WAVE PROPAGATION IN COMPLEX DOMAINS - UCL - 30.3.2017

Sobolev spaces on non-Lipschitz domains

Andrea Moiola

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF READING EPSRC GRANT EP/N019407/1

with S.N. Chandler-Wilde (Reading) and D.P. Hewett (UCL)

Questions related to scattering by fractal screens (well-posedness, unique formulation, "audibility", BEM and prefractal convergence...) crucially depend on properties of Sobolev spaces on rough sets.

E.g.: for which compact *K*, open Γ and $s \in \mathbb{R}$ are $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset K\} = \{0\}$ and $\mathcal{D}(\Gamma)$ dense in $\{u \in H^s(\mathbb{R}^n) : \operatorname{supp} u \subset \overline{\Gamma}\}$?

Many results available (Maz'ya, Triebel, Polking, Adams, Hedberg,...) but not entirely clear/satisfactory/useful for us.

We need to learn more about Sobolev spaces on non-Lipschitz sets!

Part I

Definitions and duality

For
$$k \in \mathbb{N}_0$$
, $W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\alpha} u \in L^2(\mathbb{R}^n), \ \forall |\alpha| \le k \},$
 $\|u\|_{W^k}^2 := \sum_{|\alpha| \le k} \int_{\mathbb{R}^n} |\partial^{\alpha} u(\mathbf{x})|^2 d\mathbf{x}.$

$$\begin{array}{ll} \text{For } k \in \mathbb{N}_0, \qquad W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\boldsymbol{\alpha}} u \in L^2(\mathbb{R}^n), \; \forall |\boldsymbol{\alpha}| \leq k \}, \\ \| u \|_{W^k}^2 := \sum_{|\boldsymbol{\alpha}| \leq k} \int_{\mathbb{R}^n} |\partial^{\boldsymbol{\alpha}} u(\boldsymbol{\mathbf{x}})|^2 \mathrm{d}\boldsymbol{\mathbf{x}}. \end{array}$$

 $\begin{array}{ll} \text{For } s \in \mathbb{R}, \qquad \quad H^s := \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \hat{u} \in L^1_{loc}(\mathbb{R}^n) \text{ and } \|u\|_{H^s} < \infty \}, \\ \|u\|_{H^s}^2 := \int_{\mathbb{R}^n} (1 + |\boldsymbol{\xi}|^2)^s \, |\widehat{u}(\boldsymbol{\xi})|^2 \, \mathrm{d}\boldsymbol{\xi}. \end{array}$

$$\begin{array}{ll} \text{For } k \in \mathbb{N}_0, \qquad W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\boldsymbol{\alpha}} u \in L^2(\mathbb{R}^n), \; \forall |\boldsymbol{\alpha}| \leq k \}, \\ \| u \|_{W^k}^2 := \sum_{|\boldsymbol{\alpha}| \leq k} \int_{\mathbb{R}^n} |\partial^{\boldsymbol{\alpha}} u(\boldsymbol{\mathbf{x}})|^2 \mathrm{d}\boldsymbol{\mathbf{x}}. \end{array}$$

 $\begin{array}{ll} \text{For } s \in \mathbb{R}, \qquad \quad H^s := \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \hat{u} \in L^1_{loc}(\mathbb{R}^n) \text{ and } \|u\|_{H^s} < \infty \}, \\ \|u\|_{H^s}^2 := \int_{\mathbb{R}^n} (1 + |\boldsymbol{\xi}|^2)^s \, |\hat{u}(\boldsymbol{\xi})|^2 \, \mathrm{d}\boldsymbol{\xi}. \end{array}$

For $k \in \mathbb{N}_0$, $H^k = W^k$ with equivalent norms.

$$\begin{array}{ll} \text{For } k \in \mathbb{N}_0, \qquad W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\boldsymbol{\alpha}} u \in L^2(\mathbb{R}^n), \ \forall |\boldsymbol{\alpha}| \leq k \}, \\ \| u \|_{W^k}^2 := \sum_{|\boldsymbol{\alpha}| \leq k} \int_{\mathbb{R}^n} |\partial^{\boldsymbol{\alpha}} u(\boldsymbol{\mathbf{x}})|^2 \mathrm{d} \boldsymbol{\mathbf{x}}. \end{array}$$

 $\begin{array}{ll} \text{For } s \in \mathbb{R}, \qquad \quad H^s := \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \hat{u} \in L^1_{loc}(\mathbb{R}^n) \text{ and } \|u\|_{H^s} < \infty \}, \\ \|u\|_{H^s}^2 := \int_{\mathbb{R}^n} (1 + |\boldsymbol{\xi}|^2)^s \, |\hat{u}(\boldsymbol{\xi})|^2 \, \mathrm{d}\boldsymbol{\xi}. \end{array}$

For $k \in \mathbb{N}_0$, $H^k = W^k$ with equivalent norms.

▶ For t > s, $H^t \subset H^s$ (continuous embedding, norm 1).

$$\begin{array}{ll} \mathsf{For}\; k \in \mathbb{N}_0, \qquad W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\boldsymbol{\alpha}} u \in L^2(\mathbb{R}^n), \; \forall |\boldsymbol{\alpha}| \leq k \}, \\ \| u \|_{W^k}^2 := \sum_{|\boldsymbol{\alpha}| \leq k} \int_{\mathbb{R}^n} |\partial^{\boldsymbol{\alpha}} u(\mathbf{x})|^2 \mathrm{d}\mathbf{x}. \end{array}$$

$$\begin{array}{ll} \text{For } s \in \mathbb{R}, \qquad \quad H^s := \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \hat{u} \in L^1_{loc}(\mathbb{R}^n) \text{ and } \|u\|_{H^s} < \infty \}, \\ \|u\|_{H^s}^2 := \int_{\mathbb{R}^n} (1 + |\boldsymbol{\xi}|^2)^s \, |\widehat{u}(\boldsymbol{\xi})|^2 \, \mathrm{d}\boldsymbol{\xi}. \end{array}$$

- For $k \in \mathbb{N}_0$, $H^k = W^k$ with equivalent norms.
- ▶ For t > s, $H^t \subset H^s$ (continuous embedding, norm 1).
- $(H^s)^* = H^{-s}$, with duality pairing

$$\langle u,v\rangle_{H^{-s}\times H^s} := \int_{\mathbb{R}^n} \hat{u}(\boldsymbol{\xi})\overline{\hat{v}(\boldsymbol{\xi})} \,\mathrm{d}\boldsymbol{\xi}.$$

For
$$k \in \mathbb{N}_0$$
, $W^k := \{ u \in L^2(\mathbb{R}^n) : \partial^{\boldsymbol{\alpha}} u \in L^2(\mathbb{R}^n), \ \forall |\boldsymbol{\alpha}| \le k \},$
 $\|u\|_{W^k}^2 := \sum_{|\boldsymbol{\alpha}| \le k} \int_{\mathbb{R}^n} |\partial^{\boldsymbol{\alpha}} u(\mathbf{x})|^2 \mathrm{d}\mathbf{x}.$

$$\begin{array}{ll} \text{For } s \in \mathbb{R}, \qquad H^s := \{ u \in \mathcal{S}^*(\mathbb{R}^n) : \hat{u} \in L^1_{loc}(\mathbb{R}^n) \text{ and } \|u\|_{H^s} < \infty \}, \\ \|u\|_{H^s}^2 := \int_{\mathbb{R}^n} (1 + |\boldsymbol{\xi}|^2)^s \, |\widehat{u}(\boldsymbol{\xi})|^2 \, \mathrm{d}\boldsymbol{\xi}. \end{array}$$

- For $k \in \mathbb{N}_0$, $H^k = W^k$ with equivalent norms.
- ▶ For t > s, $H^t \subset H^s$ (continuous embedding, norm 1).
- $(H^s)^* = H^{-s}$, with duality pairing

$$\langle u,v\rangle_{H^{-s}\times H^s}:=\int_{\mathbb{R}^n}\hat{u}(\boldsymbol{\xi})\overline{\hat{v}(\boldsymbol{\xi})}\,\mathrm{d}\boldsymbol{\xi}.$$

 $\begin{array}{ll} \blacktriangleright \hspace{0.1cm} H^{s} \subset C(\mathbb{R}^{n}) \text{ for } s > n/2 \hspace{0.5cm} (\text{Sobolev embedding theorem}). \\ \delta_{\mathbf{x}_{0}} \in H^{s} \iff s < -n/2 \hspace{0.5cm} (\langle \delta_{\mathbf{x}_{0}}, \phi \rangle = \overline{\phi(\mathbf{x}_{0})}). \end{array}$

Notation: $\Gamma \subset \mathbb{R}^n$ open, $F \subset \mathbb{R}^n$ closed, $K \subset \mathbb{R}^n$ compact.

Notation: $\Gamma \subset \mathbb{R}^n$ open, $F \subset \mathbb{R}^n$ closed, $K \subset \mathbb{R}^n$ compact.

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & (\mathcal{D}(\Gamma) := C_{0}^{\infty}(\Gamma) \subset C^{\infty}(\mathbb{R}^{n})) \\ H^{s}_{F} &:= \{ u \in H^{s} : \operatorname{supp} u \subset F \} = \{ u \in H^{s} : u(\varphi) = 0 \; \forall \varphi \in \mathcal{D}(F^{c}) \} \\ H^{s}(\Gamma) &:= \{ u|_{\Gamma} : u \in H^{s} \} \\ H^{s}_{0}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)|_{\Gamma}}^{H^{s}(\Gamma)} & \text{(notation from McLean)} \end{split}$$

Notation: $\Gamma \subset \mathbb{R}^n$ open, $F \subset \mathbb{R}^n$ closed, $K \subset \mathbb{R}^n$ compact.

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & (\mathcal{D}(\Gamma) := C_{0}^{\infty}(\Gamma) \subset C^{\infty}(\mathbb{R}^{n})) \\ H^{s}_{F} &:= \{ u \in H^{s} : \operatorname{supp} u \subset F \} = \{ u \in H^{s} : u(\varphi) = 0 \ \forall \varphi \in \mathcal{D}(F^{c}) \} \\ H^{s}(\Gamma) &:= \{ u|_{\Gamma} : u \in H^{s} \} \\ H^{s}_{0}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)|_{\Gamma}}^{H^{s}(\Gamma)} & \text{(notation from McLean)} \end{split}$$

"Global" and "local" spaces:

 $\widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}} \subset H^{s} \subset \mathcal{D}^{*}(\mathbb{R}^{n}) \quad \xrightarrow{|_{\Gamma}} \quad H^{s}_{0}(\Gamma) \subset H^{s}(\Gamma) \subset \mathcal{D}^{*}(\Gamma).$

Notation: $\Gamma \subset \mathbb{R}^n$ open, $F \subset \mathbb{R}^n$ closed, $K \subset \mathbb{R}^n$ compact.

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & (\mathcal{D}(\Gamma) := C_{0}^{\infty}(\Gamma) \subset C^{\infty}(\mathbb{R}^{n})) \\ H^{s}_{F} &:= \{ u \in H^{s} : \operatorname{supp} u \subset F \} = \{ u \in H^{s} : u(\varphi) = 0 \ \forall \varphi \in \mathcal{D}(F^{c}) \} \\ H^{s}(\Gamma) &:= \{ u|_{\Gamma} : u \in H^{s} \} \\ H^{s}_{0}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)|_{\Gamma}}^{H^{s}(\Gamma)} & \text{(notation from McLean)} \end{split}$$

"Global" and "local" spaces:

 $\widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}} \subset H^{s} \subset \mathcal{D}^{*}(\mathbb{R}^{n}) \quad \xrightarrow{|_{\Gamma}} \quad H^{s}_{0}(\Gamma) \subset H^{s}(\Gamma) \subset \mathcal{D}^{*}(\Gamma).$

There exist many works on Sobolev (Besov,...) spaces on rough sets; most use intrinsic definitions on *d*-sets. Analogous to $W^s(\Gamma)$, based on $L^p(\Gamma, \mu_d)$. Related to spaces in \mathbb{R}^n by traces. See: Jonsson–Wallin, Strichartz.

Our spaces are different, more suited for integral equations and BEM.

Duality

Theorem

Let Γ be any open subset of \mathbb{R}^n and let $s \in \mathbb{R}$. Then $(H^s(\Gamma))^* = \widetilde{H}^{-s}(\Gamma)$ and $(\widetilde{H}^s(\Gamma))^* = H^{-s}(\Gamma)$ with equal norms and $\langle u, w \rangle_{H^{-s}(\Gamma) \times \widetilde{H}^s(\Gamma)} = \langle U, w \rangle_{H^{-s} \times H^s}$ for any $U \in H^{-s}, U|_{\Gamma} = u$.

Well-known for Lipschitz but not in general case.

Duality

Theorem

Let Γ be any open subset of \mathbb{R}^n and let $s \in \mathbb{R}$. Then $(H^s(\Gamma))^* = \widetilde{H}^{-s}(\Gamma)$ and $(\widetilde{H}^s(\Gamma))^* = H^{-s}(\Gamma)$ with equal norms and $\langle u, w \rangle_{H^{-s}(\Gamma) \times \widetilde{H}^s(\Gamma)} = \langle U, w \rangle_{H^{-s} \times H^s}$ for any $U \in H^{-s}, U|_{\Gamma} = u$.

Well-known for Lipschitz but not in general case.

Main ideas of proof:

▶ *H* Hilbert, *V* ⊂ *H* closed ssp, *H* unitary realisation of *H*^{*}, then $(V^{\alpha,\mathcal{H}})^{\perp} = \{\psi \in \mathcal{H}, \langle \psi, \phi \rangle = 0 \; \forall \phi \in V\}^{\perp}$ is unitary realisation of *V*^{*}

 $\blacktriangleright \ H^{-s}_{\Gamma^c} = \{ u \in H^{-s} : u(\psi) = \langle u, \psi \rangle = \mathbf{0} \ \forall \psi \in \mathcal{D}(\Gamma) \} = (\widetilde{H}^s(\Gamma))^{a, H^{-s}}$

► Restriction operator $|_{\Gamma}$ is unitary isomorphism $|_{\Gamma} : (H_{\Gamma^c}^{-s})^{\perp} \to H^{-s}(\Gamma)$ (from identification of $H^{-s}(\Gamma)$ with $H^{-s}/H_{\Gamma^c}^{-s}$)

• Choose
$$V = \widetilde{H}^{s}(\Gamma)$$
, $H = H^{s}$, $\mathcal{H} = H^{-s}$

We address the following questions:

- ▶ When does $E \subset \mathbb{R}^n$ support non-zero $u \in H^s$?
- When is $\widetilde{H}^{s}(\Gamma) = H^{\underline{s}}_{\overline{\Gamma}}$?
- When is $H^{s}(\Gamma) = H_{0}^{s}(\Gamma)$?
- For which spaces is $|_{\Gamma}$ an isomorphism?
- When are $H^{s}(\Gamma)$ and $\widetilde{H}^{s}(\Gamma)$ interpolation scales?
- What's the limit of a sequence of Galerkin solutions to a variational problem on prefractals?

Part II

s-nullity

Definition

Given $s \in \mathbb{R}$ we say that a set $E \subset \mathbb{R}^n$ is *s*-null if there are no non-zero elements of H^s supported in *E*.

(I.e. if $H^s_F=\{0\}$ for every closed set $F\subset E$.)

Other terminology exists: "(-s)-polar" (Maz'ya, Littman), "set of uniqueness for $H^{s''}$ (Maz'ya, Adams/Hedberg). For the screen scattering problem:

- ► For a compact screen K to be audible we need $H_K^{\pm 1/2} \neq \{0\}$.
- ► For the solution of the classical Dirichlet/Neumann BVP to be unique we need $H_{\partial\Gamma}^{\pm 1/2} = \{0\}$.
- Two screens Γ₁ and Γ₂ give the same scattered field for all incident waves if and only if Γ₁ ⊖ Γ₂ is ±1/2-null.

s-nullity: basic results

- ▶ A subset of an *s*-null set is *s*-null.
- If E is s-null and t > s then E is t-null.
- If E is s-null then has empty interior.
- If s > n/2 then E is s-null $\iff int(E) = \emptyset$.
- For s < -n/2 there are no non-empty *s*-null sets.

Interesting cases: sets with empty interior and $-n/2 \le s \le n/2$.

- ▶ A subset of an *s*-null set is *s*-null.
- If E is s-null and t > s then E is t-null.
- ▶ If *E* is *s*-null then has empty interior.
- If s > n/2 then E is s-null $\iff int(E) = \emptyset$.
- For s < -n/2 there are no non-empty *s*-null sets.

Interesting cases: sets with empty interior and $-n/2 \le s \le n/2$.

Non-trivial results:

- ▶ The union of finitely many *s*-null closed sets is *s*-null.
- The union of countably many *s*-null Borel sets is *s*-null if $s \leq 0$.

Union of non-closed *s*-null sets for s > 0 is not *s*-null: counterexample is $E_1 = \mathbb{Q}^n, E_2 = \mathbb{R}^n \setminus \mathbb{Q}^n, s > n/2$.

Nullity threshold

Definition

For every $E \subset \mathbb{R}^n$ with $int(E) = \emptyset$ there exists $s_E \in [-n/2, n/2]$ such that *E* is *s*-null for $s > s_E$ and not *s*-null for $s < s_E$. We call s_E the nullity threshold of *E*.

Nullity threshold

Definition

For every $E \subset \mathbb{R}^n$ with $int(E) = \emptyset$ there exists $s_E \in [-n/2, n/2]$ such that *E* is *s*-null for $s > s_E$ and not *s*-null for $s < s_E$. We call s_E the nullity threshold of *E*.

Q1: Given $E \subset \mathbb{R}^n$, can we determine s_E ?

Q2: Given $s \in [-n/2, n/2]$, can we find some $E \subset \mathbb{R}^n$ for which $s_E = s$?

Q3: When is $E s_E$ -null? (i.e. is the maximum regularity attained?)

We study separately sets with zero and positive Lebesgue measure.

Let $K \subset \mathbb{R}^n$ be non-empty and compact. Then:

►
$$H_K^0 = L^2(K) = \{0\} \iff m(K) = 0.$$

Let $K \subset \mathbb{R}^n$ be non-empty and compact. Then:

- ▶ $H_K^0 = L^2(K) = \{0\} \iff m(K) = 0.$
- ▶ If m(K) = 0 then $s_K \leq 0$.

Let $K \subset \mathbb{R}^n$ be non-empty and compact. Then:

- $\blacktriangleright \ H^0_K = L^2(K) = \{0\} \iff m(K) = 0.$
- If m(K) = 0 then $s_K \leq 0$.
- ▶ If K is countable then $s_K = -n/2$ $(H_K^s = \{0\} \Leftrightarrow s \ge -n/2).$

Let $K \subset \mathbb{R}^n$ be non-empty and compact. Then:

•
$$H_K^0 = L^2(K) = \{0\} \iff m(K) = 0.$$

- If m(K) = 0 then $s_K \leq 0$.
- ▶ If K is countable then $s_K = -n/2$ $(H_K^s = \{0\} \Leftrightarrow s \ge -n/2).$

Theorem

If
$$m(K) = 0$$
, then $s_K = \frac{\dim_H K - n}{2}$.
(dim_H =Hausdorff dimension, m =Lebesgue measure)

$$\dim_{\mathrm{H}} K = \inf \left\{ d > 0 : H_{K}^{(d-n)/2} = \{0\} \right\}$$

This does not tell us if K is s_K -null; examples of both cases are possible. Sharpens previous results by Littman (1967) and Triebel (1997).

Examples

Let $\Gamma \subset \mathbb{R}^n$ be non-empty and open.

- ▶ If Γ is C^0 then $s_{\partial\Gamma} \in [-1/2, 0]$.
- ▶ If Γ is $C^{0,\alpha}$ for some $0 < \alpha < 1$ then $s_{\partial \Gamma} \in [-1/2, -\alpha/2]$ (sharp).
- ▶ If Γ is Lipschitz then $s_{\partial\Gamma} = -1/2$ (and $H_{\partial\Gamma}^{-1/2} = \{0\}$).
- ▶ If Γ is Koch snowflake, $s_{\partial\Gamma} = \frac{\log 2}{\log 3} 1 \approx -0.37$.

Examples

Let $\Gamma \subset \mathbb{R}^n$ be non-empty and open.

- If Γ is C^0 then $s_{\partial\Gamma} \in [-1/2, 0]$.
- ▶ If Γ is $C^{0,\alpha}$ for some $0 < \alpha < 1$ then $s_{\partial \Gamma} \in [-1/2, -\alpha/2]$ (sharp).
- ▶ If Γ is Lipschitz then $s_{\partial\Gamma} = -1/2$ (and $H_{\partial\Gamma}^{-1/2} = \{0\}$).
- If Γ is Koch snowflake, $s_{\partial\Gamma} = \frac{\log 2}{\log 3} 1 \approx -0.37$.

We can construct a "Cantor dust" $C^n_{\alpha} \subset \mathbb{R}^n$ with given nullity threshold. If prefractal edge lengths is $l_j = \alpha^j$, $0 < \alpha < 1/2$:

$$s_{\mathcal{C}_{\alpha}^{n}} = -\frac{n}{2} \left(1 + \frac{\log 2}{\log \alpha} \right) \in \left(-\frac{n}{2}, 0 \right).$$

Choose $\alpha = 2^{-n/(2s+n)}$ to have $s_{\mathcal{C}_{\alpha}^{n}} = s$

Can also define "thin" Cantor dusts which have $s_K = -n/2$.

Our proofs rely on the following equivalence. This follows from results by Grusin 1962, Littman 1967, Adams and Hedberg 1996 and Maz'ya 2011.

Theorem

For s > 0, K compact, $H_K^{-s} = \{0\} \iff \operatorname{cap}_s(K) = 0$, where

 $\operatorname{cap}_{s}(K) := \inf\{\|u\|_{H^{s}}^{2} : u \in C_{0}^{\infty}(\mathbb{R}^{n}) \text{ and } u \geq 1 \text{ on } K\}.$

This allows us to apply well-known results relating $\operatorname{cap}_s(E)$ to $\dim_{\mathrm{H}}(E)$ (see e.g. Adams and Hedberg 1996). Requires relating different set capacities.

Positive Lebesgue measure $\Rightarrow s_K \in [0, n/2]$

Theorem (Polking, 1972)

There exists a compact set K for which $s_K = n/2$. Also, $H_K^{n/2} \neq \{0\}$.

Maximal nullity threshold is achieved. Proof is constructive: "Swiss cheese set". Also "open minus countable-dense" (e.g. $\mathbb{R}^n \setminus \mathbb{Q}^n$) are not n/2-null. This is an audible Neumann screen with empty interior!

Positive Lebesgue measure $\Rightarrow s_K \in [0, n/2]$

Theorem (Polking, 1972)

There exists a compact set K for which $s_K = n/2$. Also, $H_K^{n/2} \neq \{0\}$.

Maximal nullity threshold is achieved. Proof is constructive: "Swiss cheese set". Also "open minus countable-dense" (e.g. $\mathbb{R}^n \setminus \mathbb{Q}^n$) are not n/2-null. This is an audible Neumann screen with empty interior!

Open question: Do there exist sets *K* for which $s_K \in (0, n/2)$?

-n/2 0 ? n/2

Positive Lebesgue measure $\Rightarrow s_K \in [0, n/2]$

Theorem (Polking, 1972)

There exists a compact set K for which $s_K = n/2$. Also, $H_K^{n/2} \neq \{0\}$.

Maximal nullity threshold is achieved. Proof is constructive: "Swiss cheese set". Also "open minus countable-dense" (e.g. $\mathbb{R}^n \setminus \mathbb{Q}^n$) are not n/2-null. This is an audible Neumann screen with empty interior!

Open question: Do there exist sets *K* for which $s_K \in (0, n/2)$?

$$-n/2$$
 0 ? $n/2$

Our contribution:

Theorem

 $orall s_* \in (0,1/2)$ the "fat" Cantor set $\mathcal{C}_{lpha,eta} \subset \mathbb{R}$ with

$$lpha \in (0, 2^{-1/(1-2s_*)}), \quad eta \in (0, 1-2lpha), \quad l_j = rac{1}{2^j} \left(1 - eta rac{1-(2lpha)^j}{1-2lpha}
ight)$$

has nullity threshold $s_{\mathcal{C}_{\alpha,\beta}} \geq s_*$ (and $\chi_{\mathcal{C}_{\alpha,\beta}} \in H^{s_*}$).

Let $n_1, n_2 \in \mathbb{N}$, and let $E_1 \subset \mathbb{R}^{n_1}$ and $E_2 \subset \mathbb{R}^{n_2}$ be Borel. Then

$$\begin{split} & s_{-} \leq s_{E_{1} \times E_{2}} \leq s_{+}, \quad \text{where} \\ & s_{-} := \min \left\{ s_{E_{1}}, \; s_{E_{2}}, \; s_{E_{1}} + s_{E_{2}} \right\}, \\ & s_{+} := \begin{cases} \min \left\{ s_{E_{1}}, \; s_{E_{2}} \right\} & \text{if } m(E_{1} \times E_{2}) = 0, \\ \min \{s_{E_{1}} + \frac{n_{2}}{2}, \; s_{E_{2}} + \frac{n_{1}}{2} \right\} & \text{if } m(E_{1} \times E_{2}) > 0. \end{cases} \end{split}$$

 $s_-
eq s_+$ is needed because s_{E_1}, s_{E_2} do not determine $s_{E_1 imes E_2}$:

 $\exists \textit{E}_{j} \subset \mathbb{R} \text{ such that } \textit{s}_{\textit{E}_{1}} = \textit{s}_{\textit{E}_{2}} = \textit{s}_{\textit{E}_{3}} = \textit{s}_{\textit{E}_{1} \times \textit{E}_{2}} = -1/2 \neq \textit{s}_{\textit{E}_{3} \times \textit{E}_{3}} = -1.$

Part III

Zero trace spaces

Comparison of the "zero trace" subspaces of \mathbb{R}^n

Recall definitions: for open $\Gamma \subset \mathbb{R}^n$

$$\begin{split} \widetilde{H}^s(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^s} & \widetilde{H}^s(\Gamma) \subset H^s_{\overline{\Gamma}} \subset H^s \\ H^s_{\overline{\Gamma}} &:= \{ u \in H^s : \operatorname{supp} u \subset \overline{\Gamma} \} & \text{When is } \widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \end{split}$$

Comparison of the "zero trace" subspaces of \mathbb{R}^n

Recall definitions: for open $\Gamma \subset \mathbb{R}^n$

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & \widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}} \subset H^{s} \\ H^{s}_{\overline{\Gamma}} &:= \{ u \in H^{s} : \operatorname{supp} u \subset \overline{\Gamma} \} & \text{When is } \widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}} \end{split}$$

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^n$ be C^0 . Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

For smooth ($C^{k,1}$) domains and s > 1/2, $s - 1/2 \notin \mathbb{N}$, these spaces are kernel of trace operators.

Intuition fails for negative s: if s < -n/2, $\delta_{\mathbf{x}_0} \in \widetilde{H}^s(\Gamma)$ for any $\mathbf{x}_0 \in \partial \Gamma$.

Comparison of the "zero trace" subspaces of \mathbb{R}^n

Recall definitions: for open $\Gamma \subset \mathbb{R}^n$

$$\begin{split} \widetilde{H}^{s}(\Gamma) &:= \overline{\mathcal{D}(\Gamma)}^{H^{s}} & \widetilde{H}^{s}(\Gamma) \subset H^{s}_{\overline{\Gamma}} \subset H^{s} \\ H^{s}_{\overline{\Gamma}} &:= \{ u \in H^{s} : \operatorname{supp} u \subset \overline{\Gamma} \} & \text{When is } \widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}} \end{split}$$

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^n$ be C^0 . Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

For smooth $(C^{k,1})$ domains and s > 1/2, $s - 1/2 \notin \mathbb{N}$, these spaces are kernel of trace operators. Intuition fails for negative s: if s < -n/2, $\delta_{\mathbf{x}_0} \in \widetilde{H}^s(\Gamma)$ for any $\mathbf{x}_0 \in \partial \Gamma$.

Theorem (negative example)

For every $n \in \mathbb{N}$, there exists a bounded open set $\Gamma \subset \mathbb{R}^n$ such that,

$$\begin{split} \forall s \geq -n/2 & \widetilde{H}^s(\Gamma) \subsetneqq H^s_{\overline{\Gamma}}, \\ \forall s > 0 & \widetilde{H}^s(\Gamma) \varsubsetneq \{ u \in H^s : u = 0 \text{ a.e. in } \Gamma^c \} \subsetneqq H \end{split}$$

Set Γ constructed using Cantor and Polking sets.

We consider two classes of open sets.

First, open Γ that is a "nice domain minus small holes", i.e. $int(\overline{\Gamma})$ is C^0 .

We consider two classes of open sets.

First, open Γ that is a "nice domain minus small holes", i.e. $int(\overline{\Gamma})$ is C^0 .

Lemma

If $\operatorname{int}(\overline{\Gamma})$ is C^0 then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff \operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is (-s)-null. (Holds more generally for Γ s.t. $\widetilde{H}^s(\operatorname{int}(\overline{\Gamma})) = H^s_{\overline{\Gamma}}$.)

We consider two classes of open sets.

First, open Γ that is a "nice domain minus small holes", i.e. $int(\overline{\Gamma})$ is C^0 .

Lemma

If $\operatorname{int}(\overline{\Gamma})$ is C^0 then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff \operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is (-s)-null. (Holds more generally for Γ s.t. $\widetilde{H}^s(\operatorname{int}(\overline{\Gamma})) = H^s_{\overline{\Gamma}}$.)

If $\operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is finite union of (n-1)-Lipschitz manifolds, then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff s \le 1/2.$

This is a (non)density result for the complement of a multiscreen!

We consider two classes of open sets.

First, open Γ that is a "nice domain minus small holes", i.e. $int(\overline{\Gamma})$ is C^0 .

Lemma

If $\operatorname{int}(\overline{\Gamma})$ is C^0 then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff \operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is (-s)-null. (Holds more generally for Γ s.t. $\widetilde{H}^s(\operatorname{int}(\overline{\Gamma})) = H^s_{\overline{\Gamma}}$.)

If $\operatorname{int}(\overline{\Gamma}) \setminus \Gamma$ is finite union of (n-1)-Lipschitz manifolds, then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}} \iff s \le 1/2.$

This is a (non)density result for the complement of a multiscreen!

Suppose that $\Gamma \subsetneq \operatorname{int}(\overline{\Gamma})$ and that $\operatorname{int}(\overline{\Gamma})$ is C^0 . Then

 $\exists \widetilde{s}_{\Gamma} \in [-n/2, n/2] \text{ s.t. } \widetilde{H}^{s_{-}}(\Gamma) = H^{s_{-}}_{\overline{\Gamma}}, \quad \widetilde{H}^{s_{+}}(\Gamma) \subsetneqq H^{s_{+}}_{\overline{\Gamma}} \quad \forall s_{-} < \widetilde{s}_{\Gamma} < s_{+}.$

If $m(\operatorname{int}(\overline{\Gamma}) \setminus \Gamma) = 0$ then $\widetilde{s}_{\Gamma} = \frac{n - \dim_{\mathrm{H}}(\operatorname{int}(\overline{\Gamma}) \setminus \Gamma)}{2}$.

Second, we want to understand whether $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$ for Γ "regular except at a few points", e.g. prefractal \blacktriangle . Second, we want to understand whether $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$ for Γ "regular except at a few points", e.g. prefractal \blacktriangle .

Theorem

Fix $|s| \leq 1$ if $n \geq 2$, $|s| \leq 1/2$ if n = 1. Let open $\Gamma \subset \mathbb{R}^n$ be C^0 except at countable $P \subset \partial \Gamma$, where P has at most finitely many limit points in every bounded subset of $\partial \Gamma$. Then $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}$.

E.g. union of disjoint C^0 open sets, whose closures intersect only in P.

Proof uses sequence of special Tartar's cutoffs (for n = 2, easier for $n \ge 3$) for s = 1, then duality and interpolation.

Examples of sets with $\widetilde{H}^{s}(\Gamma) = H^{s}_{\overline{\Gamma}}, |s| \leq 1$

Examples of non- C^0 sets for which $\widetilde{H}^s(\Gamma) = H^s_{\overline{\Gamma}}, |s| \leq 1$:

Sierpinski triangle prefractal, (unbounded) checkerboard, double brick, inner and outer (double) curved cusps, spiral, Fraenkel's "rooms and passages".

Part IV

Relations between different spaces

When is $H_0^s(\Gamma) = H^s(\Gamma)$?

What about relation between spaces with and without "zero trace"? Recall: $H_0^s(\Gamma) := \overline{\mathcal{D}(\Gamma)}^{H^s(\Gamma)} \subset H^s(\Gamma) := \{u|_{\Gamma} : u \in H^s\} \subset \mathcal{D}^*(\Gamma).$

When is $H_0^s(\Gamma) = H^s(\Gamma)$?

What about relation between spaces with and without "zero trace"? Recall: $H_0^s(\Gamma) := \overline{\mathcal{D}(\Gamma)}^{H^s(\Gamma)} \subset H^s(\Gamma) := \{u|_{\Gamma} : u \in H^s\} \subset \mathcal{D}^*(\Gamma).$

Lemma

For open $\Gamma \subset \mathbb{R}^n$, $s \in \mathbb{R}$, $H_0^s(\Gamma) = H^s(\Gamma) \iff \widetilde{H}^{-s}(\Gamma) \cap H_{\partial \Gamma}^{-s} = \{0\}$.

When is $H_0^s(\Gamma) = H^s(\Gamma)$?

What about relation between spaces with and without "zero trace"? Recall: $H_0^s(\Gamma) := \overline{\mathcal{D}(\Gamma)}^{H^s(\Gamma)} \subset H^s(\Gamma) := \{u|_{\Gamma} : u \in H^s\} \subset \mathcal{D}^*(\Gamma).$

Lemma

 $\textit{For open } \Gamma \subset \mathbb{R}^n, \, s \in \mathbb{R}, \ \ H^s_0(\Gamma) = H^s(\Gamma) \iff \widetilde{H}^{-s}(\Gamma) \cap H^{-s}_{\partial \Gamma} = \{0\}.$

Corollary

For any open $\emptyset \neq \Gamma \subsetneqq \mathbb{R}^n$, there exists $0 \le s_0(\Gamma) \le n/2$ such that

 $H^{s_-}_0(\Gamma) = H^{s_-}(\Gamma) \quad \text{and} \quad H^{s_+}_0(\Gamma) \subsetneqq H^{s_+}(\Gamma) \qquad \text{for all } s_- < s_0(\Gamma) < s_+.$

- $s_0(\Gamma) \ge -s_{\partial\Gamma}$ (nullity threshold), with equality if Γ is C^0 .
- ► $s_0(\Gamma) \ge (n \dim_{\mathrm{H}} \partial \Gamma)/2.$
- If Γ is C^0 , then $0 \le s_0(\Gamma) \le 1/2$.
- ▶ If Γ is $C^{0,\alpha}$ then $\alpha/2 \leq s_0(\Gamma) \leq 1/2$.
- If Γ is Lipschitz, then $s_0(\Gamma) = 1/2$.
- If $\Gamma = \mathbb{R}^n \setminus F$, F countable, $s_0(\Gamma) = n/2$.

All bounds on s_0 can be achieved. Improvement on Caetano 2000.

The relations between subspaces of $\mathcal{D}^*(\mathbb{R}^n)$ and $\mathcal{D}^*(\Gamma)$ are described by the restriction operator $|_{\Gamma} : \mathcal{D}^*(\mathbb{R}^n) \to \mathcal{D}^*(\Gamma)$.

- ▶ $|_{\Gamma}: H^{s}(\mathbb{R}^{n}) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\blacktriangleright |_{\Gamma} : (H^s_{\Gamma^c})^{\perp} \to H^s(\Gamma) \text{ is a unitary isomorphism } (H^s_{\Gamma^c} = \ker |_{\Gamma});$

The relations between subspaces of $\mathcal{D}^*(\mathbb{R}^n)$ and $\mathcal{D}^*(\Gamma)$ are described by the restriction operator $|_{\Gamma} : \mathcal{D}^*(\mathbb{R}^n) \to \mathcal{D}^*(\Gamma)$.

- ▶ $|_{\Gamma}: H^{s}(\mathbb{R}^{n}) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\blacktriangleright |_{\Gamma} : (H^s_{\Gamma^c})^{\perp} \to H^s(\Gamma) \text{ is a unitary isomorphism } (H^s_{\Gamma^c} = \ker |_{\Gamma});$
- ▶ For $s \ge 0$, $|_{\Gamma} : \tilde{H}^s(\Gamma) \to H_0^s(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_0$ then it is isomorphism;
- ▶ If Γ is finite union of disjoint Lipschitz open sets, $\partial\Gamma$ is bounded, $s > -1/2, s + 1/2 \notin \mathbb{N}$, then $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ is isomorphism;

Open question: for which s is $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ isomorphism?

The relations between subspaces of $\mathcal{D}^*(\mathbb{R}^n)$ and $\mathcal{D}^*(\Gamma)$ are described by the restriction operator $|_{\Gamma} : \mathcal{D}^*(\mathbb{R}^n) \to \mathcal{D}^*(\Gamma)$.

- ▶ $|_{\Gamma}: H^{s}(\mathbb{R}^{n}) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\blacktriangleright |_{\Gamma} : (H^s_{\Gamma^c})^{\perp} \to H^s(\Gamma) \text{ is a unitary isomorphism } (H^s_{\Gamma^c} = \ker |_{\Gamma});$
- ▶ For $s \ge 0$, $|_{\Gamma} : \tilde{H}^s(\Gamma) \to H_0^s(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_0$ then it is isomorphism;

▶ If Γ is finite union of disjoint Lipschitz open sets, $\partial\Gamma$ is bounded, $s > -1/2, s + 1/2 \notin \mathbb{N}$, then $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ is isomorphism;

Open question: for which s is $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ isomorphism?

- ▶ If Γ is bounded, or Γ^c is bounded with non-empty interior, then $|_{\Gamma} : \widetilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is a unitary isomorphism $\iff s \in \mathbb{N}_0$ (equivalent to say that H^s norm is local only for $s \in \mathbb{N}_0$);
- ▶ If Γ^c is s-null, then $|_{\Gamma} : \widetilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is a unitary isomorphism.

The relations between subspaces of $\mathcal{D}^*(\mathbb{R}^n)$ and $\mathcal{D}^*(\Gamma)$ are described by the restriction operator $|_{\Gamma} : \mathcal{D}^*(\mathbb{R}^n) \to \mathcal{D}^*(\Gamma)$.

- ▶ $|_{\Gamma}: H^{s}(\mathbb{R}^{n}) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\blacktriangleright |_{\Gamma} : (H^s_{\Gamma^c})^{\perp} \to H^s(\Gamma) \text{ is a unitary isomorphism } (H^s_{\Gamma^c} = \ker |_{\Gamma});$
- ▶ For $s \ge 0$, $|_{\Gamma} : \tilde{H}^s(\Gamma) \to H_0^s(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_0$ then it is isomorphism;

▶ If Γ is finite union of disjoint Lipschitz open sets, $\partial\Gamma$ is bounded, $s > -1/2, s + 1/2 \notin \mathbb{N}$, then $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ is isomorphism;

Open question: for which s is $|_{\Gamma} : \widetilde{H}^{s}(\Gamma) \to H_{0}^{s}(\Gamma)$ isomorphism?

- ▶ If Γ is bounded, or Γ^c is bounded with non-empty interior, then $|_{\Gamma} : \widetilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is a unitary isomorphism $\iff s \in \mathbb{N}_0$ (equivalent to say that H^s norm is local only for $s \in \mathbb{N}_0$);
- ▶ If Γ^c is s-null, then $|_{\Gamma} : \widetilde{H}^s(\Gamma) \to H^s_0(\Gamma)$ is a unitary isomorphism.

(If one defines $H_{00}^{s}(\Gamma)$, $s \geq 0$, from interpolation of $H_{0}^{k}(\Gamma)$, $k \in \mathbb{N}_{0}$, then for sufficiently smooth Γ (e.g. Lipschitz) $H_{00}^{s}(\Gamma) = \widetilde{H}^{s}(\Gamma)|_{\Gamma}$.) It is well-known that, for $s_0, s_1 \in \mathbb{R}$, 0 < heta < 1, and $s = s_0(1- heta) + s_1 heta$,

 $(H^{s_0}(\mathbb{R}^n), H^{s_1}(\mathbb{R}^n))_{\theta} = H^s(\mathbb{R}^n)$ with equal norms.

In McLean's book Strongly Elliptic Systems and Boundary Integral Equations it is claimed (in Theorem B.8) that the same holds for $H^{s}(\Gamma) := \{u|_{\Gamma} : u \in H^{s}(\mathbb{R}^{n})\}$, for arbitrary open sets $\Gamma \subset \mathbb{R}^{n}$.

THIS RESULT IS FALSE! The interpolation result only holds for Γ sufficiently smooth (e.g. Lipschitz) and even then, equality of norms does not hold in general.

Simple counterexamples:

for a cusp domain in \mathbb{R}^2 , $\{H^s(\Gamma), 0 \le s \le 2\}$ is not interpolation scale; for open interval in \mathbb{R} , no normalisation of $(\widetilde{H}^0(\Gamma), \widetilde{H}^1(\Gamma))_{1/2}$ can give norm equal to $\widetilde{H}^{1/2}(\Gamma)$.

Summary

We have studied (classical, fractional, Bessel-potential, Hilbert) Sobolev spaces on general open and closed subset of \mathbb{R}^n .

In particular we contributed to the questions:

- ▶ What are the duals of these spaces?
- ▶ When does $E \subset \mathbb{R}^n$ support non-zero $u \in H^s$?
- When is $\widetilde{H}^{s}(\Gamma) = H^{\underline{s}}_{\overline{\Gamma}}$?
- When is $H^{s}(\Gamma) = H_{0}^{s}(\Gamma)$?
- For which spaces is $|_{\Gamma}$ an isomorphism?

Some of these are relevant for screen scattering problems and Galerkin (FEM/BEM) methods on fractals.

Plenty of questions are still open!

Summary

We have studied (classical, fractional, Bessel-potential, Hilbert) Sobolev spaces on general open and closed subset of \mathbb{R}^n .

In particular we contributed to the questions:

- ▶ What are the duals of these spaces?
- ▶ When does $E \subset \mathbb{R}^n$ support non-zero $u \in H^s$?
- When is $\widetilde{H}^{s}(\Gamma) = H^{\underline{s}}_{\overline{\Gamma}}$?
- When is $H^{s}(\Gamma) = H_{0}^{s}(\Gamma)$?
- For which spaces is $|_{\Gamma}$ an isomorphism?

Some of these are relevant for screen scattering problems and Galerkin (FEM/BEM) methods on fractals.

Plenty of questions are still open!

Bibliography

 SNCW, DPH, Acoustic scattering by fractal screens: mathematical formulations and wavenumber- explicit continuity and coercivity estimates.
 University of Reading preprint MPS-2013-17.

(2) SNCW, DPH, AM, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples,

Mathematika (2015).

- (3) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, Analysis and applications (2016).
- (4) DPH, AM, A note on properties of the restriction operator on Sobolev spaces, arXiv:1607.01741 (2016).
- (5) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of ℝⁿ with application to boundary integral equations on fractal screens, Integr. Equ. Oper. Theory (2017).
- (6) SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens, arXiv:1611.09539 (2016).