Acoustic transmission problems: wavenumber-explicit bounds and resonance-free regions

Euan Spence (Bath)

Joint work with Andrea Moiola (Reading)

Based on preprint: arXiv:1702.00745

UCL: 30th March 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Helmholtz transmission problem (one single penetrable obstacle) *SRC*

Data: $f_i \in L^2(\Omega_i)$, $f_o \in L^2_{comp}(\Omega_o)$, $g_D \in H^1(\Gamma)$, $g_N \in L^2(\Gamma)$, $A_N > 0$, $n_i > 0$.

Solution exists and is unique for Ω_i Lipschitz and $k \in \mathbb{C} \setminus \{0\}$ with $\Im k \ge 0$ (Torres, Welland (1999)).

Goal and motivation

From Fredholm theory we have

$$\left\| \left(\begin{array}{c} u_i \\ u_o \end{array} \right) \right\|_{\Omega_{i/o}} \leq \mathcal{C}_1 \left\| \left(\begin{array}{c} f_i \\ f_o \end{array} \right) \right\|_{\Omega_{i/o}} + \mathcal{C}_2 \left\| \left(\begin{array}{c} g_D \\ g_N \end{array} \right) \right\|_{\Gamma}$$

Goal: find out how C_1 and C_2 depend on k, n_i , and A_N and deduce results about resonances.

Motivation: increasing interest in NA of Helmholtz problems with variable wavenumber:

- Brown, Gallistl, Peterseim (2015)
- Barucq, Chaumont-Frelet, Gout (2015)
- Ohlberger, Verfürth (2016)
- Graham, Sauter (in preparation)

and with random wavenumber (from "UQ" perspective):

Feng, Lin, Lorton (2015).

▲□ > ▲□ > ▲目 > ▲目 > ▲□ > ▲□ >

Plan of talk

• Part 1:
$$n_i < 1$$

• Part 2:
$$n_i > 1$$

▶ Part 3:
$$n_i > 1$$

(For simplicity, take $g_D = g_N = 0$.)

"Cut-off resolvent": $R_{\chi}(k)$

Solution operator:

$$R(k, \underline{n_i, A_N}): \left(\begin{array}{c} f_i \\ f_o \end{array}\right) \mapsto \left(\begin{array}{c} u_i \\ u_o \end{array}\right).$$

Let $\chi_1, \chi_2 \in C_0^{\infty}(\mathbb{R}^d)$ s.t. $\chi_j \equiv 1$ in a neighbourhood of Ω_i . Let

 $R_{\chi}(k) := \chi_1 R(k) \chi_2,$

then

$$R_{\chi}(k): L^2(\Omega_i) \oplus L^2(\Omega_o) \to H^1(\Omega_i) \oplus H^1(\Omega_o).$$

Can show $R_{\chi}(k)$ is holomorphic on $\Im k > 0$. Resonances: poles of meromorphic continuation of $R_{\chi}(k)$ to $\Im k < 0$.

Part 1:
$$n_i < 1$$

► Cardoso, Popov, Vodev (1999):

 Ω_i smooth, convex, with strictly positive curvature, $n_i < 1, \; A_N > 0,$

 $\|R_{\chi}(k)\|_{L^2 \to L^2} \le \frac{C_0}{k}, \qquad \|R_{\chi}(k)\|_{L^2 \to H^1} \le C_1 \quad \text{for all } k \ge k_0 \quad (\star)$

 C_0, C_1 not explicit in n_i, A_N .

► Moiola, S. (2017):

 Ω_i star-shaped Lipschitz obstacle,

$$n_i \leq rac{1}{A_N} \leq 1$$

bound (\star) with C_0, C_1 explicit in n_i, A_N (and geometry).

(One of) the Moiola-S. bounds in gory detail...

 Ω_i is star-shaped, $g_N=g_D=$ 0, k> 0, and

$$n_i \leq \frac{1}{A_N} \leq 1$$

Given R > 0 such that supp $f_o \subset B_R$, let $D_R := \Omega_o \cap B_R$.

$$\begin{split} \|\nabla u_i\|_{L^2(\Omega_i)}^2 + k^2 n_i \|u_i\|_{L^2(\Omega_i)}^2 + \frac{1}{A_N} \left(\|\nabla u_o\|_{L^2(D_R)}^2 + k^2 \|u_o\|_{L^2(D_R)}^2 \right) \\ &\leq \left[4 \operatorname{diam}(\Omega_i)^2 + \frac{1}{n_i} \left(2R + \frac{d-1}{k} \right)^2 \right] \|f_i\|_{L^2(\Omega_i)}^2 \\ &\quad + \frac{1}{A_N} \left[4R^2 + \left(2R + \frac{d-1}{k} \right)^2 \right] \|f_o\|_{L^2(D_R)}^2 \,. \end{split}$$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Link with resonances

- ► Vodev (1999):
- If $\exists C_0, k_0 > 0$ s.t.

$$\begin{split} \|R_{\chi}(k)\|_{L^{2}\to L^{2}} &\leq \frac{C_{0}}{k} \quad \text{ for all } k \geq k_{0} \quad (\star) \end{split}$$

then $\exists \widetilde{C_{0}}, \ \widetilde{k_{0}}, \ \delta > 0 \text{ s.t. } R_{\chi}(k) \text{ is holomorphic in} \\ \Re k \geq \widetilde{k_{0}}, \quad \Im k \geq -\delta \end{split}$

and satisfies

$$\|R_{\chi}(k)\|_{L^2 \to L^2} \leq \frac{\widetilde{C_0}}{k}$$
 in this region,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

i.e. \exists a strip (width δ) underneath \mathbb{R} free of resonances.

How the Moiola-S. bound was obtained

Multiply the PDE by the "test function"

$$\begin{aligned} & \mathcal{A}_{N}\left(\mathbf{x}\cdot\nabla u - \mathrm{i}kRu + \frac{d-1}{2}u\right) & \text{ in } \Omega_{i}, \\ & \mathbf{x}\cdot\nabla u - \mathrm{i}kRu + \frac{d-1}{2}u & \text{ in } D_{R}, \\ & \mathbf{x}\cdot\nabla u - \mathrm{i}k|\mathbf{x}|u + \frac{d-1}{2}u & \text{ in } \mathbb{R}^{d}\setminus D_{R}, \end{aligned}$$

and integrate by parts.

These type of test functions for Helmholtz introduced by Morawetz in 1960s/1970s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Part 2: $n_i > 1$

Popov, Vodev (1999):

 Ω_i smooth, convex, with strictly positive curvature, $n_i > 1, \ A_N > 0$,

 \exists complex sequence $(k_j)_{j=1}^{\infty}$, with $|k_j| \to \infty, \Re k_j \ge 1$, and $0 > \Im k_j = \mathcal{O}(|k_j|^{-\infty})$ s.t.

 $\|R_{\chi}(k_j)\|_{L^2 \to L^2}$ blows up super-algebraically

► Bellassoued (2003)

 Ω_i smooth, $n_i > 0$, $A_N > 0$, $\exists C_1, C_2, k_0 > 0$, s.t.

 $\left\| \mathsf{R}_{\chi}(k) \right\|_{L^2 \to L^2} \leq C_1 \exp(C_2 k) \quad \text{ for all } k \geq k_0$

・ロト・(中下・(中下・(中下・))

Part 2: $n_i > 1$

$\Omega_i = \text{unit ball in 2-d}$

Left: $n_i = 3$

Right: $n_i = 10$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Part 3:
$$n_i > 1$$

$$\Omega_i =$$
unit ball in 2-d, $n_i = 100$

Left: k = 1.631889489833541 Right: $k_3 = 1.631889489833$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 三 - のへ⊙

Part 3: $n_i > 1$

$\Omega_i =$ unit ball in 2-d, $n_i = 100$

Left: $k_2 = 2.722270996079$

Right: k = 2.72227

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary of talk

• Part 1:
$$n_i < 1$$
 • - resolvent bounded uniformly in k

• Part 2:
$$n_i > 1$$
 • exponential growth through $(k_j)_{j=1}^{\infty}$

▶ Part 3:
$$n_i > 1$$
 → growth very sensitive to $(k_j)_{j=1}^\infty$

Further information

Distribution of resonances

- Cardoso, Popov, Vodev (2001)
- Galkowski (2015)

Detailed bounds in the case that Ω_i is a ball

- Capdeboscq (2012)
- Capdeboscq, Leadbetter, Parker (2012)
- (summarised in Alberti, Capdeboscq (2016))