

Laboratory measurements and modelling of the scattering properties of hollow and solid ice crystals

Helen Smith¹, Ann Webb¹, Paul Connolly¹ and Anthony Baran² ¹The University of Manchester ²Met Office

Why Ice Clouds?

- IPCC concluded that clouds are the biggest uncertainty in predicting climate change (2013)
- Ice clouds have a large range of crystal shapes and sizes
- Global coverage of ~30%

Ice Crystal Habits

Ice Particles In Scattering Models

- Real ice particles represented by simplified models
- Habit mixture models are commonly used, including hollow particles
- Featureless phase functions are sought

The Manchester Ice Cloud Chamber

Scattering Chamber

What we measure

- We are measuring the intensity of the scattered light from an *ensemble* of particles
- We measure between 0° and 150°
- To get the phase function, we need to know the full 0°-180° range
- We use suitable modelled data to 'fill in the gap' data is then normalised to get P_{11}
- The normalised data is used to find the asymmetry parameter, g

Cloud monitoring

- The Cloud is monitored using a Cloud Particle Imager (CPI)
- Formvar replicas are also taken throughout the course of the experiment, giving additional insight into internal structure

Findings from the Formvar Replicas

- Different internal structures found at -7°C and -30°C
- 'warm' structure similar to current particle models
- 'cold' structure more complex

Particle models

- 'Warm' column cavity represented by hexagonal based pyramid
- 'cold' column cavity represented by a series of hexagonal stepped intrusions
- Hollow plates also represented using the 'cold' coumn intrusion

Theoretical results

Measured results -7°C solid columns

Measured results -7°C hollow columns

Measured Results -15°C solid plates

Measured Results -15°C hollow plates

Measured Results -30°C hollow columns/plates

What can we conclude from this?

- Both RT and RTDF predict accurate asymmetry parameters for solid particles – however, differences are seen in the phase functions
- RT deviates largely from measured results for hollow particles (both 'warm' and 'cold' geometries)
- RTDF fits closely to measured results for both solid and hollow columns
- This suggests a decrease in asymmetry parameter for hollow particles with the 'cold' cavity

Difficulties

- Due to the inhomogeneous cloud chamber environment, relative humidity (and supersaturation) is difficult to measure
- Impossible to separate the effects of hollowness and roughness – both linked with supersaturation
- Currently unable to measure roughness
- A comparison of RT and RTDF highlights the limitations of geometric optics for hollow particles

Difficulties - Roughness

Stortescen the supplements applementations of the supplementations of the supp

Looking forward

- Work is still on-going
- Current set up has been modified to measure
 P₁₂
- Need to test models ability to adequately treat cavities and polarization