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Bloch waves

@ A plane wave incident
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‘The amplitudes of the

refracted and reflected

waves ... require a more

detailed solution of the ‘Photonic Crystals Molding the Flow of Light’
Maxwell equations.’ Joannopoulos et al. (2008)




The wave equation

@ Consider the acoustic wave equation, with speed of sound c:

1 02
<V2 — §w> U(I’, t) =0.

Other physical contexts (electromagnetism, water waves, elasticity)
are similar; the algebra for the electromagnetic case is a lot worse.

@ Look for time-harmonic solutions:

U(r, t) = ui(r) cos(wt) — ua(r) sin(wt)
= Re [u(r)e ]

where u is a complex valued function of position.
@ Now we just have to solve the Helmholtz equation for u:

(V2 4+ k>)u(r) =0, k=uw/c.



Single scattering

@ Consider scattering by u'(r)
: : _
one circular cylinder (no
_—
variation in z). - >

@ By separation of variables, the incident and scattered waves can be
expanded in the form

[ee]

u'(r) = Z InTn(r) and u°(r) = Z AnHn(r)

where
Tn() = Jn(kr)e™  and ’H,,(r):[J,,(kr)—i—iY,,(kr)]ei”e.

@ [, is known; A, is related to /, by the boundary conditions.
@ At low to moderate frequencies, A, — 0 rapidly as |n| — co.
@ We are not treating scatterers as points!



Multiple scattering

@ The same idea works for multiple bodies, but now there is a set of
unknowns associated with each scatterer.
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@ We consider an array that is infinite in x and semi-infinite in y, so

A=Y S At k).

j=—00 p=0 n=—o00
. . . H . . 0
@ Also U(I’ +_/51) — elkjSl cos g U(I’), so AJnP — elkjsl costAnP; we need
‘only’ determine A;”.



Array scanning

@ Introduce the z-transform by writing Im[z]
A% — L At (z)z7P71dz %
n 2mi Q n ’
Re[z]

where Q is the unit circle (possibly with
indentations).

@ Dependence on row number (p) now
appears in the exponent only.

@ Since A% =0 for p < 0, there must be no singularities inside €.
@ Poles with |z| > 1: contribution to A% — 0 as p — cc.
@ Poles on |z| = 1: Bloch waves — A% 4 0 as p — oc.




Array scanning (ctd.)

@ After z-transformation, we have

1k151 cos g

1
) = o /Q Z Z Z S Halkup) | dz.

n=—o0 j=—00 p=—00
» ‘looks' quasiperiodic in transform space,
» the slowly convergent series contain no unknowns.

@ There is one unknown function A} (z) for every mode included in the
local expansions about the scatterers.

@ Applying the boundary conditions on the cylinder surfaces leads to a
matrix Wiener—Hopf equation for these.



Another view — grating modes

@ Look for solutions with the same quasi-periodicity as the incident field:
U(I’) — eikxc05'¢j¢(y) = Qb(}/) — e:l:ikysin'gl)j’

where cos 1); = cos 1o + 2jm/(kst).

@ The field between rows can be expanded using a spectral basis.
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j=—o0
upwards propagating downwards propagating
@ A good approximation is obtained by truncating the series at |j| = Q, say,
provided that cosq > 1.

@ This simple structure (plane & evanescent modes) rules out branch points in
the Wiener—Hopf equation.



Wiener—Hopf equation
@ Writing the transformed equations in matrix form yields (eventually)
K(2)AT(z2) =T (2) + T (2).

All functions are rational, T*(z) is known and T~ (z) — 0 as z — cc.

@ Poles in Q~ (outside the contour) can be located using the LHS;
T~ (z) is known up to a set of constants.

o At points z; € Q7 at which det K(z) = 0, only certain right-hand
sides are permitted. In fact, if

K*(zq)Eq =0 with |Eq| #0,

then
E; (T (zg) + T (z9)) =0.

@ It can be shown that the number of points z, is equal to the number
of unknown constants in the vector T~ (z).



Residues

@ There are poles at points z; € Q™ (outside Q) where det K(z) = 0.

o Write AT(z) = + AT (z), where A* is regular at z = z,.

z—2zq4
@ Use in Wiener—Hopf equation:

K(z)[B+ (z — zq)A+(z)] =(z—2z)[TT(2)+ T (2)];

hence K(zg)B =0 (x).

@ Also,
K(z

Z—2Z4

~—

K(2)AT(2) =TH(2) + T (2) + B,

SO

E;<T+(zq)+T—(zq)+ jim (%) B> =0. (1)
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@ B is determined by (x) and (7).



Amplitude of reflection
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(Dirichlet boundary conditions.)



A new result

s1 = [1,0], s = [0, 1], Neumann boundary conditions.
k=14, a=0.25 k=20 a=0.25 k=2.0,a=0.45
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