,v) = /Q(VU.VU— (k* + ie)uv) —ik:/ruv

= / fo+ / gv  “Shifted Laplacian”
Q T

[Equivalently k2 + ic «— (k +ip)?]

e Finite element discretization

Au = (S— (K +ie)M? —ikM u = f

A, somehow “better behaved” than A.



How bad things can be ¢ =0

Solving Ax = f = 1 on unit square h ~ k—3/2
Using GMRES
(minimises residual in Krylov space: span{f, Af,... A*~1f})

K n # GMRES
25 15876 467
30 22801 633
35 44521 966

40 58081 > 1000



Preconditioning with A

Solve instead:

AZTAu=AC'f

Theorem (with Martin Gander and Euan Spence)
For Lipschitz star-shaped domains:

If ¢/k is sufficiently small then have GMRES converges
independent of k.

Proof: uses (high frequency) analysis of continuous problem.

Warning: not a practical method (yet!)



Shifted Laplacian preconditioner e = k

Solving A-'Ax = AZ'1 on unit square

k +# GMRES
10 6
h~ k=3/2 20

6
40 6
80 6



Shifted Laplacian preconditioner ¢ = k3/2

Solving A-'Ax = AZ'1 on unit square

k +# GMRES

10 8
h~k=3/2 20 11

40 14

80 16



Shifted Laplacian preconditioner € = k2

Solving A-'Ax = AZ'1 on unit square

k +# GMRES

10 13
h~ k=32 20 24

40 48

80 86



Exterior scattering problem with refinement

h~k~t, # GMRES

with diagonal scaling
k e=k e=£k3? o7t 55%;
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A trapping domain
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107/8 18 29
20m/8 19 41
40m/8 21 60
807/8 22 89

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010



Part Il: Domain decomposition for A_!

Approximate by solves with A. in subspaces:

subdomains
coarse grid

Questions: Convergence, Scalability?



Classical additive Schwarz

To solve a problem on a fine grid FE space Sy,
e Coarse space Sy (here linear FE) on a coarse grid

e Subdomain spaces S; on subdomains €2;, overlap ¢

/1

/




Classical additive Schwarz p/c for matrix C

Approximation of C~!:

> RIC;'R; + RLC}'Ry

%

R; =restrictionto S;, Ry = restriction to Sy
C; = RiCRiT Cy= RHCR};

Apply to A. to get B_!



Convergence results (work in progress)

Theorem IGG, E. Spence, E. Vainikko, 2014

Consider solving
B 'A.x = B'f

n = number of GMRES iterates to achieve fixed accuracy

K2\
= (%)
9
. € \3/2
provided kH <c (ﬁ)
Soe ~ k? = robust method no pollution in coarse grid.
Actually we want to solve

B'Ax =B 'Y e~k

Numerical experiments: unit square, impedance BC



B_! as preconditioner for A. ¢ = k?

h~ k=32,
LH 1 Relative Coarse and
- subdomain problem size
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B_! as preconditioner for A.

h~ k=32,
kH ~ ]{?0‘1
k #GMRES
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40 10
60 10
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100 10
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B_! as preconditioner for A.

h~ k=32,

kH ~ ]{?0‘2
k #GMRES
20 10
40 10
60 11
80 11
100 11

“Aggressive coarseing”
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B_! as preconditioner for A. and A

h~ k=32,
kH ~ 1
k for A,
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for A
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When e ~ k

Introduce more “wavelike” components:

Impedance boundary condition on subdomains

Hybrid restricted additive Schwarz



B_! as preconditioner for A ¢ =k

20 grid points per wavelength, Hybrid RAS,
Impedance subdomain problems

Relative Coarse and

RH o~ k2 subdomain problem size
Scale = 0.035
k #GMRES 0.03 I subdomain | |
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Complexity (serial): ~ nlogn, h>10"'"in2D



B_! as preconditioner for A

20 grid points per wavelength,

120
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GMRES, impedance
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Hybrid RAS, kH ~ k%

GMRES, Dirichlet
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e i and e explicit analysis allows rigorous explanation of some
empirical observations and formulation of new methods.

e When ¢ ~ k, AZ!is optimal preconditioner for A
e When e ~ k%,  B_Z!is optimal preconditioner for A,
e When preconditioning A with BZ!, best choice is ¢ ~ k

e Then BC of subdomain problems very important (impedance,
PML,...).

e New analysis of Domain Decomposition methods.



