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Helmholtz transmission problem (one single
penetrable obstacle) SRC

Q,
Auy + Ku, = f,

r Up = Ui + gp
anUo = ANanui + 8N

Data: f; € [*()), f, € L2,p(Q0). g0 € HX(T), gn € L*(T),
Ay >0, n; > 0.

Solution exists and is unique for Q; Lipschitz and k € C \ {0}
with Sk > 0 (Torres, Welland (1999)).



Goal and motivation
From Fredholm theory we have
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Goal: find out how C; and C> depend on k, n;, and Ay and
deduce results about resonances.
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Motivation: increasing interest in NA of Helmholtz problems
with variable wavenumber:

Brown, Gallistl, Peterseim (2015)
Barucq, Chaumont-Frelet, Gout (2015)
Ohlberger, Verfiirth (2016)

Graham, Sauter (in preparation)

v

v

v

v

and with random wavenumber (from “UQ" perspective):
» Feng, Lin, Lorton (2015).
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Plan of talk

» Part 1. n; <1 @
» Part 2: n; > 1 @
» Part 3: n; > 1 @

(For simplicity, take gp = gv = 0.)



“Cut-off resolvent”: R, (k)

Solution operator:

o (£)(2)

Let x1,x2 € C§°(RY) s.t. x; =1 in a neighbourhood of Q;.
Let
R\ (k) := x1R(k)xa,

then
R (k) : L2(Q) @ L*(Q) — HY () ® HY(,).

Can show R, (k) is holomorphic on Sk > 0.
Resonances: poles of meromorphic continuation of R, (k) to
Sk < 0.



Part 1: n,-<1©

» Cardoso, Popov, Vodev (1999):

Q; smooth, convex, with strictly positive curvature,
n <1, AN > 0,

Go

IR, (k) <2 lIR(K) <C forallk>k ()

HL2~>L2 HB%H1
Co, C1 not explicit in n;, An.
» Moiola, S. (2017):

Q; star-shaped Lipschitz obstacle,

n; < <1

S
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bound (%) with Gy, C; explicit in n;, Ay (and geometry).



(One of ) the Moiola-S. bounds in gory detail...

Q; is star-shaped, gy = gp =0, k >0, and
1
<1
AN

Given R > 0 such that supp f, C Bg, let Dr := Q, N Bk.
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Link with resonances

» Vodev (1999):
If E'Co, ko > 0 s.t.

G
HRX(k)HLZHL2 < 70 forall k > ky (%)
then 3Co, ko, & > 0 s.t. R, (k) is holomorphic in

Rk > ko, Sk> -0

and satisfies
IR (Kl 2y < ?0 in this region,

i.e. 3 a strip (width ¢) underneath R free of resonances.



How the Moiola-S. bound was obtained

Multiply the PDE by the “test function”

-1
An (x-Vu—ikRu+ d2 u) in Q;,

x-Vu—ikRu + in Dg,

d—-1

x - Vu—ik|x|u+ u inRY\ Dg,
and integrate by parts.

These type of test functions for Helmholtz introduced by
Morawetz in 1960s/1970s.



Part 2: n; >1®

» Popov, Vodev (1999):

Q; smooth, convex, with strictly positive curvature,
n>1 Ay >0,

3 complex sequence (k;)2;, with |k;| — oo, ftk; > 1, and
0 > Sk; = O(|kj| =) s.t.

|Ry(ki)|l 2,2 blows up super-algebraically

» Bellassoued (2003)
Q; smooth, n; > 0, Ay > 0, E|C1, C2, ko > 0, s.t.

HRx(k)HL2_>L2 <G eXp(Czk) for all k > kg



Part 2: n; > 1 @

Q; = unit ball in 2-d
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Part 3: n; > 1 @

Q; = unit ball in 2-d, n; =100

Left: k =1.631889489833541 Right: k3 = 1.631889489833



Part 3: n; > 1 @

Q; = unit ball in 2-d, n; = 100
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Left: k, = 2.722270996079 Right: k = 2.72227



Summary of talk

» Part 1: n; <1 @ - resolvent bounded uniformly in k

» Part 2: n; > 1 @ - exponential growth through (kj)fil

» Part 3: n; > 1 @ - growth very sensitive to (k;)%2,



Further information

Distribution of resonances
» Cardoso, Popov, Vodev (2001)
» Galkowski (2015)
Detailed bounds in the case that Q; is a ball
» Capdeboscq (2012)
» Capdeboscq, Leadbetter, Parker (2012)

» (summarised in Alberti, Capdeboscq (2016))



