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Outline of talk:

• seismic imaging (Schlumberger Gould Research)

• high-frequency Helmholtz, variable wave speed

• Conventional FE discretization, efficient solvers?

• Iterative method: GMRES convergence rates?

• preconditioners based on absorption

• brief summary of mathematical results

• numerical experiments

−−−−−−−−−−−−−−−−−−−−−−−−−−−
Chandler-Wilde, IGG, Langdon, Spence Acta Numerica 2012:
Numerical-asymptotic boundary integral methods in
high-frequency scattering

See also Dave Hewett’s talk



Motivation



Seismic inversion

Inverse problem: reconstruct material properties of subsurface
(characterised by wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward
problem): the wave equation

−∆u+
1

c2

∂2u

∂t2
= f or its elastic variant

Frequency domain:

−∆u−
(
ωL

c

)2

u = f, ω = frequency

solve for u with approximate c.

Large domain of characteristic length L.

effectively high frequency
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Marmousi Model Problem

• Time domain: explicit finite difference methods (slow)

• Frequency domain: large linear systems for each ω

• Solver of choice (2007) based on principle of limited
absorption (Erlangga, Osterlee, Vuik, 2004)...

• This work: develop better solvers, (parallel algorithms?)



Model interior impedance problem

−∆u− k2u = f in bounded domain Ω

∂u

∂n
− iku = g on Γ := ∂Ω

Results all hold for truncated sound-soft scattering
problems in Ω′ (large R)

Γ

Ω
Ω′
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Linear algebra problem

• weak form with absorption k2 → k2 + iε, η = η(k, ε)

aε(u, v) :=

∫
Ω

(
∇u.∇v − (k2+k2)uv

)
− ik

∫
Γ
uv

=

∫
Ω
fv +

∫
Γ
gv “ShiftedLaplacian′′

[Equivalently k2 + iε←→ (k + iρ)2]

• finite element discretization

Aεu := (S− (k2+k2)MΩ − ikMΓ)u = f

Often: h ∼ k−1 but pollution effect:
need h ∼ k−2 ?? , h ∼ k−3/2 ??

Less dispersion: higher order FD or FE methods
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• Finite element discretization

Aεu := (S− (k2 + iε)MΩ − ikMΓ)u = f

Aε somehow “better behaved” than A.



How bad things can be ε = 0

Solving Ax = f = 1 on unit square h ∼ k−3/2

Using GMRES

(minimises residual in Krylov space: span{f , Af , . . . Ak−1f})

k n # GMRES
25 15876 467
30 22801 633
35 44521 966
40 58081 > 1000



Preconditioning with A−1
ε

Solve instead:

A−1
ε Au = A−1

ε f .

Theorem (with Martin Gander and Euan Spence)
For Lipschitz star-shaped domains:

If ε/k is sufficiently small then have GMRES converges
independent of k.

Proof: uses (high frequency) analysis of continuous problem.

Warning: not a practical method (yet!)



Shifted Laplacian preconditioner ε = k

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 6
20 6
40 6
80 6



Shifted Laplacian preconditioner ε = k3/2

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 8
20 11
40 14
80 16



Shifted Laplacian preconditioner ε = k2

Solving A−1
ε Ax = A−1

ε 1 on unit square

h ∼ k−3/2

k # GMRES
10 13
20 24
40 48
80 86



Exterior scattering problem with refinement

h ∼ k−1, # GMRES

with diagonal scaling
k ε = k ε = k3/2

20 5 8
40 5 11
80 5 13
160 5 16
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A trapping domain

k ε = k ε = k3/2

10π/8 18 29
20π/8 19 41
40π/8 21 60
80π/8 22 89

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010



Part II: Domain decomposition for A−1
ε

Approximate by solves with Aε in subspaces:

subdomains
coarse grid

Questions: Convergence, Scalability?



Classical additive Schwarz

To solve a problem on a fine grid FE space Sh
• Coarse space SH (here linear FE) on a coarse grid

• Subdomain spaces Si on subdomains Ωi, overlap δ
Dirichlet BCs on subdomains



Classical additive Schwarz p/c for matrix C

Approximation of C−1:∑
i

RT
i C
−1
i Ri + RT

HC
−1
H RH

Ri = restriction to Si, RH = restriction to SH
Ci = RiCRT

i CH = RHCRT
H

Apply to Aε to get B−1
ε



Convergence results (work in progress)

Theorem IGG, E. Spence, E. Vainikko, 2014

Consider solving
B−1
ε Aεx = B−1

ε f

n = number of GMRES iterates to achieve fixed accuracy

n ∼
(
k2

ε

)4

provided kH ≤ c
( ε
k2

)3/2

So ε ∼ k2 =⇒ robust method no pollution in coarse grid.

Actually we want to solve

B−1
ε Ax = B−1

ε f ε ∼ k?

Numerical experiments: unit square, impedance BC



B−1
ε as preconditioner for Aε ε = k2

h ∼ k−3/2,

kH ∼ 1
Relative Coarse and
subdomain problem size
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B−1
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h ∼ k−3/2,

kH ∼ k0.1
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B−1
ε as preconditioner for Aε ε = k2

h ∼ k−3/2,

kH ∼ k0.2
Relative Coarse and
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B−1
ε as preconditioner for Aε and A ε = k

h ∼ k−3/2,

kH ∼ 1
Relative Coarse and
subdomain problem size

Scale = 0.07
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When ε ∼ k
Introduce more “wavelike” components:

Impedance boundary condition on subdomains

Hybrid restricted additive Schwarz



B−1
ε as preconditioner for A ε = k

20 grid points per wavelength, Hybrid RAS,
Impedance subdomain problems

kH ∼ k0.5
Relative Coarse and
subdomain problem size

Scale = 0.035
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Complexity (serial): ∼ n log n, h & 10−10 in 2D



B−1
ε as preconditioner for A ε = k

20 grid points per wavelength, Hybrid RAS, kH ∼ k0.5

k GMRES, impedance GMRES, Dirichlet
120 51 487
140 56 595
160 59 > 600
180 57 > 600



Summary

• k and ε explicit analysis allows rigorous explanation of some
empirical observations and formulation of new methods.

•When ε ∼ k, A−1
ε is optimal preconditioner for A

•When ε ∼ k2, B−1
ε is optimal preconditioner for Aε

•When preconditioning A with B−1
ε , best choice is ε ∼ k

• Then BC of subdomain problems very important (impedance,
PML,...).

• New analysis of Domain Decomposition methods.


