Shifted Laplace and related preconditioning for the Helmholtz equation

Ivan Graham and Euan Spence (Bath, UK)

Collaborations with:

Paul Childs (Schlumberger Gould Research), Martin Gander (Geneva) Douglas Shanks (Bath) Eero Vainikko (Tartu, Estonia)

Oxford, March 2014

<ロト <四ト <注入 <注下 <注下 <

Outline of talk:

- seismic imaging (Schlumberger Gould Research)
- high-frequency Helmholtz, variable wave speed
- Conventional FE discretization, efficient solvers?
- Iterative method: GMRES convergence rates?
- preconditioners based on absorption
- brief summary of mathematical results
- numerical experiments

Chandler-Wilde, IGG, Langdon, Spence Acta Numerica 2012: Numerical-asymptotic boundary integral methods in high-frequency scattering

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

See also Dave Hewett's talk

Motivation

Seismic Towing Configuration

2 PC 3/20/07

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (characterised by wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$-\Delta u + \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} = f$$
 or its elastic variant

Frequency domain:

$$-\Delta u - \left(\frac{\omega}{c}\right)^2 u = f, \qquad \omega =$$
 frequency

solve for u with approximate c.

Seismic inversion

Inverse problem: reconstruct material properties of subsurface (wave speed c(x)) from observed echos.

Regularised iterative method: repeated solution of the (forward problem): the wave equation

$$-\Delta u + rac{\partial^2 u}{\partial t^2} = f$$
 or its elastic variant

Frequency domain:

$$-\Delta u - \left(\frac{\omega L}{c}\right)^2 u = f, \qquad \omega =$$
 frequency

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

solve for u with approximate c.

Large domain of characteristic length *L*. effectively high frequency

Marmousi Model Problem

- Time domain: explicit finite difference methods (slow)
- Frequency domain: large linear systems for each ω
- Solver of choice (2007) based on principle of limited absorption (Erlangga, Osterlee, Vuik, 2004)...
- This work: develop better solvers, (parallel algorithms?)

イロト イヨト イヨト イヨト

크

Model interior impedance problem

$$\begin{array}{rcl} -\Delta u - k^2 u &= f \quad \mbox{in bounded domain } \Omega \\ \frac{\partial u}{\partial n} - iku &= g \quad \mbox{on } \Gamma := \partial \Omega \end{array}$$

Results all hold for truncated sound-soft scattering problems in Ω' (large *R*)

Linear algebra problem

• weak form

$$a (u, v) := \int_{\Omega} \left(\nabla u \cdot \nabla \overline{v} - \mathbf{k}^2 u \overline{v} \right) - \mathbf{i} \mathbf{k} \int_{\Gamma} u \overline{v}$$
$$= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v}$$

,

• finite element discretization

$$\mathbf{A} \mathbf{u} := (\mathbf{S} - \mathbf{k}^2 \mathbf{M}^{\Omega} - \mathbf{i} \mathbf{k} \mathbf{M}^{\Gamma}) \mathbf{u} = \mathbf{f}$$

Often: $h \sim k^{-1}$ but pollution effect: need $h \sim k^{-2}$?? , $h \sim k^{-3/2}$??

Less dispersion: higher order FD or FE methods

Linear algebra problem

• weak form with absorption $k^2 \rightarrow k^2 + i\varepsilon$,

$$\begin{aligned} a_{\varepsilon}(u,v) &:= \int_{\Omega} \left(\nabla u \cdot \nabla \overline{v} - (k^2 + i\varepsilon) u \overline{v} \right) - \mathrm{i}k \int_{\Gamma} u \overline{v} \\ &= \int_{\Omega} f \overline{v} + \int_{\Gamma} g \overline{v} \quad \text{"Shifted Laplacian"} \end{aligned}$$

[Equivalently $k^2 + i\varepsilon \leftrightarrow (k + i\rho)^2$]

• Finite element discretization

$$\mathbf{A}_{\varepsilon}\mathbf{u} := (\mathbf{S} - (k^2 + i\varepsilon)\mathbf{M}^{\Omega} - \mathbf{i}k\mathbf{M}^{\Gamma})\mathbf{u} = \mathbf{f}$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 A_{ε} somehow "better behaved" than A.

Solving Ax = f = 1 on unit square $h \sim k^{-3/2}$ Using GMRES (minimises residual in Krylov space: span{ $f, Af, \dots A^{k-1}f$ })

k	n	# GMRES
25	15876	467
30	22801	633
35	44521	966
40	58081	> 1000

Solve instead:

$$\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{u} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{f}.$$

Theorem (with Martin Gander and Euan Spence) For Lipschitz star-shaped domains:

If ϵ/k is sufficiently small then have GMRES converges independent of k.

Proof: uses (high frequency) analysis of continuous problem.

《曰》 《聞》 《臣》 《臣》 三臣 …

Warning: not a practical method (yet!)

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	6
$h \sim k^{-3/2}$	20	6
	40	6
	80	6

Shifted Laplacian preconditioner $arepsilon = k^{3/2}$

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	8
$h \sim k^{-3/2}$	20	11
	40	14
	80	16

Solving $\mathbf{A}_{\varepsilon}^{-1}\mathbf{A}\mathbf{x} = \mathbf{A}_{\varepsilon}^{-1}\mathbf{1}$ on unit square

	k	# GMRES
	10	13
$h\sim k^{-3/2}$	20	24
	40	48
	80	86

Exterior scattering problem with refinement

 $h \sim k^{-1}$, # GMRES

with diagonal scaling

k	$\varepsilon = k$	$\varepsilon = k^{3/2}$
20	5	8
40	5	11
80	5	13
160	5	16

《曰》 《聞》 《臣》 《臣》 三臣 …

A trapping domain

 $\begin{array}{cccccc} k & \varepsilon = k & \varepsilon = k^{3/2} \\ 10\pi/8 & \textbf{18} & \textbf{29} \\ 20\pi/8 & \textbf{19} & \textbf{41} \\ 40\pi/8 & \textbf{21} & \textbf{60} \\ 80\pi/8 & \textbf{22} & \textbf{89} \end{array}$

Betcke, Chandler-Wilde, IGG, Langdon, Lindner, 2010

◆□▶ ◆御▶ ★注▶ ★注▶ 注目 のの()

Approximate by solves with A_{ε} in subspaces:

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

subdomains coarse grid

Questions: Convergence, Scalability?

Classical additive Schwarz

To solve a problem on a fine grid FE space S_h

- Coarse space S_H (here linear FE) on a coarse grid
- Subdomain spaces S_i on subdomains Ω_i , overlap δ

200

Classical additive Schwarz p/c for matrix C

Approximation of C^{-1} :

$$\sum_{i} \mathbf{R}_{i}^{T} \mathbf{C}_{i}^{-1} \mathbf{R}_{i} + \mathbf{R}_{H}^{T} \mathbf{C}_{H}^{-1} \mathbf{R}_{H}$$

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

 $\begin{aligned} \mathbf{R}_i &= \text{restriction to } \mathcal{S}_i, \quad \mathbf{R}_H &= \text{restriction to } \mathcal{S}_H \\ \mathbf{C}_i &= \mathbf{R}_i \mathbf{C} \mathbf{R}_i^T \qquad \qquad \mathbf{C}_H &= \mathbf{R}_H \mathbf{C} \mathbf{R}_H^T \end{aligned}$

Apply to \mathbf{A}_{ε} to get $\mathbf{B}_{\varepsilon}^{-1}$

Convergence results (work in progress)

Theorem IGG, E. Spence, E. Vainikko, 2014

Consider solving

$$B_{\varepsilon}^{-1}A_{\varepsilon}\mathbf{x} = B_{\varepsilon}^{-1}\mathbf{f}$$

n = number of GMRES iterates to achieve fixed accuracy

$$n \sim \left(\frac{k^2}{\varepsilon}\right)^4$$

provided
$$kH \leq c \left(rac{arepsilon}{k^2}
ight)^{3/2}$$

So $\varepsilon \sim k^2 \implies$ robust method no pollution in coarse grid. Actually we want to solve

$$B_{\varepsilon}^{-1}A\mathbf{x} = B_{\varepsilon}^{-1}\mathbf{f} \qquad \varepsilon \sim k?$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

Numerical experiments: unit square, impedance BC

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε} $\varepsilon = k^2$

 $h \sim k^{-3/2}$,

 $kH \sim 1$

Relative **Coarse** and **subdomain** problem size

Scale = 0.07

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$ $arepsilon = k^2$

 $h \sim k^{-3/2}$,

 $kH\sim k^{0.1}$

Relative **Coarse** and **subdomain** problem size

(日) (四) (문) (문) (문)

Scale = 0.03

$\mathbf{B}_{arepsilon}^{-1}$ as preconditioner for $\mathbf{A}_{arepsilon}$ $arepsilon = k^2$

 $h \sim k^{-3/2}$,

 $kH\sim k^{0.2}$

Relative **Coarse** and **subdomain** problem size

Scale = 0.03

"Aggressive coarseing"

$\mathbf{B}_{\varepsilon}^{-1}$ as preconditioner for \mathbf{A}_{ε} and $\mathbf{A} = \varepsilon = k$

 $h \sim k^{-3/2}$,

 $kH \sim 1$

Relative **Coarse** and **subdomain** problem size

Scale = 0.07

▲ロト ▲母ト ▲ヨト ▲ヨト 三日 - のへで

When $\varepsilon \sim k$

Introduce more "wavelike" components:

Impedance boundary condition on subdomains Hybrid restricted additive Schwarz

\mathbf{B}_{c}^{-1} as preconditioner for $\mathbf{A} = \varepsilon = k$

20 grid points per wavelength, Hybrid RAS, Impedance subdomain problems

 $kH\sim k^{0.5}$

Relative Coarse and subdomain problem size

Scale = 0.035

《曰》 《卽》 《臣》 《臣》 三臣

20 grid points per wavelength, Hybrid RAS, $kH \sim k^{0.5}$

k	GMRES, impedance	GMRES , Dirichlet
120	51	487
140	56	595
160	59	> 600
180	57	> 600

Summary

• k and ϵ explicit analysis allows **rigorous explanation** of some empirical observations and formulation of new methods.

- When $\epsilon \sim k$, $\mathbf{A}_{\epsilon}^{-1}$ is optimal preconditioner for \mathbf{A}
- When $\epsilon \sim k^2$, $\mathbf{B}_{\varepsilon}^{-1}$ is optimal preconditioner for \mathbf{A}_{ε}
- When preconditioning ${\bf A}$ with ${\bf B}_{\varepsilon}^{-1},$ best choice is $\varepsilon \sim k$

• Then BC of subdomain problems very important (impedance, PML,...).

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

• New analysis of Domain Decomposition methods.