Sobolev spaces on non-Lipschitz domains

Andrea Moiola
Department of Mathematics and Statistics, University of Reading EPSRC GRANT EP/NO19407/1

with S.N. Chandler-Wilde (Reading) and D.P. Hewett (UCL)

From Dave's talk

Questions related to scattering by fractal screens
(well-posedness, unique formulation,
"audibility", BEM and prefractal convergence...)
crucially depend on properties of Sobolev spaces on rough sets.
E.g.: for which compact K, open Γ and $s \in \mathbb{R}$ are
$\left\{u \in H^{s}\left(\mathbb{R}^{n}\right): \operatorname{supp} u \subset K\right\}=\{0\}$ and
$\mathcal{D}(\Gamma)$ dense in $\left\{u \in H^{s}\left(\mathbb{R}^{n}\right)\right.$: supp $\left.u \subset \bar{\Gamma}\right\}$?
Many results available (Maz'ya, Triebel, Polking, Adams, Hedberg,... .) but not entirely clear/satisfactory/useful for us.

We need to learn more about Sobolev spaces on non-Lipschitz sets!

Part I

Definitions and duality

Basic definitions I: Sobolev spaces on \mathbb{R}^{n}

For $k \in \mathbb{N}_{0}$,

$$
\begin{aligned}
W^{k} & :=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \forall|\boldsymbol{\alpha}| \leq k\right\} \\
\|u\|_{W^{k}}^{2} & :=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
\end{aligned}
$$

Basic definitions I: Sobolev spaces on \mathbb{R}^{n}

For $k \in \mathbb{N}_{0}, \quad W^{k}:=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \forall|\boldsymbol{\alpha}| \leq k\right\}$,

$$
\|u\|_{W^{k}}^{2}:=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
$$

For $s \in \mathbb{R}$,

$$
\begin{aligned}
H^{s} & :=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right): \hat{u} \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) \text { and }\|u\|_{H^{s}}<\infty\right\}, \\
\|u\|_{H^{s}}^{2} & :=\int_{\mathbb{R}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi
\end{aligned}
$$

Basic definitions I: Sobolev spaces on \mathbb{R}^{n}

For $k \in \mathbb{N}_{0}, \quad W^{k}:=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \forall|\boldsymbol{\alpha}| \leq k\right\}$,

$$
\|u\|_{W^{k}}^{2}:=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
$$

For $s \in \mathbb{R}$,

$$
\begin{aligned}
H^{s} & :=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right): \hat{u} \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) \text { and }\|u\|_{H^{s}}<\infty\right\} \\
\|u\|_{H^{s}}^{2} & :=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi
\end{aligned}
$$

- For $k \in \mathbb{N}_{0}, H^{k}=W^{k}$ with equivalent norms.

Basic definitions I: Sobolev spaces on \mathbb{R}^{n}

For $k \in \mathbb{N}_{0}$,

$$
W^{k}:=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \forall|\boldsymbol{\alpha}| \leq \boldsymbol{k}\right\}
$$

$$
\|u\|_{W^{k}}^{2}:=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
$$

For $s \in \mathbb{R}$,

$$
\begin{aligned}
H^{s} & :=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right): \hat{u} \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) \text { and }\|u\|_{H^{s}}<\infty\right\} \\
\|u\|_{H^{s}}^{2} & :=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi
\end{aligned}
$$

- For $k \in \mathbb{N}_{0}, H^{k}=W^{k}$ with equivalent norms.
- For $t>s, H^{t} \subset H^{s}$ (continuous embedding, norm 1).

Basic definitions I: Sobolev spaces on \mathbb{R}^{n}

For $k \in \mathbb{N}_{0}$,

$$
W^{k}:=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \forall|\boldsymbol{\alpha}| \leq k\right\}
$$

$$
\|u\|_{W^{k}}^{2}:=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
$$

For $s \in \mathbb{R}$,

$$
\begin{aligned}
H^{s} & :=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right): \hat{u} \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) \text { and }\|u\|_{H^{s}}<\infty\right\} \\
\|u\|_{H^{s}}^{2} & :=\int_{\mathbb{R}^{n}}\left(1+|\boldsymbol{\xi}|^{2}\right)^{s}|\widehat{u}(\boldsymbol{\xi})|^{2} \mathrm{~d} \xi
\end{aligned}
$$

- For $k \in \mathbb{N}_{0}, H^{k}=W^{k}$ with equivalent norms.
- For $t>s, H^{t} \subset H^{s}$ (continuous embedding, norm 1).
- $\left(H^{s}\right)^{*}=H^{-s}$, with duality pairing

$$
\langle u, v\rangle_{H^{-s} \times H^{s}}:=\int_{\mathbb{R}^{n}} \hat{u}(\xi) \overline{\hat{v}(\xi)} \mathrm{d} \xi
$$

Basic definitions I: Sobolev spaces on \mathbb{R}^{n}

For $k \in \mathbb{N}_{0}$,

$$
W^{k}:=\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \partial^{\alpha} u \in L^{2}\left(\mathbb{R}^{n}\right), \forall|\boldsymbol{\alpha}| \leq k\right\}
$$

$$
\|u\|_{W^{k}}^{2}:=\sum_{|\alpha| \leq k} \int_{\mathbb{R}^{n}}\left|\partial^{\alpha} u(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x}
$$

For $s \in \mathbb{R}$,

$$
\begin{aligned}
H^{s} & :=\left\{u \in \mathcal{S}^{*}\left(\mathbb{R}^{n}\right): \hat{u} \in L_{l o c}^{1}\left(\mathbb{R}^{n}\right) \text { and }\|u\|_{H^{s}}<\infty\right\} \\
\|u\|_{H^{s}}^{2} & :=\int_{\mathbb{R}^{n}}\left(1+|\xi|^{2}\right)^{s}|\widehat{u}(\xi)|^{2} \mathrm{~d} \xi
\end{aligned}
$$

- For $k \in \mathbb{N}_{0}, H^{k}=W^{k}$ with equivalent norms.
- For $t>s, H^{t} \subset H^{s}$ (continuous embedding, norm 1).
- $\left(H^{s}\right)^{*}=H^{-s}$, with duality pairing

$$
\langle u, v\rangle_{H^{-s} \times H^{s}}:=\int_{\mathbb{R}^{n}} \hat{u}(\boldsymbol{\xi}) \overline{\hat{\boldsymbol{v}}(\boldsymbol{\xi})} \mathrm{d} \boldsymbol{\xi}
$$

- $H^{s} \subset C\left(\mathbb{R}^{n}\right)$ for $s>n / 2 \quad$ (Sobolev embedding theorem). $\delta_{\mathbf{x}_{0}} \in H^{s} \Longleftrightarrow s<-n / 2 \quad\left(\left\langle\delta_{\mathbf{x}_{0}}, \phi\right\rangle=\overline{\phi\left(\mathbf{x}_{0}\right)}\right)$.

Basic definitions II: Sobolev sp. on subsets of \mathbb{R}^{n}

Notation: $\Gamma \subset \mathbb{R}^{n}$ open, $F \subset \mathbb{R}^{n}$ closed, $K \subset \mathbb{R}^{n}$ compact.

Basic definitions II: Sobolev sp. on subsets of \mathbb{R}^{n}

Notation: $\Gamma \subset \mathbb{R}^{n}$ open, $F \subset \mathbb{R}^{n}$ closed, $K \subset \mathbb{R}^{n}$ compact.

$$
\begin{aligned}
\widetilde{H}^{s}(\Gamma) & :=\overline{\mathcal{D}(\Gamma)}^{H^{s}} \quad\left(\mathcal{D}(\Gamma):=C_{0}^{\infty}(\Gamma) \subset C^{\infty}\left(\mathbb{R}^{n}\right)\right) \\
H_{F}^{s} & :=\left\{u \in H^{s}: \operatorname{supp} u \subset F\right\}=\left\{u \in H^{s}: u(\varphi)=0 \forall \varphi \in \mathcal{D}\left(F^{c}\right)\right\} \\
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\right\}
\end{aligned}
$$

$$
H_{0}^{s}(\Gamma):=\overline{\mathcal{D}(\Gamma) \mid \Gamma}^{H^{s}(\Gamma)}
$$

(notation from McLean)

Basic definitions II: Sobolev sp. on subsets of \mathbb{R}^{n}

Notation: $\Gamma \subset \mathbb{R}^{n}$ open, $F \subset \mathbb{R}^{n}$ closed, $K \subset \mathbb{R}^{n}$ compact.

$$
\begin{array}{rlr}
\tilde{H}^{s}(\Gamma) & :=\overline{\mathcal{D}(\Gamma)}^{H^{s}} & \quad\left(\mathcal{D}(\Gamma):=C_{0}^{\infty}(\Gamma) \subset C^{\infty}\left(\mathbb{R}^{n}\right)\right) \\
H_{F}^{s} & :=\left\{u \in H^{s}: \operatorname{supp} u \subset F\right\}=\left\{u \in H^{s}: u(\varphi)=0 \forall \varphi \in \mathcal{D}\left(F^{c}\right)\right\} \\
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\right\} & \\
H_{0}^{s}(\Gamma) & :=\overline{\left.\mathcal{D}(\Gamma)\right|_{\Gamma}} H^{s}(\Gamma) & \\
\text { "Global" and "local" spaces: } &
\end{array}
$$

$$
\widetilde{H}^{s}(\Gamma) \subset H_{\Gamma}^{s} \subset H^{s} \subset \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \quad \xrightarrow{{ }^{\Gamma}} \quad H_{0}^{s}(\Gamma) \subset H^{s}(\Gamma) \subset \mathcal{D}^{*}(\Gamma) .
$$

Basic definitions II: Sobolev sp. on subsets of \mathbb{R}^{n}

Notation: $\Gamma \subset \mathbb{R}^{n}$ open, $F \subset \mathbb{R}^{n}$ closed, $K \subset \mathbb{R}^{n}$ compact.

$$
\begin{array}{rlr}
\tilde{H}^{s}(\Gamma) & :=\overline{\mathcal{D}(\Gamma)}^{H^{s}} & \quad\left(\mathcal{D}(\Gamma):=C_{0}^{\infty}(\Gamma) \subset C^{\infty}\left(\mathbb{R}^{n}\right)\right) \\
H_{F}^{s} & :=\left\{u \in H^{s}: \operatorname{supp} u \subset F\right\}=\left\{u \in H^{s}: u(\varphi)=0 \forall \varphi \in \mathcal{D}\left(F^{c}\right)\right\} \\
H^{s}(\Gamma) & :=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\right\} & \\
H_{0}^{s}(\Gamma) & :=\overline{\left.\mathcal{D}(\Gamma)\right|_{\Gamma}} H^{s}(\Gamma) & \text { (notation from McLean) } \\
\text { "Global" and "local" spaces: } &
\end{array}
$$

$$
\widetilde{H}^{s}(\Gamma) \subset H_{\Gamma}^{s} \subset H^{s} \subset \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \quad \xrightarrow{\left.\right|_{\Gamma}} \quad H_{0}^{s}(\Gamma) \subset H^{s}(\Gamma) \subset \mathcal{D}^{*}(\Gamma)
$$

There exist many works on Sobolev (Besov,... .) spaces on rough sets; most use intrinsic definitions on d-sets.
Analogous to $W^{s}(\Gamma)$, based on $L^{p}\left(\Gamma, \mu_{d}\right)$.
Related to spaces in \mathbb{R}^{n} by traces.
See: Jonsson-Wallin, Strichartz.
Our spaces are different, more suited for integral equations and BEM.

Duality

Theorem

Let Γ be any open subset of \mathbb{R}^{n} and let $s \in \mathbb{R}$.
Then $\left(H^{s}(\Gamma)\right)^{*}=\widetilde{H}^{-s}(\Gamma)$ and $\left(\widetilde{H}^{s}(\Gamma)\right)^{*}=H^{-s}(\Gamma)$ with equal norms and $\langle u, w\rangle_{H^{-s}(\Gamma) \times \tilde{H}^{s}(\Gamma)}=\langle U, w\rangle_{H^{-s} \times H^{s}}$ for any $U \in H^{-s},\left.U\right|_{\Gamma}=u$.

Well-known for Lipschitz but not in general case.

Duality

Theorem

Let Γ be any open subset of \mathbb{R}^{n} and let $s \in \mathbb{R}$.
Then $\left(H^{s}(\Gamma)\right)^{*}=\widetilde{H}^{-s}(\Gamma)$ and $\left(\widetilde{H}^{s}(\Gamma)\right)^{*}=H^{-s}(\Gamma)$ with equal norms and $\langle u, w\rangle_{H^{-s}(\Gamma) \times \tilde{H}^{s}(\Gamma)}=\langle U, w\rangle_{H^{-s} \times H^{s}}$ for any $U \in H^{-s},\left.U\right|_{\Gamma}=u$.

Well-known for Lipschitz but not in general case.
Main ideas of proof:

- H Hilbert, $V \subset H$ closed ssp, \mathcal{H} unitary realisation of H^{*}, then $\left(V^{a, \mathcal{H}}\right)^{\perp}=\{\psi \in \mathcal{H},\langle\psi, \phi\rangle=0 \forall \phi \in V\}^{\perp}$ is unitary realisation of V^{*}
- $H_{\Gamma c}^{-s}=\left\{u \in H^{-s}: u(\psi)=\langle u, \psi\rangle=0 \forall \psi \in \mathcal{D}(\Gamma)\right\}=\left(\widetilde{H}^{s}(\Gamma)\right)^{a, H^{-s}}$
- Restriction operator $\left.\right|_{\Gamma}$ is unitary isomorphism $\left.\right|_{\Gamma}:\left(H_{\Gamma c}^{-s}\right)^{\perp} \rightarrow H^{-s}(\Gamma)$ (from identification of $H^{-s}(\Gamma)$ with $H^{-s} / H_{\Gamma c}^{-s}$)
- Choose $V=\widetilde{H}^{s}(\Gamma), H=H^{s}, \mathcal{H}=H^{-s}$

Sobolev space questions

We address the following questions:

- When does $E \subset \mathbb{R}^{n}$ support non-zero $u \in H^{s}$?
- When is $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$?
- When is $H^{s}(\Gamma)=H_{0}^{s}(\Gamma)$?
- For which spaces is $\left.\right|_{\Gamma}$ an isomorphism?
- When are $H^{s}(\Gamma)$ and $\tilde{H}^{s}(\Gamma)$ interpolation scales?
- What's the limit of a sequence of Galerkin solutions to a variational problem on prefractals?

Part II

s-nullity

s-nullity

Definition

Given $s \in \mathbb{R}$ we say that a set $E \subset \mathbb{R}^{n}$ is s-null if there are no non-zero elements of H^{s} supported in E.
(I.e. if $H_{F}^{s}=\{0\}$ for every closed set $F \subset E$.)

Other terminology exists:
"(-s)-polar" (Maz' ya, Littman),
"set of uniqueness for $H^{s^{\prime \prime}}$ (Maz'ya, Adams/Hedberg).

Relevance of s-nullity

For the screen scattering problem:

- For a compact screen K to be audible we need $H_{K}^{ \pm 1 / 2} \neq\{0\}$.
- For the solution of the classical Dirichlet/Neumann BVP to be unique we need $H_{\partial \Gamma}^{ \pm 1 / 2}=\{0\}$.
- Two screens Γ_{1} and Γ_{2} give the same scattered field for all incident waves if and only if $\Gamma_{1} \ominus \Gamma_{2}$ is $\pm 1 / 2$-null.

s-nullity: basic results

- A subset of an s-null set is s-null.
- If E is s-null and $t>s$ then E is t-null.
- If E is s-null then has empty interior.
- If $s>n / 2$ then E is s-null $\Longleftrightarrow \operatorname{int}(E)=\emptyset$.
- For $s<-n / 2$ there are no non-empty s-null sets.

Interesting cases: sets with empty interior and $-n / 2 \leq s \leq n / 2$.

s-nullity: basic results

- A subset of an s-null set is s-null.
- If E is s-null and $t>s$ then E is t-null.
- If E is s-null then has empty interior.
- If $s>n / 2$ then E is s-null $\Longleftrightarrow \operatorname{int}(E)=\emptyset$.
- For $s<-n / 2$ there are no non-empty s-null sets.

Interesting cases: sets with empty interior and $-n / 2 \leq s \leq n / 2$.
Non-trivial results:

- The union of finitely many s-null closed sets is s-null.
- The union of countably many s-null Borel sets is s-null if $s \leq 0$.

Union of non-closed s-null sets for $s>0$ is not s-null: counterexample is $E_{1}=\mathbb{Q}^{n}, E_{2}=\mathbb{R}^{n} \backslash \mathbb{Q}^{n}, s>n / 2$.

Nullity threshold

Definition

For every $E \subset \mathbb{R}^{n}$ with $\operatorname{int}(E)=\emptyset$ there exists $s_{E} \in[-n / 2, n / 2]$ such that E is s-null for $s>s_{E}$ and not s-null for $s<s_{E}$. We call s_{E} the nullity threshold of E.

Nullity threshold

Definition

For every $E \subset \mathbb{R}^{n}$ with $\operatorname{int}(E)=\emptyset$ there exists $s_{E} \in[-n / 2, n / 2]$ such that E is s-null for $s>s_{E}$ and not s-null for $s<s_{E}$. We call s_{E} the nullity threshold of E.

Q1: Given $E \subset \mathbb{R}^{n}$, can we determine s_{E} ?
Q2: Given $s \in[-n / 2, n / 2]$, can we find some $E \subset \mathbb{R}^{n}$ for which $s_{E}=s$?
Q3: When is $E s_{E}$-null? (i.e. is the maximum regularity attained?)
We study separately sets with zero and positive Lebesgue measure.

Zero Lebesgue measure $\Rightarrow s_{K} \in[-n / 2,0]$

Let $K \subset \mathbb{R}^{n}$ be non-empty and compact. Then:

- $H_{K}^{0}=L^{2}(K)=\{0\} \Longleftrightarrow m(K)=0$.

Zero Lebesgue measure $\Rightarrow s_{K} \in[-n / 2,0]$

Let $K \subset \mathbb{R}^{n}$ be non-empty and compact. Then:

- $H_{K}^{0}=L^{2}(K)=\{0\} \Longleftrightarrow m(K)=0$.
- If $m(K)=0$ then $s_{K} \leq 0$.

Zero Lebesgue measure $\Rightarrow s_{K} \in[-n / 2,0]$

Let $K \subset \mathbb{R}^{n}$ be non-empty and compact. Then:

- $H_{K}^{0}=L^{2}(K)=\{0\} \Longleftrightarrow m(K)=0$.
- If $m(K)=0$ then $s_{K} \leq 0$.
- If K is countable then $s_{K}=-n / 2$

$$
\left(H_{K}^{S}=\{0\} \Leftrightarrow s \geq-n / 2\right)
$$

Zero Lebesgue measure $\Rightarrow s_{K} \in[-n / 2,0]$

Let $K \subset \mathbb{R}^{n}$ be non-empty and compact. Then:

- $H_{K}^{0}=L^{2}(K)=\{0\} \Longleftrightarrow m(K)=0$.
- If $m(K)=0$ then $s_{K} \leq 0$.
- If K is countable then $s_{K}=-n / 2$

$$
\left(H_{K}^{s}=\{0\} \Leftrightarrow s \geq-n / 2\right) .
$$

Theorem

If $m(K)=0$, then $s_{K}=\frac{\operatorname{dim}_{H} K-n}{2}$.
$\left(\operatorname{dim}_{\mathrm{H}}=\right.$ Hausdorff dimension, $m=$ Lebesgue measure)

$$
\operatorname{dim}_{H} K=\inf \left\{d>0: H_{K}^{(d-n) / 2}=\{0\}\right\}
$$

This does not tell us if K is s_{K}-null; examples of both cases are possible.
Sharpens previous results by Littman (1967) and Triebel (1997).

Examples

Let $\Gamma \subset \mathbb{R}^{n}$ be non-empty and open.

- If Γ is C^{0} then $s_{\partial \Gamma} \in[-1 / 2,0]$.
- If Γ is $C^{0, \alpha}$ for some $0<\alpha<1$ then $s_{\partial \Gamma} \in[-1 / 2,-\alpha / 2]$ (sharp).
- If Γ is Lipschitz then $s_{\partial \Gamma}=-1 / 2$ (and $H_{\partial \Gamma}^{-1 / 2}=\{0\}$).
- If Γ is Koch snowflake, $s_{\partial \Gamma}=\frac{\log 2}{\log 3}-1 \approx-0.37$.

Examples

Let $\Gamma \subset \mathbb{R}^{n}$ be non-empty and open.

- If Γ is C^{0} then $s_{\partial \Gamma} \in[-1 / 2,0]$.
- If Γ is $C^{0, \alpha}$ for some $0<\alpha<1$ then $s_{\partial \Gamma} \in[-1 / 2,-\alpha / 2]$ (sharp).
- If Γ is Lipschitz then $s_{\partial \Gamma}=-1 / 2$ (and $H_{\partial \Gamma}^{-1 / 2}=\{0\}$).
- If Γ is Koch snowflake, $s_{\partial \Gamma}=\frac{\log 2}{\log 3}-1 \approx-0.37$.

We can construct a "Cantor dust" $\mathcal{C}_{\alpha}^{n} \subset \mathbb{R}^{n}$ with given nullity threshold. If prefractal edge lengths is $l_{j}=\alpha^{j}, 0<\alpha<1 / 2$:

$$
s_{\mathcal{C}_{\alpha}^{n}}=-\frac{n}{2}\left(1+\frac{\log 2}{\log \alpha}\right) \in\left(-\frac{n}{2}, 0\right) .
$$

Choose $\alpha=2^{-n /(2 s+n)}$ to have $s_{\mathcal{C}_{\alpha}^{n}}=s$.
Can also define "thin" Cantor dusts which have $s_{K}=-n / 2$.

Capacity

Our proofs rely on the following equivalence.
This follows from results by Grusin 1962, Littman 1967, Adams and Hedberg 1996 and Maz'ya 2011.

Theorem

For $s>0, K$ compact, $H_{K}^{-s}=\{0\} \Longleftrightarrow \operatorname{cap}_{s}(K)=0$, where

$$
\operatorname{cap}_{s}(K):=\inf \left\{\|u\|_{H^{s}}^{2}: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \text { and } u \geq 1 \text { on } K\right\} .
$$

This allows us to apply well-known results relating $\operatorname{cap}_{s}(E)$ to $\operatorname{dim}_{H}(E)$ (see e.g. Adams and Hedberg 1996).
Requires relating different set capacities.

Positive Lebesgue measure $\Rightarrow s_{K} \in[0, n / 2]$

Theorem (Polking, 1972)

There exists a compact set K for which $s_{K}=n / 2$. Also, $H_{K}^{n / 2} \neq\{0\}$.
Maximal nullity threshold is achieved.
Proof is constructive: "Swiss cheese set".
Also "open minus countable-dense" (e.g. $\mathbb{R}^{n} \backslash \mathbb{Q}^{n}$) are not $n / 2$-null. This is an audible Neumann screen with empty interior!

Positive Lebesgue measure $\Rightarrow s_{K} \in[0, n / 2]$

Theorem (Polking, 1972)

There exists a compact set K for which $s_{K}=n / 2$. Also, $H_{K}^{n / 2} \neq\{0\}$.
Maximal nullity threshold is achieved.
Proof is constructive: "Swiss cheese set".
Also "open minus countable-dense" (e.g. $\mathbb{R}^{n} \backslash \mathbb{Q}^{n}$) are not $n / 2$-null.
This is an audible Neumann screen with empty interior!
Open question: Do there exist sets K for which $s_{K} \in(0, n / 2)$?
$-n / 2 \quad 0^{------\bullet} \quad n / 2$

Positive Lebesgue measure $\Rightarrow s_{K} \in[0, n / 2]$

Theorem (Polking, 1972)

There exists a compact set K for which $s_{K}=n / 2$. Also, $H_{K}^{n / 2} \neq\{0\}$.
Maximal nullity threshold is achieved.
Proof is constructive: "Swiss cheese set".
Also "open minus countable-dense" (e.g. $\mathbb{R}^{n} \backslash \mathbb{Q}^{n}$) are not $n / 2$-null.
This is an audible Neumann screen with empty interior!
Open question: Do there exist sets K for which $s_{K} \in(0, n / 2)$?

```
\bullet|/2 0
Our contribution:
```


Theorem

$\forall s_{*} \in(0,1 / 2)$ the "fat" Cantor $\operatorname{set} \mathcal{C}_{\alpha, \beta} \subset \mathbb{R}$ with

$$
\alpha \in\left(0,2^{-1 /\left(1-2 s_{*}\right)}\right), \quad \beta \in(0,1-2 \alpha), \quad l_{j}=\frac{1}{2^{j}}\left(1-\beta \frac{1-(2 \alpha)^{j}}{1-2 \alpha}\right)
$$

has nullity threshold $s_{\mathcal{C}_{\alpha, \beta}} \geq s_{*}$ (and $\chi_{\mathcal{C}_{\alpha, \beta}} \in H^{s_{*}}$).

Nullity of Cartesian products of sets

Let $n_{1}, n_{2} \in \mathbb{N}$, and let $E_{1} \subset \mathbb{R}^{n_{1}}$ and $E_{2} \subset \mathbb{R}^{n_{2}}$ be Borel. Then

$$
\begin{aligned}
& s_{-} \leq s_{E_{1} \times E_{2}} \leq s_{+}, \quad \text { where } \\
& \boldsymbol{s}_{-}:= \\
& \min \left\{s_{E_{1}}, \boldsymbol{s}_{E_{2}}, \boldsymbol{s}_{E_{1}}+\boldsymbol{s}_{E_{2}}\right\}, \\
& \boldsymbol{s}_{+}:= \begin{cases}\min \left\{\boldsymbol{s}_{E_{1}}, s_{E_{2}}\right\} & \text { if } m\left(E_{1} \times E_{2}\right)=0, \\
\min \left\{\boldsymbol{s}_{E_{1}}+\frac{n_{2}}{2}, s_{E_{2}}+\frac{n_{1}}{2}\right\} & \text { if } m\left(E_{1} \times E_{2}\right)>0 .\end{cases}
\end{aligned}
$$

$s_{-} \neq \boldsymbol{s}_{+}$is needed because $s_{E_{1}}, s_{E_{2}}$ do not determine $s_{E_{1} \times E_{2}}$:

$$
\exists E_{j} \subset \mathbb{R} \text { such that } s_{E_{1}}=s_{E_{2}}=s_{E_{3}}=s_{E_{1} \times E_{2}}=-1 / 2 \neq s_{E_{3} \times E_{3}}=-1
$$

Part III

Zero trace spaces

Comparison of the "zero trace" subspaces of \mathbb{R}^{n}

Recall definitions: for open $\Gamma \subset \mathbb{R}^{n}$

$$
\begin{array}{rlrl}
\widetilde{H}^{s}(\Gamma) & :=\overline{\mathcal{D}(\Gamma)}^{H^{s}} & \widetilde{H}^{s}(\Gamma) \subset H_{\Gamma}^{s} \subset H^{s} \\
H \bar{\Gamma} & :=\left\{u \in H^{s}: \operatorname{supp} u \subset \bar{\Gamma}\right\} & & \text { When is } \widetilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma} ?
\end{array}
$$

Comparison of the "zero trace" subspaces of \mathbb{R}^{n}

Recall definitions: for open $\Gamma \subset \mathbb{R}^{n}$

$$
\begin{array}{rlrl}
\widetilde{H}^{s}(\Gamma) & :=\overline{\mathcal{D}(\Gamma)}^{H^{s}} & \widetilde{H}^{s}(\Gamma) \subset H_{\bar{\Gamma}}^{s} \subset H^{s} \\
H_{\bar{\Gamma}}^{s} & :=\left\{u \in H^{s}: \operatorname{supp} u \subset \bar{\Gamma}\right\} & & \text { When is } \widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} ?
\end{array}
$$

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^{n}$ be C^{0}. Then $\widetilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma}$.
For smooth ($C^{k, 1}$) domains and $s>1 / 2, s-1 / 2 \notin \mathbb{N}$, these spaces are kernel of trace operators. Intuition fails for negative s: if $s<-n / 2, \delta_{\mathbf{x}_{0}} \in \widetilde{H}^{s}(\Gamma)$ for any $\mathbf{x}_{0} \in \partial \Gamma$.

Comparison of the "zero trace" subspaces of \mathbb{R}^{n}

Recall definitions: for open $\Gamma \subset \mathbb{R}^{n}$

$$
\begin{array}{rlrl}
\widetilde{H}^{s}(\Gamma) & :=\overline{\mathcal{D}(\Gamma)}^{H^{s}} & \widetilde{H}^{s}(\Gamma) \subset H_{\bar{\Gamma}}^{s} \subset H^{s} \\
H_{\bar{\Gamma}}^{s} & :=\left\{u \in H^{s}: \operatorname{supp} u \subset \bar{\Gamma}\right\} & & \text { When is } \widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} ?
\end{array}
$$

Classical result (e.g. McLean)

Let $\Gamma \subset \mathbb{R}^{n}$ be C^{0}. Then $\widetilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma}$.
For smooth ($C^{k, 1}$) domains and $s>1 / 2, s-1 / 2 \notin \mathbb{N}$, these spaces are kernel of trace operators.
Intuition fails for negative s: if $s<-n / 2, \delta_{\mathbf{x}_{0}} \in \widetilde{H}^{s}(\Gamma)$ for any $\mathbf{x}_{0} \in \partial \Gamma$.

Theorem (negative example)

For every $n \in \mathbb{N}$, there exists a bounded open set $\Gamma \subset \mathbb{R}^{n}$ such that,

$$
\begin{aligned}
\forall s \geq-n / 2 & \widetilde{H}^{s}(\Gamma) \varsubsetneqq H_{\Gamma}^{s}, \\
\forall s>0 & \widetilde{H}^{s}(\Gamma) \varsubsetneqq\left\{u \in H^{s}: u=0 \text { a.e. in } \Gamma^{c}\right\} \varsubsetneqq H_{\Gamma}^{s} .
\end{aligned}
$$

Set Γ constructed using Cantor and Polking sets.

Zero trace spaces and $\operatorname{int}(\bar{\Gamma}) \backslash \Gamma$

We consider two classes of open sets. First, open Γ that is a "nice domain minus small holes", i.e. $\operatorname{int}(\bar{\Gamma})$ is C^{0}.

Zero trace spaces and $\operatorname{int}(\bar{\Gamma}) \backslash \Gamma$

We consider two classes of open sets. First, open Γ that is a "nice domain minus small holes", i.e. $\operatorname{int}(\bar{\Gamma})$ is C^{0}.

Lemma

If $\operatorname{int}(\bar{\Gamma})$ is C^{0} then $\tilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \Longleftrightarrow \operatorname{int}(\bar{\Gamma}) \backslash \Gamma$ is $(-s)$-null.
(Holds more generally for Γ s.t. $\left.\widetilde{H}^{s}(\operatorname{int}(\bar{\Gamma}))=H_{\Gamma}^{s}.\right)$

Zero trace spaces and $\operatorname{int}(\bar{\Gamma}) \backslash \Gamma$

We consider two classes of open sets. First, open Γ that is a "nice domain minus small holes", i.e. $\operatorname{int}(\bar{\Gamma})$ is C^{0}.

Lemma

If $\operatorname{int}(\bar{\Gamma})$ is C^{0} then $\widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} \Longleftrightarrow \operatorname{int}(\bar{\Gamma}) \backslash \Gamma$ is $(-s)$-null.
(Holds more generally for Γ s.t. $\widetilde{H}^{s}(\operatorname{int}(\bar{\Gamma}))=H_{\Gamma}^{s}$.)
If int $(\bar{\Gamma}) \backslash \Gamma$ is finite union of $(n-1)$-Lipschitz manifolds, then $\tilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma} \Longleftrightarrow s \leq 1 / 2$.
This is a (non)density result for the complement of a multiscreen!

Zero trace spaces and $\operatorname{int}(\bar{\Gamma}) \backslash \Gamma$

We consider two classes of open sets.
First, open Γ that is a "nice domain minus small holes", i.e. $\operatorname{int}(\bar{\Gamma})$ is C^{0}.

Lemma

If int $(\bar{\Gamma})$ is C^{0} then $\widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s} \Longleftrightarrow \operatorname{int}(\bar{\Gamma}) \backslash \Gamma$ is $(-s)$-null.
(Holds more generally for Γ s.t. $\widetilde{H}^{s}(\operatorname{int}(\bar{\Gamma}))=H_{\Gamma}^{s}$.)
If int $(\bar{\Gamma}) \backslash \Gamma$ is finite union of $(n-1)$-Lipschitz manifolds, then
$\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s} \Longleftrightarrow s \leq 1 / 2$.
This is a (non)density result for the complement of a multiscreen!
Suppose that $\Gamma \varsubsetneqq \operatorname{int}(\bar{\Gamma})$ and that $\operatorname{int}(\bar{\Gamma})$ is C^{0}. Then $\exists \widetilde{s}_{\Gamma} \in[-n / 2, n / 2]$ s.t. $\quad \widetilde{H}^{s_{-}}(\Gamma)=H_{\bar{\Gamma}}^{s_{-}}, \quad \widetilde{H}^{s_{+}}(\Gamma) \varsubsetneqq H_{\bar{\Gamma}}^{s_{+}} \quad \forall s_{-}<\widetilde{s}_{\Gamma}<s_{+}$. If $m(\operatorname{int}(\bar{\Gamma}) \backslash \Gamma)=0$ then $\widetilde{s}_{\Gamma}=\frac{n-\operatorname{dim}_{H}(\operatorname{int}(\bar{\Gamma}) \backslash \Gamma)}{2}$.

Sets with $\widetilde{H}^{s}(\Gamma)=H_{\bar{\Gamma}}^{s},|s| \leq 1$

Second, we want to understand whether $\widetilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma}$ for Γ "regular except at a few points", e.g. prefractal $\boldsymbol{\Delta}$.

Sets with $\widetilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma},|\boldsymbol{s}| \leq 1$

Second, we want to understand whether $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$ for Γ "regular except at a few points", e.g. prefractal $\mathbf{\Delta}$.

Theorem

Fix $|s| \leq 1$ if $n \geq 2,|s| \leq 1 / 2$ if $n=1$.
Let open $\Gamma \subset \mathbb{R}^{n}$ be C^{0} except at countable $P \subset \partial \Gamma$, where P has at most finitely many limit points in every bounded subset of $\partial \Gamma$. Then $\widetilde{H}^{s}(\Gamma)=H \frac{s}{\Gamma}$.
E.g. union of disjoint C^{0} open sets, whose closures intersect only in P.

Proof uses sequence of special Tartar's cutoffs (for $n=2$, easier for $n \geq 3$) for $s=1$, then duality and interpolation.

Examples of sets with $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s},|s| \leq 1$

Examples of non- C^{0} sets for which $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s},|s| \leq 1$:

Sierpinski triangle prefractal, (unbounded) checkerboard, double brick, inner and outer (double) curved cusps, spiral, Fraenkel's "rooms and passages".

Part IV

Relations between different spaces

When is $H_{0}^{s}(\Gamma)=H^{s}(\Gamma)$?

What about relation between spaces with and without "zero trace"? Recall: $\quad H_{0}^{s}(\Gamma):=\overline{\mathcal{D}}(\Gamma)^{H^{s}(\Gamma)} \subset H^{s}(\Gamma):=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\right\} \quad \subset \quad \mathcal{D}^{*}(\Gamma)$.

When is $H_{0}^{s}(\Gamma)=H^{s}(\Gamma)$?

What about relation between spaces with and without "zero trace"? Recall: $\quad H_{0}^{s}(\Gamma):=\overline{\mathcal{D}}(\Gamma)^{H^{s}(\Gamma)} \subset H^{s}(\Gamma):=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\right\} \quad \subset \quad \mathcal{D}^{*}(\Gamma)$.

Lemma

For open $\Gamma \subset \mathbb{R}^{n}, s \in \mathbb{R}, \quad H_{0}^{s}(\Gamma)=H^{s}(\Gamma) \Longleftrightarrow \widetilde{H}^{-s}(\Gamma) \cap H_{\partial \Gamma}^{-s}=\{0\}$.

When is $H_{0}^{s}(\Gamma)=H^{s}(\Gamma) ?$

What about relation between spaces with and without "zero trace"? Recall: $\quad H_{0}^{s}(\Gamma):=\overline{\mathcal{D}}(\Gamma)^{H^{s}(\Gamma)} \subset H^{s}(\Gamma):=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\right\} \quad \subset \quad \mathcal{D}^{*}(\Gamma)$.

Lemma

For open $\Gamma \subset \mathbb{R}^{n}, \boldsymbol{s} \in \mathbb{R}, H_{0}^{s}(\Gamma)=H^{s}(\Gamma) \Longleftrightarrow \widetilde{H}^{-s}(\Gamma) \cap H_{\partial \Gamma}^{-s}=\{0\}$.

Corollary

For any open $\emptyset \neq \Gamma \varsubsetneqq \mathbb{R}^{n}$, there exists $0 \leq s_{0}(\Gamma) \leq n / 2$ such that $H_{0}^{s_{-}}(\Gamma)=H^{s_{-}}(\Gamma) \quad$ and $\quad H_{0}^{s_{+}}(\Gamma) \varsubsetneqq H^{s_{+}}(\Gamma) \quad$ for all $s_{-}<s_{0}(\Gamma)<s_{+}$.

- $s_{0}(\Gamma) \geq-s_{\partial \Gamma}$ (nullity threshold), with equality if Γ is C^{0}.
- $s_{0}(\Gamma) \geq\left(n-\operatorname{dim}_{H} \partial \Gamma\right) / 2$.
- If Γ is C^{0}, then $0 \leq s_{0}(\Gamma) \leq 1 / 2$.
- If Γ is $C^{0, \alpha}$ then $\alpha / 2 \leq s_{0}(\Gamma) \leq 1 / 2$.
- If Γ is Lipschitz, then $s_{0}(\Gamma)=1 / 2$.
- If $\Gamma=\mathbb{R}^{n} \backslash F, F$ countable, $s_{0}(\Gamma)=n / 2$.

All bounds on s_{0} can be achieved. Improvement on Caetano 2000.

Relations between "global" and "local" spaces

The relations between subspaces of $\mathcal{D}^{*}\left(\mathbb{R}^{n}\right)$ and $\mathcal{D}^{*}(\Gamma)$ are described by the restriction operator $\left.\right|_{\Gamma}: \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{*}(\Gamma)$.

- $\left.\right|_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\left.\right|_{\Gamma}:\left(H_{\Gamma^{c}}^{s}\right)^{\perp} \rightarrow H^{s}(\Gamma)$ is a unitary isomorphism ($H_{\Gamma^{c}}^{s}=\left.\operatorname{ker}\right|_{\Gamma}$);

Relations between "global" and "local" spaces

The relations between subspaces of $\mathcal{D}^{*}\left(\mathbb{R}^{n}\right)$ and $\mathcal{D}^{*}(\Gamma)$ are described by the restriction operator $\left.\right|_{\Gamma}: \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{*}(\Gamma)$.

- $\left.\right|_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\left.\right|_{\Gamma}:\left(H_{\Gamma^{c}}^{s}\right)^{\perp} \rightarrow H^{s}(\Gamma)$ is a unitary isomorphism ($H_{\Gamma^{c}}^{s}=\left.\operatorname{ker}\right|_{\Gamma}$);
- For $s \geq 0,\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_{0}$ then it is isomorphism;
- If Γ is finite union of disjoint Lipschitz open sets, $\partial \Gamma$ is bounded, $s>-1 / 2, s+1 / 2 \notin \mathbb{N}$, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is isomorphism;
Open question: for which s is $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ isomorphism?

Relations between "global" and "local" spaces

The relations between subspaces of $\mathcal{D}^{*}\left(\mathbb{R}^{n}\right)$ and $\mathcal{D}^{*}(\Gamma)$ are described by the restriction operator $\left.\right|_{\Gamma}: \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{*}(\Gamma)$.

- $\left.\right|_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\left.\right|_{\Gamma}:\left(H_{\Gamma^{c}}^{s}\right)^{\perp} \rightarrow H^{s}(\Gamma)$ is a unitary isomorphism ($H_{\Gamma^{c}}^{s}=\left.\operatorname{ker}\right|_{\Gamma}$);
- For $s \geq 0,\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_{0}$ then it is isomorphism;
- If Γ is finite union of disjoint Lipschitz open sets, $\partial \Gamma$ is bounded, $s>-1 / 2, s+1 / 2 \notin \mathbb{N}$, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is isomorphism;
Open question: for which s is $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ isomorphism?
- If Γ is bounded, or Γ^{c} is bounded with non-empty interior, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is a unitary isomorphism $\Longleftrightarrow s \in \mathbb{N}_{0}$ (equivalent to say that H^{s} norm is local only for $s \in \mathbb{N}_{0}$);
- If Γ^{c} is s-null, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is a unitary isomorphism.

Relations between "global" and "local" spaces

The relations between subspaces of $\mathcal{D}^{*}\left(\mathbb{R}^{n}\right)$ and $\mathcal{D}^{*}(\Gamma)$ are described by the restriction operator $\left.\right|_{\Gamma}: \mathcal{D}^{*}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{D}^{*}(\Gamma)$.

- $\left.\right|_{\Gamma}: H^{s}\left(\mathbb{R}^{n}\right) \rightarrow H^{s}(\Gamma)$ is continuous with norm one;
- $\left.\right|_{\Gamma}:\left(H_{\Gamma^{c}}^{s}\right)^{\perp} \rightarrow H^{s}(\Gamma)$ is a unitary isomorphism ($H_{\Gamma^{c}}^{s}=\left.\operatorname{ker}\right|_{\Gamma}$);
- For $s \geq 0,\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is injective and has dense image; if $s \in \mathbb{N}_{0}$ then it is isomorphism;
- If Γ is finite union of disjoint Lipschitz open sets, $\partial \Gamma$ is bounded, $s>-1 / 2, s+1 / 2 \notin \mathbb{N}$, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is isomorphism;
Open question: for which s is $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ isomorphism?
- If Γ is bounded, or Γ^{c} is bounded with non-empty interior, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is a unitary isomorphism $\Longleftrightarrow s \in \mathbb{N}_{0}$ (equivalent to say that H^{s} norm is local only for $s \in \mathbb{N}_{0}$);
- If Γ^{c} is s-null, then $\left.\right|_{\Gamma}: \widetilde{H}^{s}(\Gamma) \rightarrow H_{0}^{s}(\Gamma)$ is a unitary isomorphism.
(If one defines $H_{00}^{s}(\Gamma), s \geq 0$, from interpolation of $H_{0}^{k}(\Gamma), k \in \mathbb{N}_{0}$, then for sufficiently smooth Γ (e.g. Lipschitz) $\left.H_{00}^{s}(\Gamma)=\left.\widetilde{H}^{s}(\Gamma)\right|_{\Gamma}.\right)$

A warning about interpolation

It is well-known that, for $s_{0}, s_{1} \in \mathbb{R}, 0<\theta<1$, and $s=s_{0}(1-\theta)+s_{1} \theta$,

$$
\left(H^{s_{0}}\left(\mathbb{R}^{n}\right), H^{s_{1}}\left(\mathbb{R}^{n}\right)\right)_{\theta}=H^{s}\left(\mathbb{R}^{n}\right) \quad \text { with equal norms. }
$$

In McLean's book Strongly Elliptic Systems and Boundary Integral Equations it is claimed (in Theorem B.8) that the same holds for $H^{s}(\Gamma):=\left\{\left.u\right|_{\Gamma}: u \in H^{s}\left(\mathbb{R}^{n}\right)\right\}$, for arbitrary open sets $\Gamma \subset \mathbb{R}^{n}$.

THIS RESULT IS FALSE!
The interpolation result only holds for Γ sufficiently smooth (e.g. Lipschitz) and even then, equality of norms does not hold in general.

Simple counterexamples:
for a cusp domain in $\mathbb{R}^{2},\left\{H^{s}(\Gamma), 0 \leq s \leq 2\right\}$ is not interpolation scale; for open interval in \mathbb{R}, no normalisation of $\left(\widetilde{H}^{0}(\Gamma), \widetilde{H}^{1}(\Gamma)\right)_{1 / 2}$ can give norm equal to $\widetilde{H}^{1 / 2}(\Gamma)$.

Summary

We have studied (classical, fractional, Bessel-potential, Hilbert) Sobolev spaces on general open and closed subset of \mathbb{R}^{n}.

In particular we contributed to the questions:

- What are the duals of these spaces?
- When does $E \subset \mathbb{R}^{n}$ support non-zero $u \in H^{s}$?
- When is $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$?
- When is $H^{s}(\Gamma)=H_{0}^{s}(\Gamma)$?
- For which spaces is $\left.\right|_{\Gamma}$ an isomorphism?

Some of these are relevant for screen scattering problems and Galerkin (FEM/BEM) methods on fractals.

Plenty of questions are still open!

Summary

We have studied (classical, fractional, Bessel-potential, Hilbert) Sobolev spaces on general open and closed subset of \mathbb{R}^{n}.

In particular we contributed to the questions:

- What are the duals of these spaces?
- When does $E \subset \mathbb{R}^{n}$ support non-zero $u \in H^{s}$?
- When is $\widetilde{H}^{s}(\Gamma)=H_{\Gamma}^{s}$?
- When is $H^{s}(\Gamma)=H_{0}^{s}(\Gamma)$?
- For which spaces is $\left.\right|_{\Gamma}$ an isomorphism?

Some of these are relevant for screen scattering problems and Galerkin (FEM/BEM) methods on fractals.

Plenty of questions are still open!
Thank you!

Bibliography

(1) SNCW, DPH, Acoustic scattering by fractal screens: mathematical formulations and wavenumber- explicit continuity and coercivity estimates. University of Reading preprint MPS-2013-17.
(2) SNCW, DPH, AM, Interpolation of Hilbert and Sobolev spaces: quantitative estimates and counterexamples,

Mathematika (2015).
(3) DPH, AM, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space,

Analysis and applications (2016).
(4) DPH, AM, A note on properties of the restriction operator on Sobolev spaces, arXiv:1607.01741 (2016).
(5) SNCW, DPH, AM, Sobolev spaces on non-Lipschitz subsets of \mathbb{R}^{n} with application to boundary integral equations on fractal screens, Integr. Equ. Oper. Theory (2017).
(6) SNCW, DPH, Well-posed PDE and integral equation formulations for scattering by fractal screens,

