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From Dave’s talk

Questions related to scattering by fractal screens
(well-posedness, unique formulation,

“audibility”, BEM and prefractal convergence. . . )
crucially depend on properties of Sobolev spaces on rough sets.

E.g.: for which compact K , open Γ and s ∈ R are
{u ∈ Hs(Rn) : supp u ⊂ K} = {0} and
D(Γ) dense in {u ∈ Hs(Rn) : supp u ⊂ Γ}?

Many results available (Maz’ya, Triebel, Polking, Adams, Hedberg,. . . )
but not entirely clear/satisfactory/useful for us.

We need to learn more about Sobolev spaces on non-Lipschitz sets!
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Part I

Definitions and duality



Basic definitions I: Sobolev spaces on Rn

For k ∈ N0, W k := {u ∈ L2(Rn) : ∂αu ∈ L2(Rn), ∀|α| ≤ k},

‖u‖2
W k :=

∑

|α|≤k

∫

Rn

|∂αu(x)|2dx.

For s ∈ R, Hs := {u ∈ S∗(Rn) : û ∈ L1
loc(R

n) and ‖u‖Hs <∞},

‖u‖2
Hs :=

∫

Rn

(1 + |ξ|2)s |û(ξ)|2 dξ.

◮ For k ∈ N0, Hk = W k with equivalent norms.

◮ For t > s, H t ⊂ Hs (continuous embedding, norm 1).

◮ (Hs)∗ = H−s, with duality pairing

〈u, v〉H−s×Hs :=

∫

Rn

û(ξ)v̂(ξ)dξ.

◮ Hs ⊂ C(Rn) for s > n/2 (Sobolev embedding theorem).
δx0

∈ Hs ⇐⇒ s < −n/2 (〈δx0
, φ〉 = φ(x0)).
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Basic definitions II: Sobolev sp. on subsets of Rn

Notation: Γ ⊂ Rn open, F ⊂ Rn closed, K ⊂ Rn compact.

H̃s(Γ) := D(Γ)
Hs

(D(Γ) := C∞
0 (Γ) ⊂ C∞(Rn))

Hs
F := {u ∈ Hs : supp u ⊂ F} = {u ∈ Hs : u(ϕ) = 0 ∀ϕ ∈ D(F c)}

Hs(Γ) := {u|Γ : u ∈ Hs}

Hs
0(Γ) := D(Γ)|Γ

Hs(Γ)
(notation from McLean)

“Global” and “local” spaces:

H̃s(Γ) ⊂ Hs

Γ
⊂ Hs ⊂ D∗(Rn)

|Γ
−→ Hs

0(Γ) ⊂ Hs(Γ) ⊂ D∗(Γ).

There exist many works on Sobolev (Besov,. . . ) spaces on rough sets;
most use intrinsic definitions on d-sets.
Analogous to W s(Γ), based on Lp(Γ, µd).
Related to spaces in Rn by traces.
See: Jonsson–Wallin, Strichartz.

Our spaces are different, more suited for integral equations and BEM.
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Duality

Theorem

Let Γ be any open subset of Rn and let s ∈ R.

Then (Hs(Γ))∗ = H̃−s(Γ) and (H̃s(Γ))∗ = H−s(Γ) with equal norms and

〈u,w〉
H−s(Γ)×H̃s(Γ) = 〈U ,w〉H−s×Hs for any U ∈ H−s,U |Γ = u.

Well-known for Lipschitz but not in general case.

Main ideas of proof:

◮ H Hilbert, V ⊂ H closed ssp, H unitary realisation of H∗, then
(Va,H)⊥ = {ψ ∈ H, 〈ψ, φ〉 = 0 ∀φ ∈ V}⊥ is unitary realisation of V ∗

◮ H−s
Γc = {u ∈ H−s : u(ψ) = 〈u, ψ〉 = 0 ∀ψ ∈ D(Γ)} = (H̃s(Γ))a,H

−s

◮ Restriction operator |Γ is unitary isomorphism |Γ : (H−s
Γc )⊥ → H−s(Γ)

(from identification of H−s(Γ) with H−s/H−s
Γc )

◮ Choose V = H̃s(Γ), H = Hs, H = H−s
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Sobolev space questions

We address the following questions:

◮ When does E ⊂ Rn support non-zero u ∈ Hs?

◮ When is H̃s(Γ) = Hs

Γ
?

◮ When is Hs(Γ) = Hs
0(Γ)?

◮ For which spaces is |Γ an isomorphism?

◮ When are Hs(Γ) and H̃s(Γ) interpolation scales?

◮ What’s the limit of a sequence of Galerkin solutions to a
variational problem on prefractals?

6



Part II

s-nullity



s-nullity

Definition

Given s ∈ R we say that a set E ⊂ Rn is s-null if there are no non-zero
elements of Hs supported in E.

(I.e. if Hs
F = {0} for every closed set F ⊂ E.)

Other terminology exists:
“(−s)-polar” (Maz’ya, Littman),
“set of uniqueness for Hs” (Maz’ya, Adams/Hedberg).
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Relevance of s-nullity

For the screen scattering problem:

◮ For a compact screen K to be audible we need H
±1/2
K 6= {0}.

◮ For the solution of the classical Dirichlet/Neumann BVP to be
unique we need H

±1/2
∂Γ = {0}.

◮ Two screens Γ1 and Γ2 give the same scattered field for all
incident waves if and only if Γ1 ⊖ Γ2 is ±1/2-null.

K Γ Γ1 Γ2
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s-nullity: basic results

◮ A subset of an s-null set is s-null.

◮ If E is s-null and t > s then E is t-null.

◮ If E is s-null then has empty interior.

◮ If s > n/2 then E is s-null ⇐⇒ int(E) = ∅.

◮ For s < −n/2 there are no non-empty s-null sets.

Interesting cases: sets with empty interior and −n/2 ≤ s ≤ n/2.

Non-trivial results:

◮ The union of finitely many s-null closed sets is s-null.

◮ The union of countably many s-null Borel sets is s-null if s ≤ 0.

Union of non-closed s-null sets for s > 0 is not s-null:
counterexample is E1 = Qn ,E2 = Rn \Qn , s > n/2.
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Nullity threshold

Definition

For every E ⊂ Rn with int(E) = ∅ there exists sE ∈ [−n/2,n/2] such that
E is s-null for s > sE and not s-null for s < sE .
We call sE the nullity threshold of E.

s−n/2 0 sE n/2

E is s-null

cannot support Hs distributions

E is not s-null

can support Hs distributions

Q1: Given E ⊂ Rn , can we determine sE?

Q2: Given s ∈ [−n/2,n/2], can we find some E ⊂ Rn for which sE = s?

Q3: When is E sE-null? (i.e. is the maximum regularity attained?)

We study separately sets with zero and positive Lebesgue measure.
10
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Zero Lebesgue measure ⇒ sK ∈ [−n/2,0]

Let K ⊂ Rn be non-empty and compact. Then:

◮ H0
K = L2(K) = {0} ⇐⇒ m(K) = 0.

◮ If m(K) = 0 then sK ≤ 0.

◮ If K is countable then sK = −n/2 (Hs
K = {0} ⇔ s ≥ −n/2).

Theorem

If m(K) = 0, then sK =
dimHK − n

2
.

(dimH =Hausdorff dimension, m =Lebesgue measure)

dimHK = inf
{
d > 0 : H

(d−n)/2
K = {0}

}

This does not tell us if K is sK -null; examples of both cases are possible.

Sharpens previous results by Littman (1967) and Triebel (1997).
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Examples

Let Γ ⊂ Rn be non-empty and open.

◮ If Γ is C0 then s∂Γ ∈ [−1/2,0].

◮ If Γ is C0,α for some 0 < α < 1 then s∂Γ ∈ [−1/2,−α/2] (sharp).

◮ If Γ is Lipschitz then s∂Γ = −1/2 (and H
−1/2
∂Γ = {0}).

◮ If Γ is Koch snowflake, s∂Γ = log 2
log 3 − 1 ≈ −0.37.

We can construct a “Cantor dust” Cn
α ⊂ Rn with given nullity threshold.

If prefractal edge lengths is lj = αj, 0 < α < 1/2:

sCn
α
= −

n

2

(
1 +

log 2

logα

)
∈
(
−

n

2
,0

)
.

Choose α = 2−n/(2s+n) to have sCn
α
= s.

Can also define “thin” Cantor dusts which have sK = −n/2.
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Capacity

Our proofs rely on the following equivalence.
This follows from results by Grusin 1962, Littman 1967, Adams and
Hedberg 1996 and Maz’ya 2011.

Theorem

For s > 0, K compact, H−s
K = {0} ⇐⇒ caps(K) = 0, where

caps(K) := inf{‖u‖2
Hs : u ∈ C∞

0 (Rn) and u ≥ 1 on K}.

This allows us to apply well-known results relating caps(E) to dimH(E)
(see e.g. Adams and Hedberg 1996).
Requires relating different set capacities.

13



Positive Lebesgue measure ⇒ sK ∈ [0,n/2]

Theorem (Polking, 1972)

There exists a compact set K for which sK = n/2. Also, H
n/2
K 6= {0}.

Maximal nullity threshold is achieved.
Proof is constructive: “Swiss cheese set”.
Also “open minus countable-dense” (e.g. Rn \Qn) are not n/2-null.
This is an audible Neumann screen with empty interior!

Open question: Do there exist sets K for which sK ∈ (0,n/2)?

−n/2 0 ? n/2
Our contribution:

Theorem

∀s∗ ∈ (0,1/2) the “fat” Cantor set Cα,β ⊂ R with

α ∈ (0,2−1/(1−2s∗)), β ∈ (0,1 − 2α), lj =
1

2j

(
1 − β

1 − (2α)j

1 − 2α

)

has nullity threshold sCα,β
≥ s∗ (and χCα,β

∈ Hs∗ ).

14
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Nullity of Cartesian products of sets

Let n1,n2 ∈ N, and let E1 ⊂ Rn1 and E2 ⊂ Rn2 be Borel. Then

s− ≤ sE1×E2
≤ s+, where

s− := min
{
sE1

, sE2
, sE1

+ sE2

}
,

s+ :=

{
min

{
sE1

, sE2

}
if m(E1 × E2) = 0,

min{sE1
+ n2

2
, sE2

+ n1

2

}
if m(E1 × E2) > 0.

s− 6= s+ is needed because sE1
, sE2

do not determine sE1×E2
:

∃Ej ⊂ R such that sE1
= sE2

= sE3
= sE1×E2

= −1/2 6= sE3×E3
= −1.
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Part III

Zero trace spaces



Comparison of the “zero trace” subspaces of Rn

Recall definitions: for open Γ ⊂ Rn

H̃s(Γ) := D(Γ)
Hs

Hs

Γ
:= {u ∈ Hs : supp u ⊂ Γ}

H̃s(Γ) ⊂ Hs
Γ
⊂ Hs

When is H̃s(Γ) = Hs

Γ
?

Classical result (e.g. McLean)

Let Γ ⊂ Rn be C0. Then H̃s(Γ) = Hs

Γ
.

For smooth (Ck,1) domains and s > 1/2, s − 1/2 /∈ N, these spaces
are kernel of trace operators.
Intuition fails for negative s: if s < −n/2, δx0

∈ H̃s(Γ) for any x0 ∈ ∂Γ.

Theorem (negative example)

For every n ∈ N, there exists a bounded open set Γ ⊂ Rn such that,

∀s ≥ −n/2 H̃s(Γ) $ Hs

Γ
,

∀s > 0 H̃s(Γ) $ {u ∈ Hs : u = 0 a.e. in Γc} $ Hs

Γ
.

Set Γ constructed using Cantor and Polking sets.
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Zero trace spaces and int(Γ) \ Γ

We consider two classes of open sets.
First, open Γ that is a “nice domain minus small holes”, i.e. int(Γ) is C0.

Lemma

If int(Γ) is C0 then H̃s(Γ) = Hs
Γ

⇐⇒ int(Γ) \ Γ is (−s)-null.

(Holds more generally for Γ s.t. H̃s(int(Γ)) = Hs
Γ
.)

If int(Γ) \ Γ is finite union of (n−1)-Lipschitz manifolds, then

H̃s(Γ) = Hs

Γ
⇐⇒ s ≤ 1/2.

This is a (non)density result for the complement of a multiscreen!

Suppose that Γ $ int(Γ) and that int(Γ) is C0. Then

∃s̃Γ ∈ [−n/2,n/2] s.t. H̃s−(Γ) = H
s−

Γ
, H̃s+(Γ) $ H

s+

Γ
∀s− < s̃Γ < s+.

If m(int(Γ) \ Γ) = 0 then s̃Γ = n−dimH(int(Γ)\Γ)
2 .
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Sets with H̃s(Γ) = Hs
Γ
, |s| ≤ 1

Second, we want to understand whether H̃s(Γ) = Hs

Γ
for Γ

“regular except at a few points”, e.g. prefractal .

Theorem

Fix |s| ≤ 1 if n ≥ 2, |s| ≤ 1/2 if n = 1.
Let open Γ ⊂ Rn be C0 except at countable P ⊂ ∂Γ, where
P has at most finitely many limit points in every bounded subset of ∂Γ.
Then H̃s(Γ) = Hs

Γ
.

E.g. union of disjoint C0 open sets, whose closures intersect only in P .

Proof uses sequence of special Tartar’s cutoffs (for n = 2, easier for
n ≥ 3) for s = 1, then duality and interpolation.
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Examples of sets with H̃s(Γ) = Hs
Γ
, |s| ≤ 1

Examples of non-C0 sets for which H̃s(Γ) = Hs

Γ
, |s| ≤ 1:

Sierpinski triangle prefractal, (unbounded) checkerboard,
double brick, inner and outer (double) curved cusps, spiral,
Fraenkel’s “rooms and passages”.
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Part IV

Relations between different spaces



When is Hs
0(Γ) = Hs(Γ)?

What about relation between spaces with and without “zero trace”?

Recall: Hs
0(Γ) := D(Γ)

Hs(Γ)
⊂ Hs(Γ) := {u|Γ : u ∈ Hs} ⊂ D∗(Γ).

Lemma

For open Γ ⊂ Rn , s ∈ R, Hs
0(Γ) = Hs(Γ) ⇐⇒ H̃−s(Γ) ∩ H−s

∂Γ = {0}.

Corollary

For any open ∅ 6= Γ $ Rn , there exists 0 ≤ s0(Γ) ≤ n/2 such that

H
s−

0 (Γ) = Hs− (Γ) and H
s+

0 (Γ) $ Hs+(Γ) for all s− < s0(Γ) < s+.

◮ s0(Γ) ≥ −s∂Γ (nullity threshold), with equality if Γ is C0.

◮ s0(Γ) ≥ (n − dimH∂Γ)/2.

◮ If Γ is C0, then 0 ≤ s0(Γ) ≤ 1/2.

◮ If Γ is C0,α then α/2 ≤ s0(Γ) ≤ 1/2.

◮ If Γ is Lipschitz, then s0(Γ) = 1/2.

◮ If Γ = Rn \ F , F countable, s0(Γ) = n/2.

All bounds on s0 can be achieved. Improvement on Caetano 2000.
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Relations between “global” and “local” spaces

The relations between subspaces of D∗(Rn) and D∗(Γ) are described
by the restriction operator |Γ : D∗(Rn) → D∗(Γ).

◮ |Γ : Hs(Rn) → Hs(Γ) is continuous with norm one;

◮ |Γ : (Hs
Γc )⊥ → Hs(Γ) is a unitary isomorphism (Hs

Γc = ker |Γ);

◮ For s ≥ 0, |Γ : H̃s(Γ) → Hs
0(Γ) is injective and has dense image;

if s ∈ N0 then it is isomorphism;

◮ If Γ is finite union of disjoint Lipschitz open sets, ∂Γ is bounded,
s > −1/2, s + 1/2 /∈ N, then |Γ : H̃s(Γ) → Hs

0(Γ) is isomorphism;

Open question: for which s is |Γ : H̃s(Γ) → Hs
0(Γ) isomorphism?

◮ If Γ is bounded, or Γc is bounded with non-empty interior, then
|Γ : H̃s(Γ) → Hs

0(Γ) is a unitary isomorphism ⇐⇒ s ∈ N0

(equivalent to say that Hs norm is local only for s ∈ N0);

◮ If Γc is s-null, then |Γ : H̃s(Γ) → Hs
0(Γ) is a unitary isomorphism.

(If one defines Hs
00(Γ), s ≥ 0, from interpolation of Hk

0 (Γ), k ∈ N0,

then for sufficiently smooth Γ (e.g. Lipschitz) Hs
00(Γ) = H̃s(Γ)|Γ.)

21



Relations between “global” and “local” spaces

The relations between subspaces of D∗(Rn) and D∗(Γ) are described
by the restriction operator |Γ : D∗(Rn) → D∗(Γ).

◮ |Γ : Hs(Rn) → Hs(Γ) is continuous with norm one;

◮ |Γ : (Hs
Γc )⊥ → Hs(Γ) is a unitary isomorphism (Hs

Γc = ker |Γ);

◮ For s ≥ 0, |Γ : H̃s(Γ) → Hs
0(Γ) is injective and has dense image;

if s ∈ N0 then it is isomorphism;

◮ If Γ is finite union of disjoint Lipschitz open sets, ∂Γ is bounded,
s > −1/2, s + 1/2 /∈ N, then |Γ : H̃s(Γ) → Hs

0(Γ) is isomorphism;

Open question: for which s is |Γ : H̃s(Γ) → Hs
0(Γ) isomorphism?

◮ If Γ is bounded, or Γc is bounded with non-empty interior, then
|Γ : H̃s(Γ) → Hs

0(Γ) is a unitary isomorphism ⇐⇒ s ∈ N0

(equivalent to say that Hs norm is local only for s ∈ N0);

◮ If Γc is s-null, then |Γ : H̃s(Γ) → Hs
0(Γ) is a unitary isomorphism.

(If one defines Hs
00(Γ), s ≥ 0, from interpolation of Hk

0 (Γ), k ∈ N0,

then for sufficiently smooth Γ (e.g. Lipschitz) Hs
00(Γ) = H̃s(Γ)|Γ.)

21



Relations between “global” and “local” spaces

The relations between subspaces of D∗(Rn) and D∗(Γ) are described
by the restriction operator |Γ : D∗(Rn) → D∗(Γ).

◮ |Γ : Hs(Rn) → Hs(Γ) is continuous with norm one;

◮ |Γ : (Hs
Γc )⊥ → Hs(Γ) is a unitary isomorphism (Hs

Γc = ker |Γ);

◮ For s ≥ 0, |Γ : H̃s(Γ) → Hs
0(Γ) is injective and has dense image;

if s ∈ N0 then it is isomorphism;

◮ If Γ is finite union of disjoint Lipschitz open sets, ∂Γ is bounded,
s > −1/2, s + 1/2 /∈ N, then |Γ : H̃s(Γ) → Hs

0(Γ) is isomorphism;

Open question: for which s is |Γ : H̃s(Γ) → Hs
0(Γ) isomorphism?

◮ If Γ is bounded, or Γc is bounded with non-empty interior, then
|Γ : H̃s(Γ) → Hs

0(Γ) is a unitary isomorphism ⇐⇒ s ∈ N0

(equivalent to say that Hs norm is local only for s ∈ N0);

◮ If Γc is s-null, then |Γ : H̃s(Γ) → Hs
0(Γ) is a unitary isomorphism.

(If one defines Hs
00(Γ), s ≥ 0, from interpolation of Hk

0 (Γ), k ∈ N0,

then for sufficiently smooth Γ (e.g. Lipschitz) Hs
00(Γ) = H̃s(Γ)|Γ.)

21



Relations between “global” and “local” spaces

The relations between subspaces of D∗(Rn) and D∗(Γ) are described
by the restriction operator |Γ : D∗(Rn) → D∗(Γ).

◮ |Γ : Hs(Rn) → Hs(Γ) is continuous with norm one;

◮ |Γ : (Hs
Γc )⊥ → Hs(Γ) is a unitary isomorphism (Hs

Γc = ker |Γ);

◮ For s ≥ 0, |Γ : H̃s(Γ) → Hs
0(Γ) is injective and has dense image;

if s ∈ N0 then it is isomorphism;

◮ If Γ is finite union of disjoint Lipschitz open sets, ∂Γ is bounded,
s > −1/2, s + 1/2 /∈ N, then |Γ : H̃s(Γ) → Hs

0(Γ) is isomorphism;

Open question: for which s is |Γ : H̃s(Γ) → Hs
0(Γ) isomorphism?

◮ If Γ is bounded, or Γc is bounded with non-empty interior, then
|Γ : H̃s(Γ) → Hs

0(Γ) is a unitary isomorphism ⇐⇒ s ∈ N0

(equivalent to say that Hs norm is local only for s ∈ N0);

◮ If Γc is s-null, then |Γ : H̃s(Γ) → Hs
0(Γ) is a unitary isomorphism.

(If one defines Hs
00(Γ), s ≥ 0, from interpolation of Hk

0 (Γ), k ∈ N0,

then for sufficiently smooth Γ (e.g. Lipschitz) Hs
00(Γ) = H̃s(Γ)|Γ.)

21



A warning about interpolation

It is well-known that, for s0, s1 ∈ R, 0 < θ < 1, and s = s0(1 − θ) + s1θ,

(
Hs0(Rn),Hs1 (Rn)

)
θ
= Hs(Rn) with equal norms.

In McLean’s book Strongly Elliptic Systems and Boundary Integral
Equations it is claimed (in Theorem B.8) that the same holds for
Hs(Γ) := {u|Γ : u ∈ Hs(Rn)}, for arbitrary open sets Γ ⊂ Rn .

THIS RESULT IS FALSE!
The interpolation result only holds for Γ sufficiently smooth (e.g.
Lipschitz) and even then, equality of norms does not hold in general.

Simple counterexamples:
for a cusp domain in R2, {Hs(Γ),0 ≤ s ≤ 2} is not interpolation scale;

for open interval in R, no normalisation of (H̃0(Γ), H̃1(Γ))1/2 can give

norm equal to H̃1/2(Γ).

22



Summary

We have studied (classical, fractional, Bessel-potential, Hilbert)
Sobolev spaces on general open and closed subset of Rn .

In particular we contributed to the questions:

◮ What are the duals of these spaces?

◮ When does E ⊂ Rn support non-zero u ∈ Hs?

◮ When is H̃s(Γ) = Hs

Γ
?

◮ When is Hs(Γ) = Hs
0(Γ)?

◮ For which spaces is |Γ an isomorphism?

Some of these are relevant for screen scattering problems and
Galerkin (FEM/BEM) methods on fractals.

Plenty of questions are still open!

Thank you!
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