Coherent backscattering effects for single particles and distributions of particles

**Robin Hogan and Chris Westbrook** 

Deptartment of Meteorology, University of Reading

#### **Overview**

#### Motivation

- We need to be able to model the backscattered signal from clouds in order to interpret radar and lidar observations (particularly from space) in terms of cloud properties
- Coherent backscattering effects for single particles
  - Radar scattering by ice aggregates and snowflakes
  - The Rayleigh-Gans approximation
  - A new equation for the backscatter of an ensemble of ice aggregates: the Self-Similar Rayleigh-Gans approximation
- Coherent backscattering effects for distributions of particles
  - Coherent backscatter enhancement (CBE) for solar illumination
  - The multiple scattering problem for radar and lidar
  - How important is CBE for radar and lidar?
- A prediction
  - Coherent backscatter enhancement occurs for individual particles so ray tracing could underestimate backscattering by a factor of two

# The principle unifying this talk

#### Single particle

#### **Distribution of particles**



Backscattered amplitude is found by summing the returned rays coherently

# Radar observations of tropical cirrus



Hogan et al. (2012)

#### Two problems

- 1. Snowflakes have complicated shapes
- 2. Methods to compute their scattering properties are slow

Is the best we can do to (somehow)generate a large ensemble of 3D snowflake shapes and compute their scattering by brute force?

#### **Potentially not:**

- 1. Snowflakes have fractal structure that can be described statistically
- 2. The Rayleigh-Gans approximation is applicable

#### The Rayleigh-Gans approximation

- Approximate the field at any point by the incident field
- Sum backscattered returns from each volume element coherently



- Rayleigh-Gans applicable if  $|m-1|\ll 1$  and  $|
  ho|\ll 1$ 
  - where  $\rho = kD(m-1)$  is the phase shift across the particle and  $k = 2\pi/\lambda$
- Solid ice in the microwave has m = 1.77, but on the scale of the wavelength the particle is mostly air so effective m close to 1
  - Tyynela et al. (2012) found that Rayleigh-Gans is a good approximation compared to other uncertainties, e.g. in ice structure

# The Rayleigh-Gans approximation

$$\sigma_b = \frac{9k^4|K|^2}{4\pi} \left| \int_{-D/2}^{D/2} A(s) \exp(i2ks) ds \right|^2$$

- Backscatter cross-section is proportional to the power in the Fourier component of A(s) at the scale of half the wavelength
- Can we parameterize A(s) and its variation?

$$A(s) = a_0 \left[ \left( 1 + \frac{\kappa}{3} \right) \cos \left( \frac{\pi s}{D} \right) + \kappa \cos \left( \frac{3\pi s}{D} \right) \right] \longleftarrow \text{Mean structure, } \kappa = \frac{1}{kurtosis} \text{ parameter}$$
 
$$+ \sum_{j=1}^{n} a_j' \cos \left( \frac{2\pi j s}{D} \right) + a_j'' \sin \left( \frac{2\pi j s}{D} \right), \quad \longleftarrow \text{Fluctuations from the mean}$$

• where  $a_0 = \frac{\pi}{2D}V$ , and V is the volume of ice in the particle

# **Aggregate mean structure**

 Hydrodynamic forces cause ice particles to fall horizontally, so we need separate analysis for horizontally and vertically viewing radar



- Mean structure of 50 simulated aggregates is very well captured by the two-cosine model with kurtosis parameters of
  - $\kappa$  = -0.11 for horizontal structure
  - $\kappa$  = 0.19 for vertical structure

#### **Aggregate self-similar structure**

- Power spectrum of fluctuations obeys a -5/3 power law
  - Why the Kolmogorov value when no turbulence involved? Coincidence?
  - Aggregates of columns and plates show the same slope



# **New equation**

- Assumptions:
  - Power-law:  $\langle a_j^{\prime 2} + a_j^{\prime \prime 2} \rangle / \langle a_0^2 \rangle = \beta (2j)^{-\gamma}$
  - Fluctuations at different scales are uncorrelated:  $\langle a_j'a_k'\rangle = \langle a_j''a_k''\rangle = 0$
  - Sins and cosine terms at the same scale are uncorrelated:  $\langle a'_i a''_i 
    angle = 0$
- Leads to the Self-Similar Rayleigh-Gans approximation for backscatter coefficient:

$$\langle \sigma_b \rangle = \frac{9k^4 \pi |K|^2 V^2}{16} \left\{ \cos^2(x) \left[ \left( 1 + \frac{\kappa}{3} \right) \left( \frac{1}{2x + \pi} - \frac{1}{2x - \pi} \right) - \kappa \left( \frac{1}{2x + 3\pi} - \frac{1}{2x - 3\pi} \right) \right]^2 + \beta \sum_{j=1}^n (2j)^{-\gamma} \sin^2(x) \left[ \frac{1}{(2x + 2\pi j)^2} + \frac{1}{(2x - 2\pi j)^2} \right] \right\},$$

- where x = kD

# Radar scattering by ice



 Internal structures on scale of wavelength lead to significantly higher higher backscatter than "soft spheroids" (proposed by Hogan et al. 2012 and others)



# Impact of scattering model

- Field et al. (2005) size distributions at 0°C
- Circles indicate D<sub>0</sub> of 7 mm reported from aircraft (Heymsfield et al. 2008)
- Lawson et al. (1998) reported  $D_0=37$  mm: 17 dB difference

# Impact of ice shape on retrievals





# Why are Saturn's rings brighter when the sun is in opposition? $P_{M}$

- Shadow hiding in the icy rocks that compose the rings  $(r >> \lambda)$ ?
- Coherent backscatter enhancement  $(r <= \lambda)$ ?
  - Multiply scattered light paths normally add incoherently
  - But for every path  $L_1P_1P_2...P_nL_2$  there is an equivalent reverse path  $L_1P_nP_{n-1}...P_1L_2$  whose length differs by only

$$\Delta p \simeq \theta \Delta x$$

- Where  $\Delta x$  is the lateral distance between the first and last particles in the scattering chain ( $P_1P_n$  in this example)
- These paths will add coherently if  $\Delta p \ll \lambda$
- Reflected power twice what it would be for incoherent averaging



#### **Observed enhancement**

 Define coherent backscatter enhancement (0 = none, 1 = doubled reflection) for single pair of multiply scattered paths as

$$\widetilde{\text{CBE}} = \cos\left(\frac{2\pi\Delta p}{\lambda}\right)$$

• Observed enhancement found by integrating over distribution of  $\Delta x$ :

$$CBE = \int_{-\infty}^{\infty} P(\Delta x) \widetilde{CBE}(\Delta x) d\Delta x.$$

• If this distribution is Gaussian with width  $\sigma$ , then integral evaluates as:

$$\mathrm{CBE} \simeq \exp\left(-rac{1}{2}rac{ heta^2}{ heta_0^2}
ight)$$
 where  $heta_0 = rac{\lambda}{2\pi\sigma}$ 

 But remember that there is no enhancement for single scattering, so this effect is only observed if multiple scattering is significant

#### **Laboratory measurements**

Measurements by Wolf et al. (1985)



FIG. 2. Angular dependence of the scattered light intensity (curve a) by an aqueous suspension of  $0.46-\mu$ m-diam polystyrene beads (solid fraction 10%), (curve b) by the same cell filled with water, and (curve c) in the absence of any cell. For these curves, no analyzer was used; scales are identical, but curves b and c are shifted by 0.1 and 0.05 vertical units, respectively.

# Dependence on source

Extended source (e.g. sun)



Confined source (radar or lidar)

- Distance \( \Delta \times \) determined by mean free path of light in the cloud of particles
- Most of the literature concerns this case
- Distance \( \Delta \text{x} \) determined by field-ofview of transmitter and receiver: transmitted light returning outside the FOV is not detected
- Lower \( \Delta \times \) implies higher enhancement, but overall multiple scattering return is lower
- Very little literature



#### **Fast multiple scattering model**

Hogan and Battaglia (JAS 2008)

- Uses the *time-dependent two-stream approximation*
- Agrees with Monte Carlo but ~10<sup>7</sup> times faster (~3 ms)
- Used in CloudSat operational retrieval algorithms

#### CloudSat-like example



#### CALIPSO-like example



#### Moving platform: satellite radar or lidar



- Consider CloudSat & Calipso satellites at altitude of 700 km and speed of 7 km s<sup>-1</sup>:
  - Distance travelled between time of reception and transmission is /= 33 m
  - So  $\theta$  = 47  $\mu$ rad
- Assuming most multiply scattered light escapes field-of-view,  $\sigma$  determined by receiver footprint on the cloud
- CloudSat:  $\sigma = 450$  m,  $\lambda = 3$  mm so CBE =  $10^{-9}$
- Calipso:  $\sigma = 100$  m,  $\lambda = 0.5$   $\mu$ m so CBE = 0
- Effect can be safely ignored for satellites

# Stationary platform: ground-based

•  $\theta = 0$  so automatically we have CBE = 1 and the multiply scattered return is doubled?



 But most lidars are bistatic!



And even for a monostatic radar, can't radiation be received from a different part of the antenna to where it was transmitted?



# **Stationary lidar**

 Treat laser as infinitesimal point and integrate over all possible transmit-receive distances I:

$$CBE = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} P(l)P(\Delta x)\widetilde{CBE}(\Delta x, l)d\Delta x \, dl$$
Transmit-receive



CBE is close to zero!



#### **Stationary radar**

Again need to integrate over all possible transmit-receive distances

Transmit-receive distance *l* 



- Complication is that beam pattern is diffraction limited: field-of-view (and hence  $\sigma$ ) is dependent on transmit-receive distance...
- Stationary radar should have fixed value of CBE, probably around 0.5, but theory needs to be developed

# Coherent backscatter enhancement for particles?



- Predictions for light scattering by particles r>>λ:
  - Coherent effects should double the backscatter due to light rays involving more than 1 reflection
  - The angular width of the enhancement is of order

$$\Theta_0 = \frac{\lambda}{2\pi\sigma}$$

where  $\sigma$  is the RMS distance between entering and exiting light rays.

- For 100  $\mu\text{m}$  particles and  $\lambda\text{=}0.5~\mu\text{m},\,\theta_0$  is 0.05 degrees
- Ray tracing codes are unlikely to capture this effect, but explicit solutions of Maxwell's equations will (Mie, DDA)

Standard scattering patterns





#### **Liquid spheres (Mie theory)**

- Width of backscatter peak is dependent on particle size
- Is this peak underestimated by ray tracing?

#### Ice particle phase functions

- Ping Yang's functions show sizeindependent enhancement of a factor of ~8
- Anthony Baran's functions are flat at backscatter
- Neither seems right; do we need to model CBE?

#### **Summary**

- A new equation has been proposed for backscatter cross-section of ice aggregates observed by radar
  - Much higher 94-GHz backscatter for snow than "soft spheroids"
  - Aggregate structure exhibits a power law with a slope of -5/3: why?
- Coherent backscatter enhancement (CBE) has been estimated for spaceborne and ground-based radar and lidar:
  - From space it can be neglected because of the distance travelled between transmission and receiption
  - From the ground, the finite size of a lidar laser/telescope assembly also makes CBE negligible
  - CBE can be significant for a ground based radar, and the exact value should be instrument/wavelength independent for monostatic radars, but value has not yet been rigorously calculated
- Coherent backscatter enhancement should apply to individual particles
  - Do current ray tracing algorithms underestimate backscattering by a factor of two because of this?