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What affects the range of a Trebuchet? 
Planning 
 
Aim: To find which factors limit the distance travelled by a projectile fired from a small scale 
tabletop trebuchet, and therefore to find which conditions are necessary for optimum 
range. 
 
Hypothesis 
 
I anticipate that the greatest range of the trebuchet will be achieved when there is: 

 A large ratio of counterweight mass to projectile mass – i.e. the mass of the 
counterweight is far greater than the mass of projectile. 

 A large distance between the fulcrum and the projectile. 

 A large height above the ground from which the counterweight is suspended. 

 The use of aerodynamic projectiles. 

 Minimum friction about the fulcrum.  

 The use of a light swing arm. 
 
Introduction 
 
A trebuchet is a siege engine that was predominantly employed in the middle ages to smash 
masonry walls and to hurl objects such as diseased bodies into the castle grounds to infect 
the inhabitants under siege. Although trebuchets are no longer used in modern warfare due 
to technological advances, some are still in existence for medieval reconstructions, such as 
the fire ball throwing trebuchet at Warwick Castle.  
 
Figures 1 & 2 – The trebuchet in use at Warwick Castle: 
 

 
The range of the trebuchet would have been a vital piece of information both to the armies 
using them at the time and to those trying to reconstruct one for entertainment. A large 
range would have enabled the armies using them to attack castles without being in range of 
the enemy archers and so producing vast amounts of damage with few casualties of their 
own. If the range of the trebuchet was too small then the armies using them would be 
vulnerable, and those trying to recreate the medieval experience at historical attractions 
would lose the interest of an audience.  
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Knowing the velocity of the projectile as it leaves the swing arm of the trebuchet would have 
also been a crucial piece of information for those controlling them, since this could be used 
to accurately predict the maximum height reached by the projectile (i.e. will it get over the 
castle wall) and where the projectile will land, and thus with what velocity will it strike the 
target at (determining the potential damage it could cause).  
 
The trebuchet I shall be constructing is designed to operate safely within a classroom so it 
will be relatively small and designed to hold reasonably light weights, giving a measurable 
distance of the range of the projectile.  
 
In order to deduce the factors that affect the range of the trebuchet, I will be keeping the 
mass of the projectile constant while using increasing masses of counterweights. I will also 
be using varying masses for projectiles while keeping the mass of the counterweight 
constant and then collectively looking at these results to see which ratio of counterweight 
mass to projectile mass gives the maximum range.  
 
The trebuchet arm is also drilled with three different holes, each drilled increasingly further 
from the end that the counterweight is suspended from. These three holes correspond to 
three different distances between the fulcrum and counterweight and projectile, giving 
three different heights above the ground level from which the counterweight will be held.  
By looking at these three variables individually, it should be clear as to which factors produce 
the greatest range.  
 
Construction of the Trebuchet 
 
The materials used will have to be easily obtainable, and for this reason I shall be 
constructing the frame of the trebuchet from MDF and the swing arm from pine wood. The 
arm must be able to be drilled and hammered without cracks spreading and to support 
weights that have more mass than itself.   
 
Pine is suitable for this purpose as it is strong and stiff, and so will not deform when the 
counterweight is added and will require a large force before the arm breaks. Pine has an 
approximate Young Modulus of: 5.49 x 109 Pa.  The MDF is not of high quality, however its 
purpose in terms of the trebuchet is to provide support and so it will not experience a great 
deal of weight or impact and so serves this purpose well. The MDF will be connected via 
super glue using a glue gun and small nails where necessary to increase its strength as a 
base.  
 
The fulcrum will consist of a brass wire with a constant diameter of 2.9 x 10-3m, this 
diameter closely matches the diameter of the holes produced by the drill, and its smooth 
surface will offer negligible friction to the swinging motion of the arm. The fact that the 
diameter closely matches the holes drilled will allow the arm to complete its circular arc 
without wobbling. The metal wire is light and stiff, so it will not bend as masses are added to 
the trebuchet or exert a great deal of force on the base.  
 
The following apparatus was utilised for the construction of the trebuchet: 

 
* MDF (one inch by one half inch thick): 
- 12 inch length x 2 
- 10 inch length x 2 
- 5 inch length x 3 
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- Square piece of flat wood ( 6 inches by 6 inches) 
* Pine (Cross-sectional area of: 2.28 x 10-4m2): 
- 16 inch length x 1  
* Glue gun with glue sticks 
* Eyehooks x 2  
* Small screws 
* Small nails 
* Hammer 
* Drill 
*Tape measure and ruler 
 
Great care was taken when constructing the trebuchet to ensure that the trebuchet was 
constructed safely, and that holes were drilled in straight lines and at central points where 
necessary.  The use of machinery to cut the wood was performed by experienced technology 
teachers.  
 
Changes made to the initial design of the trebuchet after testing 
 
The original design of the trebuchet was to have a fabric pouch in which the projectile would 
be stored. This pouch would be stored underneath the swing arm and swing outwards as the 
counterweight fell to the ground. Each end of the fabric pouch would have a piece of string 
coming off of it, which would be connected to one end of the trebuchet arm.  One of the 
pieces of string would be firmly tied around the eye hook at the end of the trebuchet arm. At 
the end of the other string would be a metallic ring that would slot onto a hook at the same 
end of the trebuchet arm. As the trebuchet arm swung forward, the metallic ring would slide 
off the hook, releasing one of the strings, opening up the pouch and hurling the projectile 
forward.   
 
Figures 3 & 4 – The original design of the trebuchet with the string and pouch: 

 
After constructing this type of trebuchet, it proved to 
be unsuccessful in producing enough data to be 
harvested. The pouch that stored the projectile 
resisted releasing it as the edges of the pouch did not 
allow free movement. The metal ring resting on the 
hook also did not consistently fall off the hook, 
meaning that the projectile remained in the pouch or 
did not travel any notable distance on many attempts. 
In addition the background physics behind this type of 
trebuchet involved differentials and appeared to be 
too complicated for this level.  
 
The trebuchet was then modified so that the 
projectile was fired every time and could easily be 
analysed. The fabric pouch was replaced with a plastic 
spoon super-glued to the top of the trebuchet arm.  
 
 

At the end of the plastic spoon, blu-tack was stuck to form a vertical barrier, so that the 
projectile was securely held and could not fall free before being released. This type of 
trebuchet produced consistent launches and very rarely failed to launch the projectile.  
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Figure 5 – Side view of the final trebuchet: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                            
 

Information on the final design of the Trebuchet 

 
Mass of Trebuchet (kg) 4.9715 x 10-1 

Mass of Arm  (kg) 6.205 x 10-2 

Mass of Base  (kg) 4.351 x 10-1 

Distances from the counterweight hook to 
the fulcrum (m) 

0.076 0.103 0.128 

Distances from the projectile holder to the 
fulcrum (m) 

0.412 0.386 0.360 

Maximum height of Counterweight from 
ground level (m) *without string 

0.276 0.295 0.335 

Height of projectile before release (m) 0.670 0.647 0.624 

Angle made with ground and the projectile 
holder before release (radians) * Rounded 
to 3 decimal places 

0.681 
 

0.801 0.855 

The previous table is the table referred to when making calculations and trying to anticipate 
how far the projectile will travel and with what velocity it will be released.  

Eye hook supporting 
counterweight (string is thread 
through the eye hook and around 
the counterweight) 

Base of Trebuchet 

The end of the swing arm to 
which the spoon is attached 

Fulcrum 

Spoon – where projectile is held 

                  Fulcrum 
(There is Blu-tack at each end 
to keep the fulcrum in place) 

Counterweight 

Trebuchet Arm 

Trebuchet Base 

Figure 6 – Front view of the 
trebuchet. 
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Projectile Motion 
 
The distance travelled by a projectile can be calculated by resolving the vertical and 
horizontal components of the projectile’s initial velocity. The two vertical and horizontal 
components of the motion are independent of each other and so can be treated separately.  
For simplicity I will assume that air resistance is negligible, so that the only force acting on 
the projectile after it leaves the swing arm of the trebuchet is gravity. Gravity gives a 
downward acceleration of 9.81ms-2, there is no horizontal component of gravity, so the 
horizontal velocity remains constant – i.e. there is no horizontal acceleration. The overall 
effect is that the projectile will follow a parabolic trajectory through the air.  
 
When the trebuchet launches the projectile, I anticipate that there are two possible 
situations: 

 The projectile will be released at an angle to the horizontal (i.e. it will be released 
early). 

 The projectile will be released horizontally, as the swing arm becomes perfectly 
vertical – its initial vertical velocity will be zero, it will leave with horizontal velocity 
only. 

 
If we consider the first scenario, then we can deduce a formula to anticipate the distance 
travelled. Resolving the initial velocity into its horizontal and vertical components gives:  
 
 
 
 
 
 
 
 
 
When the projectile reaches its maximum height, its vertical component of velocity equals 
zero. At this point, the projectile stops travelling upwards and begins to travel in the 
opposite direction – towards the ground.  
 
Assuming the trajectory follows a perfect parabola and was released from ground level, the 
time taken to reach maximum height is half of the total time to reach the ground.  Figure 7 
displays the parabolic path of a projectile fired from ground level 
 
 
 
 
 
 

 
 

 
 
 
 
 

u usin 

ucos 



u = Initial resultant velocity (ms
-1

) 

ucos = Horizontal Component of 

velocity (ms
-1

) 

usin = Vertical Component of velocity 

(ms
-1

) 

At this point the 
vertical velocity = 0 

t/2  t/2 

Figure 7 – A parabolic trajectory from 
ground level 
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The Linear Equations of motion  
 
 
 
 
 
 
 
 

To calculate the time of flight we can use equation (3): 
 
s= ut + ½ at2 
 
s= 0m because the projectile falls back to the ground and was released from the ground. 

u = the initial vertical velocity, usinms-1). 
a = g, - 9.81ms-2 (assuming the only acceleration is the acceleration due to gravity) 
 

0 = u sintgt2 
                        2 
So 
 

gt2= usint 
2 
 

t = 2usin 
         g 
 
v = Δs 
      Δt 
 
So Δs = v Δt 
 
We know that horizontal velocity remains constant, so the horizontal displacement is 
therefore: 
 
Horizontal displacement = horizontal velocity x time of flight 
 

s = ucos x 2usin 
                        g 

s = 2u2sincos 
              g 
This formula suggests that the angle to the horizontal providing the maximum horizontal 
displacement is 45˚. At 45˚ the horizontal displacement equals: 
 
s = u2 
      g  
Increasing the angle or decreasing the angle still does not produce a value as large as 

sin45˚cos45˚ (which equals ½). 2sincos is the same as sin2 so when  is 45 this gives the 

maximum value of one for sin2. This formula is based on the fact that the projectile has 
been launched from the ground level; however for a trebuchet this will not be true.  

Rearrange to get rid of the 
negative sign. 

Divide both sides by t and 
multiply both sides by 2 to 
find the time of flight. 
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The swing arm is raised above the ground, supported on the fulcrum, and a distance h from 
the ground when it releases the projectile. The optimum angle is therefore unlikely to be 
45˚, and the range will be given by a new formula. There is also the shape of the projectile to 
consider, as well as its mass and the effects of spin and air resistance which will mean the 
optimum angle is less likely to be 45˚.  
 
Figure 8 – The likely path of the projectile, when released at an angle to the horizontal: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Calculating the range of the projectile if it is released early at an angle, θ, to the horizontal  
 
To calculate the total displacement of the projectile when it is released at an angle, we need 
to calculate the total time of flight using the vertical components of the missile’s velocity, 
and then multiply this by the projectile’s initial horizontal component of velocity (as this 
remains constant).  
 
Looking at the diagram above, when the projectile reaches point B, its vertical component of 
velocity is equal to 0 ms-1.  Beyond this point the projectile starts to fall downwards towards 
the ground. By looking at the vertical component of velocity up to this point, and assuming 
the upward motion to be positive, we can deduce the following information: 
 
a = -9.81ms-2 (Acceleration due to gravity - g)  
uv = usinθ ms-1(Vertical component of velocity) 
vB = 0ms-1 (The velocity at point B = 0ms-1) 
 
Therefore, the time taken to reach maximum height can be described by the following 
formula: 

0 = usinθ - gt 
-usinθ = - gt 

 

v 
B 

Although the formula states ‘+ at’, as we are 
assuming upward motion to be positive, it 
thus follows that the downward acceleration 
due to gravity is negative.  



 

h 

v 

v 

v 

After the 
projectile has 
fallen back to the 
level it was fired 
from, it must 
also fall further 
to meet the 
ground. 

A 



Stephen Lucas                             Salters Horners                     A2 Physics Coursework 
 

9 
 

-usinθ = usinθ = t 
   - g          g 
Time taken to reach maximum height: usinθ 
                                                                         g 
 
Once the projectile has reached maximum height it must fall through the height to which it 
was released from and then through the height that the trebuchet arm was above ground 
when it released the projectile – h. In order to be able to calculate the time taken for the 
projectile to fall to the ground from its maximum height, we need to know the maximum 
height that the projectile achieved. Aforementioned, at maximum height, the vertical 
component of velocity = 0ms-1, and all the acceleration is assumed to be due to gravity only.  
 
Using:  

 
 

0 = u2sin2θ - 2gs 
 
So, s, the vertical displacement is equal to: 
s = - u2sin2θ = u2sin2θ 
            -2g            2g 
 
Therefore the total height that the projectile will fall through from point B (see diagram) is: 
 
h + u2sin2θ 
           2g 
Using this information, the time taken to fall through this height can be deduced using the 
following formula: 

 
 

If s = h + u2sin2θ 
                    2g 
Then: 
h + u2sin2θ = ½ gt2 
              2g 
2 (h + u2sin2θ) = gt2 
                2g 
2h + 2u2sin2θ = gt2 
            2g 
2h + u2sin2θ = gt2 
         g 
t2 = 2h + u2sin2θ 
          g             g2 
t = √ ( 2h + u2sin2θ) 
          g              g2 
 
 
So the time taken to fall from maximum height is given by: 
 
t = √ ( 2h + u2sin2θ) 
                g              g2 
 

u = initial velocity, and if we are considering 
the motion from maximum height, then the 
vertical initial velocity is equal to 0ms-1 so  
s= ut + ½at2 becomes s = ½at2. 
Again, all the acceleration is assumed to be 
due to gravity. 
 

Here the square root sign 
refers to the square root 
of the whole equation.  
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Therefore the total time of flight is: 
 
Time to reach maximum height + Time to fall through 
maximum height 
 
ttot = usinθ  + √ ( 2h + u2sin2θ) 
            g                g           g2 
 
So the horizontal displacement of the projectile is given 
by: 
 
Horizontal velocity x time of flight = Horizontal 
displacement 
 

Horizontal distance: ucos [usinθ  + √ ( 2h + u2sin2θ)] 
                                                        g                g           g2 
 

Horizontal distance: u2sinθcos ucos√ ( 2h + u2sin2θ) 

     g                                   g           g 
  
Horizontal distance:  
This formula is quite complicated, but it suggests that the distance travelled by the projectile 
will be greatest when: 

- The value for initial velocity is large. 

- The height above the ground the projectile is released above is large. 

- The angle between the horizontal and the initial velocity is 45˚.  
 
There are limitations with using this formula to deduce the range of the projectile. One such 
limitation is that measuring the angle made with the horizontal will require sophisticated 
equipment, such as a video camera which is able to record hundreds of frames per second. 
There is also the issue of finding a scale to measure the angle from as it would be inaccurate 
to simply place a protractor on the computer screen as an image of the projectile is frozen 
using film editing software. If the initial velocity was known and so too was the distance 
travelled then the angle could be calculated by rearranging the formula above. Clearly, 
measuring the initial velocity also presents difficulties, as it is anticipated that the projectiles 
will be small and moving relatively fast so light gates would have to be very sensitive to 
detect the rapid change in signal between the emitter and receiver making up the light 
gates.  
 
If the angle of projection changed, then it could create difficulties in finding suitable places 
to place these light gates. The designer of a trebuchet would probably strive for a trebuchet 
that released the projectile at the same angle/position every time, or design it in such a way 
that the angle of release could be controlled for specific situations. If the angle of projection 
was left to chance then this would result in a lot of uncertainty in to where the projectile 
would actually land. The trebuchet I have constructed is very simple, and so I will have no 
such control.  
 
The most likely scenario is that the projectile will be released when the trebuchet arm is 
perfectly vertical as there is no longer an upward reaction force from the spoon supporting 
it. In this scenario, it will be assumed that the projectile left with horizontal velocity only.  
 

Key 
t = time taken (s) 

usin = initial vertical 
velocity (ms-1) 

ucos = initial horizontal 
velocity (ms-1) 
g = acceleration due to 
gravity (9.81ms-2) 
h = the height above the 
ground between from the 
point of release (m) 
s= displacement (m) 
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Calculating the range of the trebuchet when the projectile is released with horizontal 
velocity only: 
 
Figure 9 – Showing the path of the projectile when it leaves the trebuchet with horizontal 
velocity only: 

 
 
 

 
 

 
 

 
 
 

 
 
If the projectile leaves with horizontal velocity only, it will therefore have a vertical 
component of velocity equal to zero metres per second. It will however fall through a 
vertical height, with all of its downward acceleration being due to gravity, therefore we can 
deduce the total time of flight using: 

 
 
 

If we assume that the vertical distance the projectile falls through is the height above the 
ground from which it is released from the arm then: 
h = 1/2 gt2 
So t2: 
t2 = 2h 
         g 
t = √2h 
     g 
 
Horizontal distance = time of flight x horizontal velocity 
 

So horizontal distance = u √2h 
                                                   g 
* The square root sign refers to the square root of (2 x h/ g) 
 
From this formula it is clear that, the greater the height above the ground the projectile is 
released from (i.e. the longer the trebuchet arm) and the greater the initial velocity, the 
greater the range of projectile.  Knowing the time of flight also allows the velocity on impact 
with the ground/target to be calculated. 
 
Looking at the interchange between gravitational potential energy of the counterweight and 
kinetic energy of the projectile, we can deduce theoretical values of initial velocity.  

Because the projectile leaves 
with no vertical velocity, we do 
not need to split it up into its 
vertical and horizontal 
components, we can assume, u, 
the initial velocity, is just its 
initial horizontal velocity.  

Counterweight 

Frame for 
support 

Projectile released with 
horizontal velocity only Spoon 

supporting 
projectile 
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The interchange of Gravitational Potential Energy and Kinetic Energy 
Figure 10 – A diagram of the set up of the trebuchet: 

 
The first law of thermodynamics states that energy cannot be created or destroyed just 
converted from one form of energy to another. In other words, energy is always conserved. 
Before the projectile is fired, the counterweight is suspended a distance, h, above the 
ground.  The counterweight therefore gains gravitational potential energy as it is lifted up 
against the force of gravity. Assuming the counterweight has zero potential energy at 
ground level, the gravitational potential energy of the counterweight in the diagram is 
therefore: 

 

Eg=m1g∆h 
 
 
 
As the counterweight falls through the height h, its gravitational potential energy is 
converted to the kinetic energy of the missile; its energy due to its motion, and the 
gravitational potential energy of the missile; the work done to raise it up from the ground 
against the force of gravity.   
 
If we assumed that all of the gravitational potential energy was transferred to kinetic energy 
of the missile: 
 

Eg = Ek 
m1g∆h = ½m2v2

 

 
However, this formula does not hold true because work must be done to lift the projectile 
up against the force of gravity before it is fired off into the air. We can therefore say that the 
gravitational potential energy of the counterweight when it is suspended, h metres above 
the ground is equal to the increase of kinetic energy of the missile and the increase in the 
gravitational potential energy of the missile: 

m1g∆h = 1/2m2v2 + m2g∆h 

Eg = Gravitational Potential Energy (J) 
m1 = Counterweight mass (kg) 
Δh = The change in height (m) 
g = Acceleration due to gravity (ms-2) 

m1 
Δh 

m1 = 
Counterweight 
mass 

m2 

m2 = Projectile Mass 
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So v = √2(m1g∆h – m2g∆h) 
                             m2 

 
From this equation it is clear that the greater the gravitational potential energy of the 
counterweight – therefore the greater the mass of the counterweight m1, and the greater 
the height to which it is raised/ falls through h, and the smaller the mass of the projectile, 
m2,  the greater the initial velocity of the projectile when it is released. If the initial velocity is 
increased, then aforementioned, so too will be the range of the trebuchet because velocity 
is directly proportional displacement. 
 
Using the previously deduced formula, we can estimate that for a counterweight mass of 
1kg, and a projectile of 10g, if the distance between the counterweight and fulcrum is 
0.076m then the initial velocity will be:  

v = √ 2(1.00 x 9.81 x 0.276) – (0.01 x 9.81 x 0.670) 

                              0.01 
v = 23 ms-1 

 
This appears to be a reasonable value of initial velocity. In the calculations it has been 
assumed that the change in height of the projectile will be the same as the distance between 
the ground and the trebuchet arm when the arm is perfectly vertical.  A projectile with a 
speed of 23ms-1 (51 miles per hour) could cause considerable damage if it were to strike 
somebody in the eye. For this reason I will advise any students working near me to wear 
goggles, and I will also corner off the area I am working in so that any stray projectiles do not 
become a hazard to other students.  
 
Assuming the projectile leaves with horizontal velocity only, we can there assume that the 
range is given by: 

Range = u√2h 
             g 
Therefore if the projectile leaves with an initial velocity of 23ms-1, and a counterweight to 
fulcrum distance of 0.076m corresponds to a vertical height of the trebuchet arm being 
0.670m above the ground, then the horizontal distance travelled by the projectile should be: 
8.50m. This gives a long range but it could create measuring difficulties given that the length 
of the room in which the experiment will be performed could be shorter than 8 metres long.  
 
The previous equation also assumes that all of the gravitational potential energy of the 
counterweight is transferred to the missile, whereas in actuality, the counterweight speeds 
up as it falls and does not stop instantaneously once it has fallen through the given height 
(particularly if it is attached in such a way that it does not hit the floor but continues to move 
in a circular arc once it has fallen through the maximum height).  

 
 The counterweight therefore retains a proportion of the system’s energy in its own 
motion, so the equation becomes:  
 
m1g∆h = ½m1v1

2 + ½m2v2 + m2g∆h 
 
 
 

v1 = the speed of the 
counterweight (ms-1)  

Again, the square root indicates 
the square root of the whole 
equation, not just the numerator.  
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A scatter graph to show how increasing the 
projectile mass affects the initial projectile 

velocity

Rearranging this equation, the velocity of the projectile is:  

v = √2(m1g∆h - m2g∆h - m1v1
2) 

                            m2 
 
The arm of the trebuchet is rotating about the fulcrum as the counterweight falls to the 
ground, it therefore has kinetic energy. However, relative to other masses involved its mass 
is very small and so it is assumed to be a ‘massless’ beam so the mass of the swing arm is not 
included in any of the calculations. If we assume that it has no mass, it then follows that it 
has no kinetic energy, although in reality it does have mass and this will affect the range of 
the trebuchet to some degree. For example it will be harder to swing a heavier swing arm in 
comparison to a lighter one, so a heavier swing arm will require a heavier counterweight to 
raise the projectile by the same degree.  
 
The equation above requires many values and in particular the velocity of the counterweight 
after it has fallen could be quite difficult to calculate if it does not instantaneously come to 
rest and swings to and fro after the projectile has been released.  The trebuchet I am 
constructing is a small scale version of the real thing designed to work in a classroom, so the 
height the counterweight will fall will be quite small, and measuring the time taken for the 
counterweight to fall this height visually with a stopwatch could be inaccurate as it will fall 
too quickly to measure with accuracy and simple equipment. For example, if the distance 
between the counterweight and the fulcrum is 10.3cm the corresponding height above the 
ground is 64.7cm. Taking this into account, if the mass of the counterweight is 1kg, using 
s=ut + 1/ 2at2 , where u = 0ms-1 and assuming all the acceleration is due to gravity, it would 
take approximately 0.36 seconds to reach the ground level.  
 
Modelling the range of the projectile on the equation that ignores the motion of the 
counterweight, we can produce a graph on Microsoft Excel to predict the range of the 
trebuchet for different masses of projectile and counterweight, as well as the different 
heights from the ground which the counterweight will be suspended.  
 
Graphs 1 & 2 
Mass of Counterweight: 1kg  
Mass of projectiles: Varying from 0.010kg – 0.100kg 

Height of counterweight above ground: 0.276m 

Height of projectile above ground before release: 0.670m 
 
Graph 1 – Projectile mass vs Initial Projectile Velocity 
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Graph 2 – Projectile mass vs horizontal displacement of the projectile 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Graph 3 – Counterweight mass vs Projectile’s initial velocity 
Mass of Counterweight: Varying from 0.00 – 1.00kg 
Mass of projectiles: 0.010kg 

Height of counterweight above ground: 0.276m 
Height of projectile above ground before release: 0.670m 
 
Graph 3 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By modelling the initial velocity of the projectile on Microsoft Excel it is clear that as the 
mass of the counterweight increases, so too does the projectile’s initial velocity and hence 
its horizontal displacement. Although the trend line added on graph 3 suggests a linear 
relationship, we know that v α √ (m1gh – m2gh), and since the graph of y = √x increases 
relatively slowly for increasing values of x, it makes sense that there is an optimum ratio for 
counterweight to projectile mass. If the mass of the counterweight were too large then the 
fulcrum of the trebuchet would be put under too much stress and could be subject to 
bending or even snapping.  
 
Looking at graphs 1 and 2, it is clear that as the mass of the projectile increases (while the 
mass of the counterweight is kept the same) the initial velocity and hence horizontal 
displacement of the projectile decreases.  
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The decrease in initial velocity appears to be rapid at first when increasing the weight of the 
projectile from 0.01 – 0.03kg; however, beyond this point the rate of decrease in the 
projectile’s initial velocity seems to be slower and more gradual. This insinuates that after 
approximately 0.05kg, adding 10g masses to the projectile’s mass reduces the initial velocity 
by a smaller amount. In other words, it has less of an impact on the projectile’s initial 
velocity.  
 
Graphs 1 and 2 clearly show that the initial velocity of the projectile and hence distance 
travelled is proportional 1/projectile mass1/2. The distance travelled is inversely proportional 
to the square root of the projectile mass.  The graph of y = x-1/2 shows that  for very small 
values of x, the value of y increases very rapidly, but for very large values of x, the value of y 
decreases very slowly. As a result of the inverse proportionality, a graph of distance against 
1/√ (projectile mass) should produce a straight line.  
 
The shape of the graph suggests that the relationship could be governed by a power law or 
an exponential decay equation. To deduce whether the relation obeys a power law I will be 
plotting a graph of log (distance) vs log (projectile mass) and seeing if the resulting graph is a 
straight line. If the graph of log(y) vs log(x) is a straight line then this will verify that the 
distance travelled by the projectile is governed by a power law, and the gradient will give the 
exponent. If the relationship is governed by an exponential equation then the distance 
travelled by the projectile should change in equal fractions for changing projectile masses, 
and a graph of ln(distance) against projectile mass should produce a straight line.  
 
  The line of best fit and equation added to the graphs produced on excel suggest a power 
law is responsible for the relationship between the distance travelled and the projectile 
mass, however this will be determined experimentally for verification.  
 
By plotting a graph of counterweight mass against distance travelled by the projectile, we 
can determine the work done on the projectile by multiplying the counterweight masses by 
‘g’. This gives us the force multiplied by distance. This holds true assuming there are no 
energy losses in the system.  
 
In actuality, there will be energy losses in the conversion of the counterweight’s 
gravitational potential energy into the kinetic energy of the projectile. These energy losses 
will arise from the energy dissipated against the resistive forces of the trebuchet such as the 
friction about the fulcrum and air resistance.  
 

Efficiency of trebuchet: 
 
Efficiency = Kinetic Energy transferred to the projectile      x 100 
                     Gravitational potential energy of the counterweight  
 

Efficiency = Ekprojectile     x 100 

               Egcounterweight 
 
I anticipate that the trebuchet will be at least 60% efficient at converting the gravitational 
potential energy of the counterweight into the kinetic energy of the missile. When the 
projectile has a mass that requires more energy to be lifted than is available from the 
gravitational potential energy of the falling counterweight, I expect to observe no movement 
of the trebuchet arm. 
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By assuming the initial velocity is governed by the formula: 

v = √2(m1g∆h – m2g∆h) 
                         m2 
 
Several errors arise. Graph 2 indicates that a projectile of mass 10g with a counterweight 
mass of 1kg will travel roughly 8.5 metres. This is a long range, and if I am to perform this 
experiment in a classroom then I want to avoid striking the walls and need the projectile to 
land unimpeded by anything but the air.  
 
Other areas that highlight the limitations to this method is that the counterweight height 
above ground used in calculations is the height when there are no masses attached to the 
end of the swing arm, obviously as the masses are attached by string and have some size 
they will reduce the height above ground to which they are held. It is likely that the heavier 
masses will be larger in size and will thus reduce the value of h, yet the increase in mass 
should be enough to compensate for this loss.  Secondly, the counterweight does not fall 
perfectly vertically; it falls through a circular arc, so the change in height is not quite 
described by simply measuring the distance between the floor and the counterweight hook.  
 
The aforementioned formula takes no consideration for the distances between the fulcrum 
and the counterweight or the projectile, the angle between the ground level and the swing 
arm or the circular motion of the swing arm itself.  

 
Rotational Dynamics of the Trebuchet 
 
The path of the projectile as the counterweight falls will be somewhat similar to this 
diagram: 
 
Figure 11 – The circular arc of the projectile before being released with tangential velocity: 
 
 

 
 

 
 
 

 
 
 

Torque is the rotational analog of force and is given by the equation: 

 
 
Where, ‘r’ is the perpendicular distance from the pivot point to the line of force, and ‘F’ is 
the force applied. The trebuchet acts like a first class lever, where the effort is produced by 
the counterweight, and the load is the projectile, however, the trebuchet is trying to throw 
the load, and not just lift it.  The subsequent diagram demonstrates the forces acting 
perpendicular to the swing arm (if the beam was level) and the pivot is shown by the black 
dot placed at the right end of the arm.  
 
 
 

       r 

v = rω 

As the counterweight falls, the swing arm goes 
through a circular arc, releasing the projectile 
with tangential velocity when the arm is 
perpendicular to the ground. The heavier 
counterweight creates a torque (a turning force) 
about the fulcrum so the whole swing arm 
undergoes angular acceleration.  
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Figure 12 - showing the forces acting on the arm of the trebuchet: 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
 
Using the formula aforementioned, the torque acting on the beam is equal to: 
τ = (m1g x d1) – (m2g x d2)  

   

 
Note that the torque created by the projectile is subtracted from the torque created by the 
counterweight because they create torques in opposite directions and torque is a vector 
quantity.  The counterweight creates a larger turning force so this is assumed to be the 
positive torque. The force is given by Newton’s second law,  
F = ma, where ‘a’ is the acceleration due to gravity and ‘m’ is the mass of the objects 
involved. 
 
The torque acting on the swing arm of the trebuchet is not perfectly explained by this simple 
relationship, as the beam does not begin initially horizontal and so the forces acting are not 
at right angles to the beam.  The torque is therefore found by the equation: 

 

τ = r x Fsin 

τ = r x Fsin

 
 



 
 
 

m1g 

m2g 

m1g 

d2 

d1 
 = the angle between 
the force vector and 
the lever arm vector 
(radians/ degrees) 
r = the distance from 
the force to the pivot 
(m) 
F = Force (N) 

τ = torque (Nm) 

Figure 13 – The trebuchet arm at an angle to the floor. 



Stephen Lucas                             Salters Horners                     A2 Physics Coursework 
 

19 
 

So the Torque is now given by:  

τ = (d1 x m1g1sin) – (d2 x m2g2sin) 
 
This formula suggests that increasing the force and making the force perpendicular to the 
beam maximises the value of ‘r’ and so a larger turning force is created. The formula also 
suggests that the larger the distance between the counterweight and the pivot, the larger 
the torque. Unfortunately there is very little to be done that can ensure that the masses 
experience forces that are perpendicular to the arm, the angles between the force vector  
and lever arm vector will probably be relatively small and hard to measure and so estimating 
the range from this formula could be quite difficult.  
 
The equation for Torque can be rearranged to find the angular acceleration of the trebuchet 
arm and hence projectile, and therefore the angular velocity, ω, can be deduced.  
 
If we apply a torque to a rotating body, or a body at rest, it will undergo angular acceleration 
(a change in angular velocity). The following relationship holds true and links torque to 
angular acceleration: 
 

τ  = I 
 
 
 
All masses display inertia – a reluctance to move. For example when a train stops at a 
station, passengers standing up may continue to travel and therefore involuntarily walk 
forwards. The moment of inertia is the measure of the opposition of a rotating body to 
angular acceleration and can be found by the equation: 
 

I = Σmr2 

 
(There are various equations for different situations; however I will assume that the above 
equation applies to the trebuchet)  
 
The Σ symbol refers to the ‘sum of’ because we assume that the trebuchet is made up of 
point masses, each which will have a moment of inertia. On a very simplistic scale, the point 
masses that make up the trebuchet are the counterweight and the projectile, since the 
beam is assumed to have no mass while the frame is for support and does not experience 
any motion. The symbol ‘r’ refers to the radius of the circular path and ‘I’ refers to the 
moment of inertia. The Moment of Inertia can therefore be calculated using the simple 
model in figure 12, modelling the trebuchet as a parallel beam:  
 
I = mass of counterweight x (distance from fulcrum)2  

        + mass of projectile x (distance from fulcrum)2 
 
I = m1d1

2 + m2d2
2 

 

Using : τ  = Ithe angular acceleration can be found by: 

τ =  
I 

So the angular acceleration is equal to: 

(m1g x d1) – (m2g x d2) /
  m1d1

2 + m2d2
2 =  

I = Moment of Inertia (kgm2) 
α = angular acceleration (rads-2) 
T = torque (Nm) 
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This formula suggests that the greater the mass of the counterweight, and the smaller the 
mass of the projectile, the greater the angular velocity that the swing arm will experience.  
 
Having calculated the angular velocity, and knowing the angle that the projectile is rotated 
through, the angular velocity can be calculated using the following formula: 

 

ω2 = The final angular velocity (rads-1) 
ω1 = The initial angular velocity (rads-1)  

The angular acceleration (rads-2) 

 = Angular displacement (rads) 

 
The projectile is initially at rest and so the angular velocity is zero, as the projectile is not 
sweeping through an angle, so there is no angular displacement.  
 
The value of theta we are concerned with is the angle that the projectile sweeps through 
before being released, assuming the projectile is released when the arm is perpendicular to 
the floor, this angle can be found by adding the angle made with the floor when the 
projectile is held at ground level with π/2 radians.  
 
Figure 14 – The path angle the trebuchet arm turns through before releasing the projectile: 
 
 
 
 

 
 
 

 
 

 
 

ω2
2 = 2 

So ω2 = √2
And we know that the tangential velocity is given by v=rω, where r is the radius of the 
circular motion and ω is the angular velocity. Therefore we can calculate the tangential 
velocity of the projectile as it is released using the distance from the fulcrum to the 
projectile holder as the radius and ω as the angular velocity calculated using the moment of 
inertia and torque. This allows us to revert back to the equation: 
 
R = √2h x u 
          g 
 
Where ‘u’ is the initial horizontal velocity, which will be calculated by v=rω. Since v=rω, it 
follows that the larger the radius of the circular path, and therefore the longer the distance 
from the projectile to the fulcrum, the greater the tangential velocity the projectile will leave 
with, so the greater the range of the projectile.   
 
 
 

 Projectile end of trebuchet arm at ground 
level 

Position of projectile arm when 
projectile is released  

Ground Level 

Angle swept through by arm 
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Predicting the launch range of the projectile 
 
Using the information above, we can estimate the range of the trebuchet and see which 
factors produce the longest launch. If we assume the masses are point masses, with all of 
their mass concentrated at the centre, with their shape having no influence over their path 
taken, and assume that the beam is ‘massless’, then we can predict the initial velocity and 
hence distance travelled by the projectile.  
 
Looking at the calculation performed using the conversion of gravitational potential energy 
and kinetic energy, if we have: 
Counterweight mass: 1kg 
Projectile Mass: 10g 
Counterweight – Fulcrum distance: 0.076m 
Projectile – Fulcrum distance: 0.412m 
Angle made with ground: 0.681 rad 
Vertical height of trebuchet arm above ground: 0.670m 
Then theoretically the initial velocity of the projectile should be: 
 
τ = (1 x 9.81 x 0.076) – (0.01 x 9.81 x 0.412) = 0.705 Nm 
I = (1 x 0.0762) + (0.01 x 0.4122) = 7.47x10-3kgm2 

 0.705 = 94.38rads-2 
      7.47x10-3 
ω = √(2 x 0.681 x 94.38) = 11.34rads-1 

v = 0.412 x 11.34 = 4.67ms-1 
 
So, the range would be: 
Horizontal distance = 4.67 x √ (2 x 0.670) = 1.73m 
                                                           9.81 
 
As you can see this value is almost 7 metres different to the value calculated using the 
exchange between gravitational potential energy and kinetic energy. The interchange of 
gravitational potential energy to kinetic energy is unlikely to be a 100% efficient process, so 
in reality the actual initial velocity of the projectile will be slightly smaller than the 
anticipated value. Since each of these methods produce very different values, I will deduce 
which is the most accurate from the preliminary experiment and see how efficient each 
method is at estimating where the tray of sand should be placed.  
 
The factors affecting the range of the trebuchet – Hypothesis Explained 

 Using this background information, the following variables should produce the largest range 
of the trebuchet: 

 A large counterweight mass to projectile mass ratio - the larger the mass of the 
counterweight, the greater its gravitational potential energy when it is suspended in the air 
and thus the larger the amount of energy available in being converted to the kinetic energy 
of the missile. Moreover the heavier the counterweight is in relation to the mass of the 
projectile the greater the torque about the fulcrum and thus the greater angular velocity and 
hence the larger the tangential velocity of the projectile. The greater the initial velocity of 
the projectile, the further it will travel. The initial velocity and hence distance travelled by 
the projectile is inversely proportional to the projectile mass. 
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Projectile mass (kg) 

 

 

 

 A relatively large height through which the counterweight will fall - the greater the height 
that the counterweight is held above the ground, the greater its gravitational potential 
energy, which aforementioned, means an increased amount of energy available as the 
kinetic energy of the projectile.  

 A large angle between the trebuchet arm and the surface it is resting on – The larger the 
angle made with the ground, the larger the value of angular velocity and hence tangential 
velocity. A large angle with ground also means that the counterweight is suspended higher 
above the ground. 

 A large distance between the fulcrum and the projectile - since v=rω, the larger the 
radius of the circle the projectile turns through, the greater its tangential velocity, 
and hence the greater the distance it will travel.  

 The use of aerodynamic projectiles - the more aerodynamic the projectiles are, the more 
likely the air rushing past them will flow with laminar flow, rather than turbulent flow. 
Turbulent flow requires more energy to move against so the distance travelled by the 
projectile will be reduced if they achieve turbulent flow. 

 

 

 

 

 

  

 Minimum friction about the fulcrum - the metal bar supporting the swing arm must offer 
negligible friction (F=μR). The smoother the bar the easier it will be for the swing arm to 
rotate about it freely, thus the faster it will move.  

Taking into account this information I anticipate that the greatest range of the trebuchet will 
be achieved by either of the following two settings: 
 

 The distance between the counterweight and fulcrum is 0.076m – this corresponds 
to a maximum available distance between projectile and fulcrum (and thus 
maximum radius of the circular motion). It also corresponds to the maximum height 
of the projectile before release.  

Distance travelled by projectile (m) 

Figure 15 – An anticipated graph of projectile mass 
against distance travelled (m) 

Figure 17 – The difference between laminar and turbulent airflow: 
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However, this setting also corresponds to the minimum available angle made with 
the ground and also the minimum counterweight height above the ground.  
 

 The distance between the counterweight and fulcrum is 0.128m – this corresponds 
to the maximum available height that the counterweight can fall through. It also 
gives the largest angle with the table thus increasing angular velocity. However, it 
also gives the minimum distance available between the projectile and fulcrum and 
the smallest height above the ground the projectile is released from.  

 
The experimental results should verify which has most impact – the distance the 
counterweight falls through or the height above the ground from which the projectile is 
released. It is hard to strive for both, because as you drill the fulcrum hole nearer to one 
end, you increase one factor but decrease another affecting the range of the trebuchet. I 
believe that the 0.128m setting will produce the greatest range, since this gives the 
counterweight a greater height to fall through and thus more energy is available as the 
kinetic energy of the missile. The greater the height the counterweight falls through, the 
lower the maximum height of the point of release – therefore the less energy needed to lift 
the projectile up against the force of gravity and the more energy available as kinetic energy 
of the projectile.  
 
Measuring the range of the trajectory 
 
The hardest aspect of this experiment is to accurately measure the point at which the missile 
lands. One possible method could be to plot a velocity-time graph and calculate the area 
underneath the curve by counting the squares or using integration. The problem with such a 
method is that the velocity of the projectile at different points of its flight is not easy to 
measure directly and would require sophisticated video equipment and perhaps a 
stroboscope. Such sophisticated equipment is not readily available and so an alternative 
method will be sought.  
 
As the projectile lands, it will land with some velocity and will not stop dead on impact, but 
rather bounce off or roll along its path. In order to measure the point of first impact with the 
ground as opposed to where the projectile finishes moving, the projectile will need to leave 
a mark on the surface to which it will land. The landing surface will consist of white card, 
measured out at 10cm intervals. If the projectile was to be covered in ink, then this would 
leave a mark on the white card, and so the point of first impact could be measured by 
measuring the distance to the ‘blob’ of ink left staining the card.  
 
However, to improve accuracy and to reduce uncertainty, I will be taking an average of three 
readings for each launch of the projectile at a given counterweight mass. Theoretically the 
projectile should land in the same place each time, however if on one attempt the projectile 
lands close to a pre-existing ink stain, then this will inevitably lead to confusion as the stains 
merge and it becomes unclear as to which ink stain represents which projectile launch. Using 
ink restricts the future use of the card and allowing the projectile to land next to pre-existing 
landing sites.  
 
To overcome this potential area of anomaly, I will be utilising a tray of sand as the landing 
site of the projectile. The sand should deform plastically (if the sand is modelled as a lump of 
material and not tiny grains) as the projectile strikes it and absorb some of its kinetic energy. 
If the projectile carries on moving after crashing into the sand it will still be clear as to where 
the missile landed as the crater caused by the projectile landing will be larger/deeper  than 
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any of the other smaller craters. I will then measure the distance to the centre of the crater 
from the point of release of the projectile to deduce how far the projectile has travelled.  
Deeper craters should correspond to projectiles that have landed with greater velocity; 
however the depth of indentation will not be measured in this experiment. After each 
landing of the projectile, the sand will be smoothed over using the end of a ruler to prevent 
any previous craters being confused with more current ones. Any large grains of sand or 
hard rocks present in the sand will be ground down into fine particles, as these lumps/rocks 
will be harder than the rest of the sand and so resist indentation, making the position of 
indentation harder to find.  
 

Controlling Variables and Improving Accuracy 
 
During this investigation the following parameters will remain constant:  

 The material and dimensions of the bar supporting the swing arm. 

 The dimensions of the trebuchet base and the material from which it is made. 

 The temperature of the equipment. 

 The material that the projectile will land on. 

 The total length of the swing arm.  
 
The variables that will be altered during the procedure consist of: 

 The mass of the counterweight. 

 The mass of the projectile. 

 The distance between the fulcrum and the counterweight. 

 The distance between the fulcrum and the projectile. 
*The latter two correspond to different heights above ground for the counterweight 
 
While each of these variables is being investigated, all others will remain the same. For 
example – when measuring the effect of increasing the mass of the projectile; the 
counterweight mass, distance between the fulcrum and counterweight, and the fulcrum and 
the projectile will all remain constant.  
 
The specifications for the trebuchet are taken with permission from an internet source (see 
bibliography) and so the dimensions of the trebuchet are not a variable that needs be 
measured with unprecedented accuracy.  The distances for the drilled holes of the fulcrum 
were measured both vertically and horizontally using a ruler. Where the two lines crossed 
the hole was then drilled. The role of the base of the trebuchet is to merely act as support, 
really having no influence over the motion of the projectile. Despite measuring out the wood 
accurately with a tape measure, the dimensions of the trebuchet base should have little 
impact on the projectile’s range.  
 
The only possible way in which the base of the trebuchet could influence the motion of the 
projectile was that if it was too light then it could obtain some of the kinetic energy of the 
system causing the whole trebuchet to be thrown forward by the swinging counterweight. I 
anticipate however that this will not happen, and will address this issue in the preliminary 
experiment if needed. Once the trebuchet has been built, the calculations involving the 
exchange between kinetic and potential energy, as well as the rotational dynamics involved 
will require accurate measurements in order to produce viable results.  
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Obtaining the measurements for predicting the range with formulae  
 
In order to measure the distance between the fulcrum and each end of the swing arm, the 
trebuchet was disassembled and the trebuchet arm was laid horizontally. A ruler graduated 
with millimetre marks was then used to measure the distance between the centre of the 
drilled hole and the two ends of the swing arm. Each length was measured twice for 
accuracy and each time the ruler was checked to ensure that it was perfectly straight 
horizontally. Although the spoon was curved, the distance between the projectile and the 
fulcrum (the drilled hole) was taken as the distance between the drilled hole and the centre 
of the spoon’s dip, seeing as the projectile would not sit right at the end of the spoon but in 
its curved centre.  
 
It was assumed that the counterweight would hang vertically at the end of the trebuchet 
arm so the distance between the fulcrum and the counterweight was taken as the full length 
between the drilled hole and the end of the hook to which the string supporting the 
counterweight would be attached.  
 
The height of the trebuchet arm when it is perfectly vertical above the ground was 
measured using a metre stick that was also graduated with millimetre marks. In order to 
reduce any parallax error the measurements were taken at eye level and repeated twice to 
check that the same recording was noted each time.  
 
The angle between the trebuchet arm and the ground level was measured with a protractor. 
This method was also carried out at eye level. Unfortunately because the swing arm is so 
much larger than the small protractors that the school had available this method lacked 
accuracy. In order to compensate for this lack of accuracy, the angle was measured again by 
an alternative method using Pythagoras. By measuring the vertical and horizontal distances 
accurately with a ruler, the angle, θ, was found by performing the inverse tan function of the 
vertical length divided by the horizontal length. This produced an angle similar to the visually 
obtained value and so a mean value was taken from the two results.  
 
The firing of the projectile and measuring its distance accurately 
 
Table displaying all the variables that will be used in the investigation 
*All values of have been rounded to 3 decimal places 
 

Counterweight 
masses being 
investigated (kg) 

Projectile masses 
being investigated 
(kg) 

Distances between 
the fulcrum and 
counterweight 
being investigated 
(m) 
 

Distances 
between the 
fulcrum and 
projectile 
being 
investigated 
(m) 

0.500 0.010 0.076 0.412 
1.000 0.020 0.103 0.386 
 0.030 0.128 0.360 

 0.040   

 0.050   

 0.060   

 0.090   

 0.100   
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The table above displays all of the masses of counterweight and projectile that will be tested 
as well as the different distances between the fulcrum and either end of the swing arm. This 
table is a list of all the variables that will be measured; the table does not refer to a 
counterweight mass of 500g, with a projectile mass of 10g having a distance of 10.2cm 
between the fulcrum and the counterweight. Each column is independent of the other. The 
last two columns do not have nice rounded numbers because the specification for the 
construction of the trebuchet was in inches and not centimetres.  
 
Although using masses of counterweights that increase in intervals of 0.1 kg or 0.25kg would 
produce more results and lead to more accurate conclusions, I have decided to opt for using 
just 500g and 1kg. The reason for this is that with three repeats of each launch, and having 
three different distances between the fulcrum and counterweight, using four or ten 
different counterweight masses would be time consuming and potentially produce more 
data than is manageable in the amount of time available. I anticipate that each experiment 
will take 40 minutes, therefore if I were to use four different counterweight masses, bearing 
in mind repeating each experiment with different fulcrum distance settings; this would 
amount to 8 hours.  
 
In reality, a 900g weight would be unavailable and a weight compromising one 500g and 
four 100g weights tied together would be too bulky and close to the ground for it to really 
fall very far. It would therefore not obtain much gravitational potential energy and produce 
short ranges when realistically, a smaller sized weight of 900g would produce a further range 
than smaller masses with greater heights above the ground. 
 
Unfortunately, the weights available for use as counterweights are not all of the same size, 
for example, 500g is somewhat smaller than the 1kg weight available. The effect of this is 
that the height above the ground which the counterweight is suspended will be different for 
different masses. The 1kg weight is thicker than the 500g weight and so it will appear to be 
closer to the ground therefore having a reduced value of gravitational potential energy.  
 
Figures 18 & 19 – The difference in size between larger weights: 

 
The height above the ground each counterweight is suspended will be checked with a ruler 
graduated with millimetre marks observed at eye level. The string will be tied as tightly as 
possible so that all counterweights are held at their maximum possible height.  
This value of height will be noted, and theoretical distances will be compared with actual 
distances to see the percentage error of the predictions.  
 
* The term ‘weights’ refers to the objects used as masses, not the product of their mass and the 
acceleration due to gravity. ‘g’ refers to grams not gravity. 

 

500g 1kg 

      10g          50g            100g 
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Likewise, the weights available as projectiles do not share the same shape or thickness.  For 
example, the 0.5 Newton weight is thicker than the individual 10g masses. The metal 
weights available are small slotted masses similar in appearance to coins. These weights 
consist of small coins each with mass 10g, and also slightly thicker coins with a mass of 50g. 
To minimalise the size of the projectile and hence reduce the air resistance it will 
experience, for weights below 50g, the projectiles will consist of 10g masses joined by 
sellotape, since sellotape will have negligible mass in comparison to blu-tack or the glue 
from a glue gun. When using masses of 50g, one 50g coin will be used. To obtain a projectile 
of a mass below 100g, a combination of 10g and a 50g masses will be used. The combination 
of these different masses allows the masses to be made progressively larger without 
becoming very tall unstable towers of metal coins.  
 
In order to make sure that each projectile is launched under the same conditions as the next 
I will exert as little pressure as possible when pulling the projectile down and raising the 
counterweight. This also applies to releasing the projectile as I do not intend to give it any 
extra motion, only the motion caused by the falling of the counterweight.  
 
The swing arm will also be placed directly in the centre of the fulcrum so that the projectile 
follows as straight a path as possible and does not fly off at an angle missing the tray of 
sand.  
 
The fulcrum within the wooden frame is 16.50cm long. Using blu-tack on the outer edges of 
the frame where the metal bar threads through will ensure that this length of fulcrum about 
which the swing arm can slide across stays constant, and each time the swing arm will be 
positioned at the 8.25cm mark. Each path of the projectile will be assumed to be a straight 
line.  
 
To keep the procedure as a fair test, the duration for which the projectile is held down to 
ground level will also be approximately 5 seconds. This measure is to prevent the swing arm 
experiencing too much stress (force per unit area) and potentially extending or breaking at 
some point in the experiment. Although the swing arm is stiff, durable and has a relatively 
large cross-sectional area, any extension or plastic deformation in the swing arm would alter 
the height above the ground the counterweight is held and also change the distances 
between the fulcrum and either end of the swing arm. This in turn would alter the initial 
velocity of the projectile and hence alter its distance travelled.  The hook holding the string 
tied around the counterweight has a small cross-sectional area and so will experience 
greater stress. If the swing arm, or hook holding the string attached to the counterweight 
extended then anomalous results could occur as heavier masses could travel further due to 
the increased height above the ground they are now suspended. When the trebuchet is not 
in use, the counterweight will be removed to limit any chances of creeping or adding any 
further unnecessary stress.  
 
The calculations used to predict the range of the trebuchet rely on the assumption that air 
resistance is negligible. Despite air resistance being unavoidable, the experiment will be 
performed indoors so that any wind does not interfere with the path of the projectile. 
Similarly, the room in which this experiment will be performed, will be well ventilated and 
kept at a constant temperature to prevent any warping of the wood, or expansion and 
contraction of the metal parts.  
 
Tables will be drawn up prior to the experiment to allow the harvesting of data to be as 
quick and efficient as possible.  
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Precision of data collection and sensitivity of equipment 
 
The horizontal distance of the projectile will be measured visually using measured out card 
and two rulers. The card will be measured at 10cm intervals using metre sticks that possess 
both centimetre and millimetre marks to improve the sensitivity of the measurements 
taken. While each piece of card is being measured, great care will be taken to ensure that 
the metre stick is perfectly horizontal. To certify that the card has been measured out 
correctly, metre sticks will be held down next to them, to make sure each line goes exactly 
through its desired point. These pieces of card will then be laid end to end, measuring out a 
uniform length of 6.30m.  
 
To ensure that each piece of card is laid down perfectly horizontally, the floor will be cleaned 
and sellotape will be used at each point where two pieces of card meet. This will reduce the 
chances of two neighbouring pieces of card moving away from each other therefore 
disturbing the validity of the measurements taken. The edges will be checked to be aligned 
and then the card will be sellotaped to the floor, restricting any movement that could be 
induced by the projectile striking it or by the tray of sand being closer to one end of the card 
and thus causing the other end to lift up. A spirit level will be placed upon each piece of 
card, ensuring that the bubble remains exactly in the centre of the fluid – thus indicating 
that the card is perfectly straight. The positioning of the trebuchet will be adjusted so that 
the arm is perfectly vertical at the 0.00cm mark. 
 
A large source of experimental error is likely to arise from the projectile not following a 
perfect straight line as it is released. If the trebuchet arm is not placed perfectly straight at 
the exact centre of the fulcrum, or if the counterweight falls at an angle rather than 
perfectly vertically, the projectile could be released with some sideways velocity as well as 
forwards. There is also the possibility that any friction about fulcrum or bending of it will 
cause the arm to swing around in an unpredictable way. If the drilled hole in which the 
fulcrum sits becomes worn away then the arm could wobble as it sweeps forwards. To 
reduce the likelihood of the projectile not following a straight path, a spirit level will be 
mounted to the fulcrum to ensure that it is perfectly horizontally straight. Aforementioned, 
the swing arm will be placed at 8.25cm mark (once the length of the fulcrum has been 
confirmed/adjusted as 16.50m). Friction of the fulcrum is assumed to be negligible for now 
but will be addressed if it appears to be a problem.  
 
Once the projectile has struck the sand, two rulers will be used – one to give the vertical 
distance to the first point of indentation, and the second to give the horizontal distance from 
the nearest mark on the measured out card (see figure 20). The point of indentation is 
unlikely to be a perfect circle and so the distance from the centre of the crater to the 
trebuchet’s point of release will have to be taken as the most likely centre of indentation. 
This will obviously lead to experimental uncertainty due to the potential human error of my 
observations and assumptions. Had a video camera been available, I could have filmed the 
trajectory and found the point of first impact by looking at the individual frames using 
computer software.  This equipment was not available to me, but had it been, it would need 
to be able to show the measured out card clearly. To reduce uncertainty, I shall be launching 
each projectile three times. Repeating each projectile launch three times should show up 
any inconsistent results.  
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Figures 20 - Measuring the distance to the crater (Aerial view) 
 
 

 
 
 
 

In the diagram above, the black dot represents the centre of the crater. I anticipate an 
inaccuracy of ±1.00cm in measuring the distance to the centre of the crater in the sand from 
the point of release of the projectile. This may sound quite large, but seeing as a length of 
6m is being used, this equates to a percentage error of just 0.17% (1/600). However for 
shorter horizontal displacements of the projectile – i.e. 90cm, this equates to a percentage 
error of 1.11%, and so has a larger effect on the inaccuracy of the data.  If the projectile only 
travels 20cm, then this amounts to a percentage error of 5%, implying that the results are 
relatively inaccurate and not concordant.  
 
An unlikely source of error is to be the masses of the projectiles and counterweights. 
Although the masses of the weights are stated on them, these will be checked with sensitive 
scales that are capable of detecting masses within one hundredth of a gram.  
For any masses that produce different readings on the scale to the mass they are labelled 
with, these masses will be swapped for ones that give their labelled mass on the sensitive 
scales. The sensitive scales will be first calibrated before use by placing a known mass of 
material on them and checking that it detects the correct mass. The scales will also be wiped 
clean before use to ensure there is no additional mass affecting the readings.  
 
Safety Precautions 
 
Although safety measures have already been mentioned, to minimise hazards to myself, 
those working around me and the room I shall be working in, I shall adopt the following 
procedures: 

 Goggles will be worn by myself and those working in the room to prevent any 
unexpected trajectories causing eye damage. The use of goggles will also prevent 
any sand that could be sprayed into the air as the projectile hits the tray from 
entering other worker’s eyes.  

 The side of the room I am performing the experiment on will be sealed off from the 
rest of the room – i.e. I will ensure that all other students are not close enough to be 
at risk of being hit by any projectiles.  If the experiment is carried out on the floor 
then there will be a high barrier as the unit containing sinks, plug sockets and gas 
taps will provide a relatively uniform barrier, protecting the other side of the room.  
 
 

Figure 21 - Side view of the sand pit on 
the measured out card 
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 The projectile will be fired in a direction that does not have any windows or 
valuables that could be broken if the projectile went too far or in an unexpected 
direction. All projectiles will be fired in a straight line in a direction that has a blank 
wall at the end of the room.  

 Great care will be taken when loading the sand into the tray as this could result in a 
‘smoke’ of sand rising upwards from the tray, which would not be particularly 
healthy to breathe in. The sand will be poured into the tray slowly and covered to 
prevent any from escaping.  

 
Plan of Action 

 
To manage my time more efficiently I have devised the following plan of action to allocate 
when and where my experiment shall be performed.  

 

 

 Date 

 Thursday 12th 
March 2009 

Thursday 19th 
March 2009 

Friday 20th 
March 2009 

Thursday 26th 
March 2009 

Time Period 4 Period 1 Period 4 Period 1 

Experiment Preliminary 
experiment 

Counterweight 
mass: 500g 
Distance from 
counterweight 
to fulcrum: 
0.076m 
Varying 
projectile 
masses 

Counterweight 
mass: 500g 
Distance from 
counterweight 
to fulcrum: 
0.103m 
Varying 
projectile 
masses 

Counterweight 
mass: 500g 
Distance from 
counterweight 
to fulcrum: 
0.128m 
Varying 
projectile 
masses 

Estimated 
time taken 
(minutes) 

45 minutes 45 minutes 45 minutes 45 minutes 

Location S7 S7 S7 S7 

 Date 

 Monday 30th March 
2009 

Tuesday 31st March 
2009 

Wednesday 1st April 
2009 

Time Afterschool Lunch Afterschool 

Experiment Counterweight mass: 
1kg 
Distance from 
counterweight to 
fulcrum: 0.076m 
Varying projectile 
masses 

Counterweight 
mass: 1kg 
Distance from 
counterweight to 
fulcrum: 0.103m 
Varying projectile 
masses 

Counterweight 
mass: 1kg 
Distance from 
counterweight to 
fulcrum: 0.128m 
Varying projectile 
masses 

Estimated time 
taken 
(minutes) 

45 minutes 45 minutes 45 minutes 

Location S7 S7 S7 
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*Note: Performing the experiment at lunch time and afterschool will mean that fewer 
people (if any) will be working near to me, therefore the chances of a stray projectile 
becoming hazardous to those working around me will be somewhat reduced.  
 

The Preliminary Experiment 
 
Figure 22 – The set up of the preliminary experiment 

 
In order to check that the devised experiment worked and produced accurate results, I 
carried out a pilot experiment. The preliminary experiment provided practice for the final 
experiment and highlighted any potential sources of error that could be tackled before 
proceeding with the final experiment.  
 
The apparatus used for the preliminary experiment: 

 The fully assembled trebuchet - This fired the projectiles their given distance. 

 10g – 100g masses – These were used as projectiles as they were the lightest masses 
available. 

 500g mass – This mass was used as the counterweight mass, the falling of this mass 
through a height h provided the gravitational potential energy which would be 
converted to the kinetic energy of the missile.  

 6 pieces of measured out card – These gave a measured out length of just over 6m 
when laid end to end and sellotaped down. This card was used to give reference 
points when the projectile had landed (i.e. instead of measuring 5.25m, a ruler was 
used at the 5.20m mark and the distance found). 

 Spirit level – To check that the card was laid perfectly horizontal and to check that 
the fulcrum was also perfectly horizontal. 

 Sellotape – Used to hold the pieces of card together and restrict movement. 

 Scissors – Used to cut the sellotape and to cut lengths of string that would allow the 
counterweight to be held at its maximum possible height above the ground.  

 String – This was used to thread through the eye hook and the loop of the 500g 
mass so that the trebuchet arm could support the counterweight mass.  

 3 Rulers – One to give a straight vertical distance to the crater and the second to 
measure the horizontal distance to the crater from the nearest reference point. The 
third ruler was used to smooth over the sand after each landing of the projectile. 

 Tray – To store the sand so that it could be collected and transported easily. 

 Sand – Used to detect where the projectile landed. 

 Floor – Used as the surface on which all of the equipment was laid. 
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 Metre Sticks – To check that the card was measured accurately. The metre sticks 
were also used in case the projectile went further than the measured out length of 
card.  

 
As the diagram shows, the trebuchet was placed at the start of the first piece of card so 
that the arm was perfectly vertical at the 0.00cm mark. Once the counterweight had 
been tied to the eye hook at the end of the trebuchet arm, the arm was positioned at 
the centre of the fulcrum and the arm was held down as the projectile was then placed 
on the plastic spoon. The finger used to hold down the trebuchet arm to suspend the 
counterweight in the air was then removed as quickly and gently as possible, to prevent 
the finger interrupting the motion of the swing arm.  
 
An anticipated value of distance was worked out using the formulae mentioned in the 
rotational dynamics and conservation of energy part in the background information 
section of this project. If the projectile did not land in the estimated position, the tray of 
sand was then adjusted so that the projectile consistently landed in the tray of sand. 
After each landing of the projectile, the distance to the crater was noted and the sand 
smoothed over for the next trial. The projectile was wiped clean to remove any sand 
that had become attached to the projectile, and each projectile mass was launched 
three times so that an average distance could be taken.  
 
Results of the preliminary experiment 
 
Distance from counterweight to fulcrum: 0.076m 
Maximum vertical height of trebuchet arm: 0.670m 
Height of counterweight above ground with 500g mass: 0.230m 
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

0.500 0.010 2.260 2.210 2.156 2.212 

0.500 0.020 1.615 1.675 1.673 1.654 

0.500 0.030 1.181 1.115 1.145 1.147  

0.500 0.040 0.800 0.775 0.800 0.792 

0.500 0.050 0.620 0.618 0.616 0.618 

0.500 0.060 0.610 0.605 0.600 0.605 

0.500 0.070 0.428 0.428 0.429 0.428 

0.500 0.080 0.275 0.270 0.273 0.273 

0.500 0.090 - - - - 

0.500 0.100 - - - - 

 
*All values are rounded to 3 d.p. The symbol ‘-‘means that the counterweight did not lift 
the projectile, there was no movement of the trebuchet arm.  
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Scatter graph showing the results of the preliminary experiment 

 
As can be seen from these results, there is a negative gradient suggesting that as 
projectile mass increases (the independent variable), the displacement of the projectile 
decreases (the dependent variable). The distance travelled by the projectile is inversely 
proportional to the mass of the projectile. A line of best fit has been added to show the 
general trend however the shape of the graph suggests the two variables are not directly 
negatively proportional and are thus not related by a linear relationship.  
 
The equation of the trend line suggests that the maximum horizontal displacement of 
the projectile is about 2.12m, however as the results have shown this is not true.  
 
The shape of this graph is very similar to the graph drawn from theoretical values using 
the conversion of gravitational potential energy to kinetic energy; however the actual 
values of displacement are very different. Assuming that the transfer of gravitational 
potential energy of the counterweight to the gravitational potential energy of the 
projectile and the kinetic energy of the projectile is 100% efficient then this predicts a 
value of approximately 5.40m for a projectile with a mass of 10g. As the actual results 
show, on average the projectile travelled 2.212m, giving a difference of 3.188m between 
the actual value and the theoretical value. 
 
 If the percentage error is taken as: 
 
Actual distance – Theoretical distance x 100 
                   Actual distance 
 
Then this amounts to a huge percentage error of approximately 144%. If we take the 
value obtained by the rotational dynamics method then we get a theoretical horizontal 
displacement of 1.52m. This is incorrect by 0.692m giving a percentage error of 32.64%. 
This value is much closer but is still far enough out to not provide an accurate place as to 
where the tray of sand should be placed.  
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Likewise, there is still a large percentage error between the anticipated values and 
actual values for increasing projectile masses. This will be looked at further in the 
evaluation section of this project. 
 
Looking at the individual results in the results table, it appears that for lighter projectile 
masses there is a greater difference between the distances obtained for each of the 
three trials. Highlighted in yellow, these results could be perceived as anomalous as the 
projectile should land in the same place every time. If we consider the 10g mass, this 
produced distances:  2.260, 2.210, and 2.156. The maximum difference between these 
distances is just over 10 centimetres. Although 10 centimetres may not appear to be a 
large difference over a scale of 3 metres, it would make all the difference to those trying 
to use them during war or for entertainment. If the trebuchet was scaled up to the size 
of the trebuchets being used in medieval warfare, then a difference of 10cm for a small 
trebuchet, could result in a difference of metres for the real thing.  
 
These anomalies could have stemmed from the fact that the base of the trebuchet also 
acquired movement during the firing of the projectile. While observing each launch, it 
was noticed that the trebuchet base swung forward and rocked after releasing each 
projectile. This was particularly true when the trebuchet fired light projectiles. The 
movement of the base meant that the base of the trebuchet was acquiring some of the 
gravitational potential energy of the counterweight, and thus less energy was available 
as kinetic energy of the projectiles. This could have also explained the vast difference 
between the theoretical distances and the actual distances noted.  
 
The base is strong but very light, and as it moves it could be more likely to alter the 
trajectory of the projectile or weaken the base as it moves against the floor.  
Another potential cause for the movement of the trebuchet base may have been due to 
the momentum of the trebuchet. Momentum is always conserved provided no external 
force acts, and if the projectile leaves with velocity forwards, it therefore follows that 
the trebuchet base must move backwards in the opposite direction to conserve 
momentum. Usually the mass of the trebuchet would be much larger than the mass of 
the projectile, so this backward velocity would be very small, however since the MDF 
used was light, this could have produced a noticeable movement as the base moves in 
the opposite direction to the projectile.  
 
To prevent this unwanted movement that could lead to anomalous results and potential 
breaking of the trebuchet, the trebuchet will be mounted on a table and held in position 
by two G-clamps. These G-clamps will be tightened to a degree that gives the trebuchet 
no movement when releasing projectiles, but not too tight as to add stress to the base 
causing it to deform or reach its ultimate tensile stress. It follows that if the trebuchet is 
mounted to the table, then the pieces of card used to detect the distance travelled must 
also be mounted onto tables. If the card was not to be added to the tables and be in line 
with the trebuchet, then this would give the projectiles an additional height to fall 
through and make the whole situation slightly more complicated.  
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Figure 23 - Modified Apparatus Set Up: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Apparatus 
 

 Fully assembled Trebuchet – Used to fire the projectiles into the sandpit. The 
metal bar supporting the trebuchet arm (the fulcrum) can be removed and be 
inserted into one of the three holes of the trebuchet arm. This gives three 
different counterweight heights above ground, as well as three different angles 
made with the table and three different maximum heights of the trebuchet arm 
when it is perfectly vertical.  

 Blu-tack – To keep the fulcrum in position. 

 6 pieces of measured out card each 1.05m in length – To accurately measure 
the distance travelled by the projectile without excessive use of metre sticks. 

 Spirit level – To check that each piece of card is laid down perfectly horizontally 
and the fulcrum of the trebuchet is also perfectly horizontal. 

 Sellotape – Used to keep the pieces of card held together, as well as firmly 
supported on the table and to restrict any potential movement. 

 Sand – Used to mark where the projectile lands, which is given by the point of 
indentation. 

 Tray – An object to store the sand and allow it to be stored and transported 
easily between experiments.  

 Hammer – If the sand available doesn’t consist of fine particles but rather large 
solid chunks, then these will be hammered down into fine particles giving the 
tray of sand a uniform texture and hardness. 

 G-Clamp x 2 – To restrict unwanted movement of the trebuchet base during the 
firing of projectiles.  

 30cm Rulers x 3 – One ruler will be used to smooth over the sand after each 
projectile landing distance has been noted to prevent any left craters causing 
confusion. Another will be used to give the vertical distance to the card, while an 
additional ruler will be used to measure the horizontal distance from the nearest 
reference point.  

 0.1 – 1.0 Newton weights - These give increasing projectile masses in equal 10g 
intervals.  

 5 & 10 Newton weights – These provide heavier masses that can be used as 
counterweights. Each weight has a loop attached that can be used to thread 
string through and attach the weight to the trebuchet arm. 

Tables of the 
same height 

positioned end to 

end 

Tray filled 
with sand  

Measured card 
used to measure 
the distance of 
the projectile 

G-clamp to prevent 
movement of 
trebuchet 

Trebuchet 
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 String – Of no particular length, just in enough quantity that can be cut many 
times to attach the counterweight to the eyehook of the trebuchet arm.  

 Scissors – To cut the string to a length that gives the counterweight its maximum 
possible height above the ground. Scissors will also be used to cut pieces of 
sellotape.  

 Sensitive Scales measuring 0.00 – 3.00 kg – To confirm that the selected masses 
were of the correct mass.  

 Tables x 7 – Used as a surface on which the trebuchet would be mounted. The 
use of G-clamps requires the trebuchet to be placed near the edge of a table, so 
the following table layout will be used (this is an aerial view):  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
Figure 25 - Photos showing how Apparatus will be set up: 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

Trebuchet held to the table by 
G-Clamps 

Each rectangle represents the 
aerial view of a table; pieces of 
card will be placed in a straight 
line in front of the trebuchet, 
with the trebuchet being at 
the centre of the first piece of 
card. 

G-Clamp 

G-clamp 

Measured out card 

Trebuchet 

Counterweight 

Fulcrum 

Spoon holding projectile 

Tray of sand 



Stephen Lucas                             Salters Horners                     A2 Physics Coursework 
 

37 
 

Method 
 
1) Having collected all of the necessary equipment, the side of the room I was working 

on was cleared and sealed off.  The tables required were first moved and positioned 
until the desired layout had been achieved.  The moving of these tables was carried 
out with the help of another student, to reduce the chances of obtaining a back 
injury or creating any unwanted noise as the table legs were dragged across the 
floor. Any students working close by were encouraged to wear goggles and keep a 
distance of about 2 metres from the experiment.  

 
2) After sweeping the tables clean of any unwanted material (to prevent the card from 

being raised in places and not others), the 6 pieces of card were then laid end to end 
in a straight line spanning a length of just over 6 metres. The pieces of card were 
pushed together and sellotaped to the tables so that there were no gaps between 
neighbouring pieces of card. The card was then checked with a spirit level to certify 
that it had been laid perfectly horizontally, if the bubble of the spirit level did not sit 
exactly in the central point then the card was adjusted until the bubble of the spirit 
level sat in the centre of the two markings.  

 

 
 
 
 

3) The trebuchet was then assembled. The metal bar used as the fulcrum was thread 
through the desired hole in the trebuchet arm and adjusted until it gave a length of 
16.50cm between the two vertical strips of wood holding the bar in place. Blu-tack 
was then wrapped around the ends of the metal bar to hold the bar in place. 

 
4) Following the choice of which counterweight-

fulcrum distance was going to be used, the 
trebuchet was then positioned at the start of 
the first piece of card so that the point at 
which the arm became perfectly vertical was 
aligned with the 0.00cm mark. This was 
checked with a ruler. Once the trebuchet had 
been positioned correctly, and was in perfect 
alignment with the table and card, G-clamps 
were used to hold the trebuchet in place. 
One G-clamp was used towards the front of 
the trebuchet and the second towards the 
back of the trebuchet so that the force 
exerted on the trebuchet base was relatively 
spread out and not concentrated in one area. 
The G-clamps were then tightened until it 
became difficult to tighten them any further.  

5) The sand was then slowly poured into the tray and any large chunks were broken 
down into fine particles by a hammer. Any large noticeable rocks in the sand were 
then removed. The sand was then shaken until the tray had a uniform surface of 
sand with it all being spread equally in the tray. The tray of sand was then placed to 
one side.  

G-clamp 

Bubble of spirit level in 
the centre of the two 
markings. 

0.00cm 

Figure 26 – The bubble indicating the surface is level. 

Figure 27 – Checking that the arm is 
perfectly vertical at the 0.00cm mark. 
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6) Projectile masses were then selected 

depending on which measurement was 
being noted. For projectile masses that 
couldn’t be formed from a single 0.1 or 0.5 
Newton weight, weights were joined 
together by sellotape 12cm in length. The 
same length of sellotape was used when 
joining different projectile mass 
combinations so that the additional mass 
and air resistance that the sellotape added 
was the same for all projectiles.  

 
7) Once the projectile mass had been formed, it was then checked on a set of 

calibrated sensitive scales to check that it was the same as the sum of the masses 
stated on the weights themselves. If there was discrepancy between the reading on 
the scales and the labels on the masses, then newer masses were sought (as these 
would have been less likely to have been broken over time etc). When the sensitive 
scales detected the correct the mass then this projectile was used. 

 
8) Similarly, having selected which counterweight mass would be used; this too was 

checked on the sensitive scales. If the counterweight labelled mass did not 
correspond to the sensitive scale reading then the counterweight was replaced until 
the two readings matched. 

 
9) Using the available string, a length approximately 10cm was cut using scissors. This 

string was thread through the loop of the counterweight and through the eye hook 
at the end of the trebuchet arm. A double knot was tied to ensure that the 
counterweight was attached securely and would not come undone at any point of 
the experiment. To support the weight and prevent adding early stress to the 
trebuchet, the weight was supported with my hand during the attaching process.  

 
10) Knowing that the counterweight was held firmly in place, the arm was released and 

the counterweight fell towards the floor. The trebuchet arm was then held down, 
raising the counterweight into the air, and adjusted so that it was positioned exactly 
in the centre of the fulcrum and not leaning slightly on one side. Before this step was 
taken, a small spirit level was used to make sure that the fulcrum sat perfectly 
horizontally. The height of the counterweight above the ground was then noted as 
this would be used to test the validity of the predicted distance using the 
interchange between gravitational potential energy and kinetic energy. 

 
11) With the trebuchet arm perfectly central and thus most likely to fire the projectile in 

a perfect straight line, the projectile mass was inserted into the spoon. During this 
process the trebuchet was still held down using my fingers. The projectile was 
inserted into the spoon horizontally every time so that each projectile was fired 
under the same conditions.  

 
12) Having checked that the trebuchet arm was perfectly straight and at the centre of 

the fulcrum, I released my fingers quickly and gently allowing the projectile to be 
fired towards the measured out card. Watching where the projectile landed, the tray 
of sand was then positioned lengthways at the area where the projectile had 

Figure 28 – Positioning the sand  
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previously landed. Placing the tray lengthways meant that the greatest horizontal 
distance could be covered by the tray compared to if it was placed horizontally on 
the card.  Calculations using the background physics of the trebuchet proved to be 
too inaccurate at determining where the tray of 
sand should be placed.  

 
13) The previous step was then repeated but with 

the tray of sand positioned at a likely landing 
site.  Any projectiles that hit the edges of the 
tray and bounced off, or did not land on the 
tables were ignored as these distances could not 
be measured. If the projectile did not land a 
measurable distance then the launch was 
repeated until the distance could be measured.  

 
14) When the projectile landed in the tray of sand, 

the distance from the centre of the crater to the 
nearest reference point was then measured 
using two rulers. One to measure the vertical 
distance from the centre of the crater to the 
card, and the second to measure the horizontal 
distance to the nearest millimetre from the 
vertical ruler to the nearest 10cm reference 
point mark on the card. For craters that were 
not perfect circles, the centre of the crater was 
estimated.  

 
15) After the distance had been noted in tables 

drawn prior the experiment, the sand was 
smoothed over with a ruler until it was as flat as 
possible and the previous crater was no longer 
visible. Each projectile mass was launched three 
times into the tray of sand so that an average distance for each projectile mass could 
be calculated any inconsistencies could be removed. For increasing projectile 
masses, the distance travelled decreased, and so the tray of sand was moved 
progressively closer to the trebuchet. After the projectile had landed in the sand, 
any sand attached to the projectile was wiped clean to prevent adding any 
unwanted additional mass.  

 
16) Before processing the data in Microsoft Excel or manually, anomalous results were 

identified and investigated for a potential cause. For example, if the projectile was 
released to early due to falling off the spoon then the experiment for this projectile 
mass was repeated. If this problem was persistent then the blu-tack at the end of 
the spoon designed to prevent this from happening would be made more vertical. If 
a particular projectile continually flew in an unpredictable manner then the root to 
this would be investigated and the experiment modified to prevent these anomalies 
from re-occurring. If any obvious anomalous data arose that had no obvious source 
or cause, then these were excluded from the calculations of the mean results.  
 

8.25cm   8.25cm 

Crater 

Projectile 

Figure 29 – Alignment of 
trebuchet arm. 

Figure 30 – Indentation of 
sand. 



Stephen Lucas                             Salters Horners                     A2 Physics Coursework 
 

40 
 

Although there were no major anomalies in the experiment, had there been, the 
experiment would have been repeated to overcome these or different equipment 
would have been sought after. 

 
17) Finally, as all the data had been harvested, the data was then displayed graphically 

and analysed to see which factors produced the greatest range of the projectile. The 
projectile mass was assigned to the x-axis and the distance travelled was assigned to 
the y-axis. The results were then manipulated to see if the relationship between the 
projectile mass was governed by a linear relationship or power law. The percentage 
error of the experiment was also deduced and conclusions were drawn from the 
data obtained.  

 

Results 
 
Highlighted Yellow = Potential Anomalies – A difference of 10 or more cm with the 
other distances noted or data that does not fit with the general trend 
 
Experiment 1 
 
Counterweight – Fulcrum distance: 0.076m 
Projectile – Fulcrum distance: 0.412m 
Maximum vertical height of trebuchet arm above ground: 0.670m 
Height of counterweight above ground: 0.230m 
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

0.500 0.010 2.245 2.255 2.240 2.247 

0.500 0.020 1.680 1.675 1.673 1.676 

0.500 0.030 1.181 1.176 1.188 1.182 

0.500 0.040 0.800 0.775 0.800 0.792 

0.500 0.050 0.620 0.618 0.616 0.618 

0.500 0.060 0.610 0.607 0.600 0.606 

0.500 0.070 0.428 0.428 0.398 0.418 

0.500 0.080 0.275 0.282 0.273 0.277 

0.500 0.090 - - - - 

0.500 0.100 - - - - 

 
*Note: The G-clamps appear to have reduced the differences between each distance measured in 
each trial. This can be seen by comparing the distances travelled by 0.010 – 0.030kg projectile 
masses with the distances travelled by these same masses in the preliminary experiment. For 
example, the maximum difference between the distances of the 0.010g projectile is now 1.5 
centimetres. I was methodological in collecting data, using projectile masses in ascending order. 
There are no readings for a projectile mass of 0.00kg because this would not be obtainable or 
travel a given distance. The swing arm would rotate forwards very quickly but would have nothing 
to throw.  
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Experiment 2 
 
Counterweight – Fulcrum distance: 0.103m 
Projectile – Fulcrum distance: 0.386m 
Maximum vertical height of trebuchet arm above ground: 0.647m 
Height of counterweight above ground: 0.245m 
 
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

0.500 0.010 2.753 2.740 2.785 2.759 

0.500 0.020 2.272 2.335 2.374 2.293 

0.500 0.030 1.946 1.895 1.884 1.908 

0.500 0.040 1.400 1.460 1.429 1.430 

0.500 0.050 1.039 1.052 1.050 1.047 

0.500 0.060 0.810 0.800 0.789 0.800 

0.500 0.070 0.625 0.615 0.610 0.617 

0.500 0.080 0.605 0.620 0.600 0.608 

0.500 0.090 0.590 0.585 0.587 0.587 

0.500 0.100 0.541 0.540 0.542 0.541 

 
 
Experiment 3 
 
Counterweight – Fulcrum distance: 0.128m 
Projectile – Fulcrum distance: 0.360m 
Maximum vertical height of trebuchet arm above ground: 0.624m 
Height of counterweight above ground: 0.244m 
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

0.500 0.010 2.737 2.780 2.716 2.744 

0.500 0.020 2.508 2.563 2.595 2.555 

0.500 0.030 2.327 2.210 2.279 2.272 

0.500 0.040 1.900 1.881 1.876 1.886 

0.500 0.050 1.601 1.614 1.527 1.581 

0.500 0.060 1.245 1.284 1.279 1.269 

0.500 0.070 1.013 0.984 0.990 0.966 

0.500 0.080 0.680 0.794 0.810 0.761 

0.500 0.090 0.638 0.600 0.636 0.625 

0.500 0.100 0.485 0.491 0.505 0.494 
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Experiment 4 
 
Counterweight – Fulcrum distance: 0.076m 
Projectile – Fulcrum distance: 0.412m 
Maximum vertical height of trebuchet arm above ground: 0.670m 
Height of counterweight above ground: 0.182m 
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

1.000 0.010 3.231 3.196 3.195 3.207 

1.000 0.020 2.892 2.980 2.971 2.948 

1.000 0.030 2.688 2.510 2.630 2.609 

1.000 0.040 2.356 2.334 2.278 2.323 

1.000 0.050 1.988 2.086 2.000 2.025 

1.000 0.060 1.946 1.837 1.862 1.882 

1.000 0.070 1.540 1.571 1.480 1.530 

1.000 0.080 1.335 1.312 1.321 1.323 

1.000 0.090 1.095 1.034 1.076 1.068 

1.000 0.100 0.811 0.855 0.886 0.851 

 
Experiment 5 
 
Counterweight – Fulcrum distance: 0.103m 
Projectile – Fulcrum distance: 0.386m 
Maximum vertical height of trebuchet arm above ground: 0.647m 
Height of counterweight above ground: 0.196 
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

1.000 0.010 3.200 3.185 3.145 3.177 

1.000 0.020 3.055 3.001 2.964 3.007 

1.000 0.030 2.764 2.667 2.672 2.701 

1.000 0.040 2.650 2.681 2.584 2.638 

1.000 0.050 2.439 2.472 2.480 2.464 

1.000 0.060 2.379 2.171 2.250 2.267 

1.000 0.070 2.325 2.209 2.121 2.218 

1.000 0.080 1.875 1.891 1.894 1.887 

1.000 0.090 1.713 1.685 1.741 1.713 

1.000 0.100 1.325 1.314 1.342 1.327 
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Experiment 6 
 
Counterweight – Fulcrum distance: 0.128m 
Projectile – Fulcrum distance: 0.360m 
Maximum vertical height of trebuchet arm above ground: 0.624m  
Height of counterweight above ground: 0.240m  
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Distance travelled by projectile (m) Mean 
distance 
travelled 
(m) 

Trial 1  Trial 2 Trial 3 

1.000 0.010 4.408 4.385 4.436 4.410 

1.000 0.020 4.225 3.948 4.136 4.103 

1.000 0.030 3.257 3.219 3.304 3.260 

1.000 0.040 2.735 2.867 2.719 2.774 

1.000 0.050 2.546 2.674 2.686 2.635 

1.000 0.060 2.470 2.410 2.509 2.463 

1.000 0.070 2.441 2.466 2.310 2.406 

1.000 0.080 2.174 2.221 2.146 2.180 

1.000 0.090 1.997 2.016 2.009 2.007 

1.000 0.100 1.710 1.684 1.723 1.706 
 
*Note: During experiment 6 ‘creaking’ could be heard as the trebuchet arm was pulled down 
before firing the projectile. This meant that repeating anomalies became increasingly risky as the 
trebuchet was likely to break at any particular time. It was also noticed that the metal bar being 
used as the fulcrum had started to bend, so this was removed immediately and replaced with 
another metal bar of the same material and same dimensions.  
 
For experiments 5 and 6, the 1kg mass struck the base as it fell but it did not for experiment 4. 
This was because the vertical height of the trebuchet arm as it became perfectly vertical was 
smaller for these experiments. For experiments 1-4 the counterweight fell the given height but did 
not hit the floor, and continued to rock backward and forward after releasing the projectile.  

 
Graphs drawn by Microsoft Excel 
 
Experiment 1 
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trebuchet - Experiment 1
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Experiment 2 

 
 
Experiment 3 
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- Experiment 2
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Experiment 4 

 
 
Experiment 5 
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trebuchet - Experiment 4
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Experiment 6 
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Analysis 
 
A scatter graph showing a direct comparison of the distances achieved by the 
projectiles in experiments 1 - 6 
 

 
 
 

It is clear from the synoptic graph above that the greatest mean distance travelled by the 
projectiles was achieved in experiment 6. The average distances travelled by the projectiles 
then decreases for descending experiment numbers, with experiment 1 producing the 
shortest average distances. Each of the lines of best fit show that there is negative 
correlation between projectile mass and the maximum distance achieved by the projectile. 
The graph above also indicates that there is positive correlation between the distance 
travelled by the projectile and the mass of the counterweight being used. For example in 
experiment 1 using a counterweight mass of 0.500kg gives an average distance of 2.247m 
for 10g, while in experiment 4, where all conditions are the same, except for the 
counterweight having a mass of 1kg, gives an average distance of 3.195m – almost 1 metre 
further. However, as foreseen in planning, the relationship between projectile mass and 
distance travelled when fired from the trebuchet is not perfectly described by negative 
linear correlation. 

 
For experiments 1 and 2 there seems to be a distinct trend between projectile mass and the 
distance travelled when fired from the trebuchet. For projectile masses of 0.01 – 0.04kg 
there is a steeper gradient compared with the other plots of data. For these masses, the 
distance travelled seems to decrease by approximately 45cm as the mass of the projectile 
increases by 10g. Beyond projectile masses of 40g, the gradient of the graph seems to 
decrease and almost level out. This can be seen especially for experiment 2 where there is 
only a change of approximately 1 – 2cm in the distance travelled by the projectile, despite 
the fact that the projectile mass has still increased by 10g. The fact that this trend is only 
apparent for experiment 2 could suggest that there was an error in that particular 
procedure, however no obvious error seems to be identifiable and the fact that each launch 
was repeated three times should have eradicated any inconsistent results.  

 
 Looking at the individual graphs of experiments 1 – 3, it is clear that the relationship 
between the two variables is not linear.  
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Drawing a straight line for the line of best fit would be inaccurate as it would not pass 
through enough points and would suggest that heavier masses had negative displacement 
(were fired backwards), when in actuality they would be fired a very small distance forwards, 
if at all.   

 
The shapes of the curves drawn for experiments 1, 2, 3 and 6 are somewhat similar to the 
anticipated graphs deduced from calculating the initial velocity using the gravitational 
potential energy calculations. Using the information in the planning section, this states that:  

v = √2(m1g∆h – m2g∆h) 
                    m2                                                                   

And as v α s 

s α  √2(m1g∆h – m2g∆h) 
                    m2                                                                   
So: s2 α 1  
            m2 

 
Therefore, if this is true, a graph of distance travelled2 against the reciprocal of projectile 
mass should produce a straight line. Plotting these two variables for experiment 1 produces 
the following graph: 
 

 
Reciprocal of projectile mass /kg-1 

 
The graph above clearly shows that the reciprocal of the projectile mass is proportional to 
the square of the average distance travelled. However, as you can see, the two variables are 
not directly proportional as the line of best fit does not pass through the point (0,0) and a 
few of the plots of the data deviate from the line of best fit (particularly when the reciprocal 
of the projectile mass is equal to 50kg-1). It could be argued that a projectile mass of 0.00kg 
should not travel any distance when fired from the trebuchet as it does not exist, therefore 
the line of best fit should go through the origin at (0,0). Using the formula for kinetic energy 
E = 1/2mv2, if m = 0, then the object would not have any kinetic energy and would thus not 
move. On the other hand, it could be argued that if an object with no mass did exist, then it 
would go infinitely far since lighter projectiles are fired further and if a = F/m acceleration 
would go to infinity.  
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A scatter graph showing the relationship between the reciprocal of projectile mass and 
square of the mean distance travelled for experiment 5: 

 
 
As you can see, the plots of data do not form a straight line which can be used to plot a line 
of best fit. The graph is somewhat similar to y = √x. The fact that not all experiments produce 
a graph where the square of the mean distance travelled is proportional to the reciprocal of 
the projectile mass shows there must be a large source error somewhere in the method. 
These errors will be identified in the evaluation and quantified. If there were no errors in the 
procedure, then this would suggest that the relationship of: v = √2(m1g∆h – m2g∆h)/m2 is  
not true, however there is a lot of evidence to suggest that this relationship does apply to 
the trebuchet. 
 
If we compare the actual distances recorded with the theoretical distances that the 
background physics predicts using the conservation of energy, then we can see that these 
values did not accurately predict the distance the projectile would travel. If we compare the 
actual distances travelled in experiment 3 to the distances the formulae predict we can 
approximate the efficiency of the formulae (rounded to 2 decimal places).  

                           
Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Mean 
distance 
travelled 
(m) 

Theoretical 
distance 
formulae 
predict (m) 

Efficiency 
(%) 
[actual value/ 
theoretical 
value x 100] 

0.500 0.010 2.744 5.375 51.05 

0.500 0.020 2.555 3.697 69.11 

0.500 0.030 2.272 2.931 77.52 

0.500 0.040 1.886 2.461 76.64 

0.500 0.050 1.581 2.129 74.26 

0.500 0.060 1.269 1.876 67.64 

0.500 0.070 0.966 1.671 57.81 

0.500 0.080 0.761 1.500 50.73 

0.500 0.090 0.625 1.351 46.26 

0.500 0.100 0.494 1.220 40.49 

 
This table shows that on average, the formulae were 61.15% efficient at predicting the 
distance the projectile would travel. These calculations have been performed on the 
assumption that the projectile leaves with horizontal velocity only.  
As the table indicates, the formulae are most efficient at predicting the range of the 
projectile for projectiles with masses 0.020 – 0.060kg. The most efficient prediction is found 
for the projectile with a mass of 0.030kg, giving 77.52% efficiency.  
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Although this sounds like a high value of efficiency, it is still not efficient enough at 
accurately predicting where the projectile would land.  
 
If we look at the value where the efficiency is greatest, the formulae predict a distance of 
2.931m, whereas the actual distance was 2.272m. This gives a different of roughly 66 
centimetres. 66 centimetres may seem a relatively small distance to be out on a scale of 
almost 3 metres; however, bearing in mind how small the trebuchet was, this was still not 
accurate enough to anticipate where the tray of sand should be placed. As previously 
mentioned, if the trebuchet and its counterweight were to be scaled up in size by a factor of 
10 could this give a difference of 6.6 metres between the anticipated distance and the actual 
distance a given projectile would achieve? If this was the case then the armies using them 
during battle would always be 6.6 metres too short of hitting their enemy army or target, 
and would so run the risk of having to get closer.  
 
From projectile masses of 0.06kg onwards, the efficiency of the calculations decreases by 
about 6% for each increase in projectile mass by 10g. As a result, the least efficient 
prediction appears to be for the projectile with a mass of 100g, giving an efficiency of just 
40.49%. This suggests that for heavier projectile masses, the formulae involving the 
conservation of energy are less accurate at predicting the distance travelled by the 
projectiles. The reason for this is most likely to stem from the fact that the heavier 
projectiles are larger in size and therefore will experience greater air resistance as it is 
harder for air to flow past their less aerodynamic shape. If the projectiles experience greater 
air resistance, then their motion forwards will be impeded and hence they will not travel as 
far as expected.  
 
Although the efficiency of the formulae involving the conservation of energy is likely to vary 
between experiments, I would anticipate that all distances measured in the experiments are 
in the region of about 55 – 65% at efficiently being predicted using the conversion of the 
counterweight’s gravitational potential energy into the gravitational potential energy of the 
projectile and its kinetic energy as it leaves the swing arm. This is because in general, each 
experiment follows the same trend and appears to be of a similar shape to the graphs 
anticipated by the formulae. Experiments 4 and 5 however, appear to have a more linear 
correlation between the projectile mass and distance travelled so the formulae may be less 
efficient at predicting the range of the projectiles fired in these experiments. Looking at the 
efficiency of the predictions for experiment 4 however, we get a similar situation:  
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Mean 
distance 
travelled 
(m) 

Theoretical 
distance 
formulae 
predict (m) 

Efficiency 
(%) 
[actual value/ 
theoretical 
value x 100] 

0.500 0.010 3.207 6.854 46.79 

0.500 0.020 2.948 4.753 62.02 

0.500 0.030 2.609 3.803 68.60 

0.500 0.040 2.323 3.225 72.03 

0.500 0.050 2.025 2.821 71.78 

0.500 0.060 1.882 2.517 74.77 

0.500 0.070 1.530 2.274 67.28 

0.500 0.080 1.323 2.074 63.79 

0.500 0.090 1.068 1.904 56.09 

0.500 0.100 0.851 1.756 48.46 
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As you can see, although the shapes of the graphs in experiments 3 and 4 are somewhat 
different, on average the formulae predict the displacement of the projectiles with an 
efficiency of approximately 63.16%. This average efficiency is greater than the average 
efficiency of experiment 3 by just 2.01%, so it is a fair assumption that the efficiency of the 
predictions is somewhere between 55 – 65% for all experiments. I would perform the 
calculations for each experiment however that would require a lot of time and paper and 
using experiments 3 and 4 gives an example of the kinds of efficiency involved with the 
calculations. As can be seen with both experiments, the most efficient predictions are for 
projectile masses in the range of 0.03 – 0.07kg.  
 
Similarly, an alternative method of anticipating the distance travelled by the projectile when 
fired from the trebuchet would be to consider the torque produced by the counterweight 
causing the angular acceleration of the trebuchet arm. Again, comparing the actual distances 
travelled by projectiles in experiment 3 to the theoretical distances the formulae using the 
rotational dynamics of the trebuchet predict (see pages 16 -20 ) we get the following table:  
 

Mass of 
Counterweight 
(kg) 

Mass of 
Projectile 
(kg) 

Mean 
distance 
travelled 
(m) 

Theoretical 
distance 
formulae 
predict (m) 

Efficiency 
(%) 
 

0.500 0.010 2.744 1.184 43.15 

0.500 0.020 2.555 1.077 42.15 

0.500 0.030 2.272 0.985 43.35 

0.500 0.040 1.886 0.904 47.93 

0.500 0.050 1.581 0.831 52.56 

0.500 0.060 1.269 0.765 60.28 

0.500 0.070 0.966 0.704 72.88 

0.500 0.080 0.761 0.646 84.89 

0.500 0.090 0.625 0.592 94.72 

0.500 0.100 0.494 0.540 91.48 

 
The efficiency of the calculations involving the rotational dynamics of the trebuchet appears 
on average to be very similar in efficiency to the calculations involving the conservation of 
energy, giving an average efficiency of 63.34%. However in relation as to where the 
predictions are most efficient is almost the reverse of the calculations involving the 
conservation of energy. Generally the efficiency of the calculations increases as the mass of 
the projectile increases excluding the projectile mass with mass 0.1kg. The most efficient 
prediction occurs when the projectile mass is 0.090kg, giving an efficiency of 94.72%. The 
formulae anticipate a distance of 0.592m, which is just 3.3 centimetres short of the actual 
distance. It can therefore be said that this method is far more accurate when determining 
the distance travelled for larger projectile masses, compared with the calculations requiring 
the exchange of potential and kinetic energies.  
 
However, this method is less accurate at determining the distances that lighter projectiles 
would travel, as for projectile masses 0.01 – 0.05kg the efficiency of the calculations ranges 
from 43.15 – 52.56%. This suggests that this method predicts half the actual distance for 
lighter projectiles, implying that the use of such formulae is very inaccurate. The efficiency of 
the same projectile masses for calculations involving the conservation of energy gives 
efficiency of approximately 51.05- 74.26%, suggesting that this method is more reliable.  
 
 

Efficiency increases as 
projectile mass 
increases and distance 

travelled decreases.  
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A comparison of the actual distances recorded in experiment 3 and the anticipated 
distances recorded using the background physics  

 
 
Plotting a graph of the theoretical distances each method predicts alongside the actual 
distances travelled in experiment 3 shows that using the torque produced by the 
counterweight appears to be a more reliable method. The graph plotted using the rotational 
dynamics of the trebuchet is closer to the curve of the actual results, particularly for masses 
0.08kg onwards. However, there is still a relatively large gap for masses 0.01-0.04kg which 
implies the method lacks accuracy for lighter projectile masses.  
 
The graph plotted using the conservation of energy is generally further from the actual 
results, showing that this method is less efficient at predicting the range of the trebuchet. 
This is particularly the case for the projectile mass of 0.01kg. Nevertheless, the shape of this 
curve from 0.03kg onwards is more reflective of the shape of the curve produced by the 
actual results compared to the almost straight line graph produced using the rotational 
dynamics method. The fact that the shapes of the graph for the actual results and the graph 
using the conservation of energy are so similar, suggests that the relationship between 
projectile mass is governed by the previously mentioned equation, however the transfer of 
energy is not 100% efficient and so the initial velocity of the projectiles and hence the 
distances travelled in reality are considerably lower.  
 
In summary, assuming the efficiency of the calculations applies for all experiments, it can be 
said that for lighter projectile masses, using the conservation of energy provides a more 
accurate estimate of the distance travelled, but for heavier projectile masses, using the 
torque and angular acceleration gives a more accurate estimate of the distance the 
projectile will travel. However, neither method gives a consistent accurate prediction and is 
therefore unreliable in trying to predict how far the projectile will go. 
 
The reasons for the calculations being so far off at predicting the distance travelled by the 
projectile can be linked to several factors.  
 
One such limitation of these calculations stems from the fact that in reality, the beam used 
as the trebuchet arm is not ‘massless’ and does possess mass which will effect its moment of 
inertia and potentially obtain some kinetic energy of its own as the counterweight falls.  
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If the beam has mass, work must be done to lift it, as well as the projectile it holds, up 
against the force of gravity, meaning that the amount of gravitational potential energy 
available from the counterweight to the projectile is reduced and not quite explained by the 
formulae previously mentioned in this analysis.  The mass of the trebuchet arm was in fact: 
6.205 x 10-2kg, therefore taking into consideration the mass of the trebuchet arm into the 
conservation of energy calculations and assuming the trebuchet arm is lifted the same 
height above the ground as the height when the arm is perfectly vertical, looking at 
experiment 4 with a projectile mass of 20g, this predicts: 
 
m1g∆h = m2g∆h +1/2m2v

2 + m3g∆h 
 
v2 = 2(m1g∆h - m2g∆h - m3g∆h) 
                                  m2 
m1 = 1kg 
m2 = 0.02kg  
m3 = 6.205 x 10-2kg 
Maximum vertical height of arm above ground: 0.670m 
Height of counterweight above ground: 0.182m 
 
v2 = 2(1.79 – 0.13 – 0.41) 
                      0.02 
v2 = 125m2s-2 
v = 11.18 ms-1 

Displacement = u√2h = 11.18 x √(2 x 0.67) = 4.13m 
                                  g                        9.81 
If we then refer to the table of results for experiment 4, we can see that in actuality, the 
projectile of mass 20g travelled 2.948m. Although this value of distance is closer to the real 
distance compared to the value found that ignored the mass of the trebuchet arm, it is still 
inaccurate by just over a metre, which is a large inaccuracy considering that the maximum 
distance travelled in experiment 4 was 3.07m.  
 
Additionally, another factor that limits the use of these formulae is the fact these formulae 
are designed to work in ‘perfect’ conditions – i.e. where there is no air resistance acting on 
the projectile or friction resisting the movement of the trebuchet arm around the fulcrum. 
The formulae involving the conservation of energy apply to situations in which energy 
transfer is 100% efficient and where the counterweight falls perfectly vertically. If we take a 
random piece of data, we can try and calculate the efficiency of the trebuchet. Looking at 
experiment 5, for a mass of 0.07kg, the mean distance travelled was measured as 2.218m. 
Assuming that the projectile left with horizontal velocity only, we can work backwards to 
find its initial velocity using:  
s = u√2h  
          g 
2.218 = u√2 x 0.647 
                     9.81 
4.920 = u2 (0.132) 
u2 = 37.30 
u = 6.107 ms-1 

 
If the efficiency of the trebuchet is equal to:  

Efficiency = Ekprojectile     x 100 

               Egcounterweight 

m1 = Counterweight mass (kg) 
m2 = Projectile mass (kg) 
m3 = Trebuchet arm mass (kg) 
s = Displacement of projectile (m) 
u = Initial horizontal velocity (ms-1) 
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Mass of projectile: 0.07kg 
Ek = ½ 0.07 x 6.1072 = 1.305J 
 
Mass of counterweight: 1kg 
Eg = 1.00 x 9.81 x 0.196 = 1.923 J 
 
Efficiency = 1.305J x 100 =67.86% 
                                 1.923 J 

 
This implies that roughly 32% of the gravitational potential energy of the counterweight is 
not being transferred to the projectile and is potentially being dissipated as heat energy due 
to air resistance or friction. This is likely to be the reason as to why the anticipated distances 
were consistently higher than the actual distances.  
 
The rotational dynamics formulae have been used on the assumption that the trebuchet is a 
parallel beam, made up of point masses being supported at perfect right angles to the 
trebuchet arm and the formula I = Σmr2 applies to the trebuchet situation. In reality, the 
trebuchet arm starts at an angle to the ground and the counterweight and projectile are not 
supported at perfect right angles to the trebuchet arm. Therefore these angles will have 
some influence over how far the projectile flies. My knowledge on how to apply the moment 
of inertia is also relatively limited, so it is possible that there is a more specific equation that 
applies to the trebuchet.  
 
Looking at the results for experiments 4 and 5, we can see that the trend is more linear in 
comparison to the other experiments. Although the reasoning behind this is not entirely 
known, it is possible that as the trebuchet became increasingly used, the holes used to 
thread the metal bar through the trebuchet arm became worn away at the edges and 
became less smooth and circular. This in turn would have meant that there could have been 
increased friction acting on the trebuchet arm and the arm would be less likely to follow a 
smooth circular arc as the counterweight fell to the floor. Using the hand drawn graphs for 
experiments 4 and 5, I have deduced an equation of the line of best fit, which allows me to 
predict the distances travelled by projectile masses that were not tested in these 
experiments. Looking at experiment 4, the equation of the line predicts that a projectile of 
mass 5g will travel 3.604m. However, each experiment should have produced the same 
shaped graph, so therefore all graphs should be able to be described by a single equation, 
because a straight line, line of best fit is not suitable for all experiments.  
 
After consulting the table of results in experiment 1, we can see that the projectiles with 
mass 90g and 100g were not lifted. Using the calculations involving the conservation of 
energy, this anticipates the projectile will travel a distance of 1.28m. The fact that the 
projectiles did not move indicates the error of these calculations. Using the formula for 
torque however shows that there was only a resultant torque of 0.0316Nm. The fact that 
this torque is so small could explain why there was no observed movement.  
 
The general trend for each experiment is that the distance travelled by the projectile 
decreases rapidly at first for increasing projectile masses and then more slowly.  
The relationship is not described by a power law because a graph of log (distance) vs log 
(projectile mass) does not produce a straight line.  
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If we divide the mean distance travelled by a projectile of mass m + 10m, by the mean 
distance travelled by a projectile of mass m, we can see that the changing fraction for each 
distance is very close for each changing quantity of projectile mass. Therefore, similar to the 
discharge of a capacitor or decay of a radioactive isotope, the line of best fit can be better 
described by an exponential decay equation.  If we plot a graph of ln(distance) against 
projectile mass then we should get a straight line and the gradient should be equal to the 
decay constant k. This is true because: 
 
If y = Ae-kx 
Then ln(y) = ln(A) – kx 
So if distance travelled by projectile = Ae –k x projectile mass 
If we consider the equation of a line as y =mx + c then the gradient gives k and ln(A) is equal 
to the y intercept.  

 
Drawing up a table of ln(distance) against projectile mass for experiment 1 gives:  
 

ln(distance travelled by projectile)  Projectile mass (kg) 

0.81 0.01 
0.52 0.02 
0.17 0.03 

-0.24 0.04 
-0.48 0.05 
-0.49 0.06 
-0.87 0.07 
-1.27 0.08 
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Looking at the hand drawn graph, we can see that a graph of ln(distance) against 
projectile mass does produce a relatively straight line (although not a perfect straight 
line) which suggests the relationship between projectile mass and distance travelled by 
the projectile could be better explained by an exponential decay equation rather than a 
straight line, line of best fit. If the gradient is equal to the decay constant and the y-
intercept gives the value of ln(A), then the equation of the line is: distance travelled = 
3.00e-29.58projectile mass. This derived equation is similar to the equation given by Excel, 
suggesting that this method is relatively accurate.  
 
Adding error bars to the graph for experiment 1 when the line of best fit is a straight line 
shows that the line of best fit still does not travel through enough points, however 
because of the large scale of distances travelled these error bars are very small and very 
difficult to see:  

 
   As this graph demonstrates, even with the use of error bars, the relationship between 

the two variables is not best described by the use of a straight line graph. I have added 
the regression parameter using Excel, which gives a measure of the reliability of the 
linear relationship between the x and y values. The closer the value of R2 is to 1.00, the 
stronger the reliability of the linear relationship. As we can see the value of R2 (the 
square of the product moment correlation coefficient) gives a value of 0.8859, which is 
relatively close to 1. However, if we describe the same graph with an exponential decay 
equation we produce the following graph: 
 

 
 
The graph above clearly shows that with the addition error bars and an exponential 
curve, the curve goes through more points and gives a value of R2 much closer to 1.00.  

R² = 0.8859
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Looking at each graph and the value given for the regression parameter it can be seen 
that these values range from 0.9337 – 0.9838 which indicates a strong correlation with 
the curve drawn. This is particularly true for experiment 3 where the value of regression 
is given as 0.9838. It can therefore be said with some certainty that the relationship 
between projectile mass and distance travelled is better described by an exponential 
decay equation, and this has been found to be true for all experiments, which is why in 
the results section, an exponential equation has been given as the equation of the line 
for all experiments rather than a straight line.  
 
Other than the relationship between projectile mass and distance travelled, there is also 
a clear relationship between counterweight mass and distance travelled, as well as 
distance between fulcrum and counterweight and distance travelled. The further the 
counterweight is from the fulcrum, the shorter the distance between the projectile and 
the fulcrum, which therefore means a reduced radius of the circular arc the projectile 
turns through, so this should in theory mean a reduced value of tangential velocity since 
v = rω. However, counteracting this, the larger the distance between the counterweight 
and the fulcrum, the higher the counterweight is suspended above the ground and the 
larger the angle between the ground and the trebuchet arm. As a result of this the 
counterweight has more gravitational potential energy, and thus more energy available 
as the kinetic energy of the projectile. The larger the value of the angle made with the 
surface, the larger the value of its angular velocity.  
 

Unfortunately, due to time restraints, only two counterweight masses were tested, so 
plotting a graph of counterweight mass against distance travelled by a projectile of 
constant mass would be inaccurate as it would only consist of two points.  
However, if we look at a graph of distance between counterweight and fulcrum against 
the distance travelled by a projectile of a particular mass we can see that the further the 
counterweight is from the fulcrum, and thus the higher it is suspended above the 
ground, the further the projectile will be thrown. Looking at experiments 1, 2 and 3 for a 
projectile mass of 50g and a counterweight mass of 0.500kg we get the following graph:  
 
 
A scatter graph showing the relationship between counterweight – fulcrum distance 
and the distance travelled by a projectile with 50g in experiments 1-3 where the 
counterweight mass is 500g 

 
 

 
 

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

0.000 0.050 0.100 0.150

Distance between fulcrum and counterweight (m) 

A
ve

ra
ge

 d
is

ta
n

ce
 t

ra
ve

lle
d

 b
y 

p
ro

je
ct

ile
 (

m
) 

 



Stephen Lucas                             Salters Horners                     A2 Physics Coursework 
 

65 
 

Although there are only three plots of data, it is still clear that as the distance between 
the counterweight and fulcrum increases, so too does the average distance travelled by 
the projectile. The synoptic graph also verifies this claim, because for experiments 1 – 3 
and 4 – 6, we can see an increase in average distance travelled for ascending experiment 
numbers – because the distance between the counterweight and fulcrum has been 
increased for each experiment while counterweight mass has remained constant.  
 
If I were to be given the opportunity to repeat this experiment, then I would utilise more 
distances between the fulcrum and counterweight to see if there was a point at which 
the radius of the circular arc was reduced enough to start reducing the effect of the 
increased counterweight height above the ground. The formula for torque suggests that 
the greater the distance between the counterweight and fulcrum, the greater the torque 
(turning force) produced, and therefore the greater the angular acceleration and hence 
initial tangential velocity of the projectile. However the radius of the circular arc, and the 
maximum height above the ground at which the projectile leaves the arm of the 
trebuchet also affects the distance travelled. The higher the projectile is above ground 
when it leaves the trebuchet, the greater the distance it will travel, however, having the 
counterweight closer to the fulcrum reduces the maximum vertical height of the 
trebuchet arm. Perhaps there is an optimum distance between counterweight and 
fulcrum which could be investigated further, but in this experiment a distance of 0.128m 
was found to be best distance to produce the greatest range of the projectile.  

 

Conclusion  
 
Having analysed the results it is clear that the following properties give the trebuchet its 
maximum range: 

 The use of light projectiles – In all experiments it was found that the 10g projectile 
consistently travelled furthest, implying the maximum ratio of counterweight mass 
to projectile mass was 1:100. The average distance travelled in each experiment 
then reduces gradually as the projectile mass increases, and the distance travelled 
usually decreases by a smaller amount after a projectile mass of 0.07kg.  

 
The reason that lighter projectiles travel further is because less work needs to be 
done to lift them up against the force of gravity, Eg = mg∆h, therefore if mass is 
reduced, then less of the gravitational potential energy of the counterweight needs 
to be converted to the gravitational potential energy of the projectile as it is lifted 
up above the ground, so more energy is available as the kinetic energy of the 
projectile.  
 
Additionally, the smaller the projectile, the smaller the torque created in the 
opposite direction to the torque created by the mass of the counterweight, 
therefore there is a smaller resistance to the turning force of the counterweight so 
the trebuchet arm can undergo greater angular acceleration. Similarly, the smaller 
the mass of the projectile, the smaller the moment of inertia and as angular 
acceleration is inversely proportional to the moment of inertia, using a lighter 
projectile mass gives a greater angular acceleration. The angular velocity is 
proportional to the square root of the product of the angular velocity and the angle 
turned through multiplied by two, so a greater angular acceleration means a greater 
angular velocity and hence tangential velocity.  
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Although air resistance was assumed to be negligible, the larger projectile masses 
were more ‘bulky’ as they consisted of slotted masses sellotaped together. The 
larger the stack of coins, the less aerodynamic they became, and hence the more 
likely it is their motion was impeded by air resistance. Smaller masses were more 
aerodynamic as figure 11 displays, and were thus less impeded by air resistance as 
they achieved laminar flow (no abrupt change in speed or direction of the air rushing 
past  them and only mixing between layers on a molecular level) of air past them. 
Given the opportunity to repeat this experiment, masses of constant size and shape 
would have been sought, so that all masses would have been affected by air 
resistance equally. 

 
The formulae involved at predicting how far the projectile will travel all imply that 
the lighter the projectile the further the distance it will travel when fired from the 
trebuchet. However perhaps there is an optimum ratio of counterweight mass to 
projectile mass beyond 10g, and after a certain mass the projectile no longer travels 
any further. This is a variable I would investigate further if more time was available.  

 

 The use of a heavier counterweight – Experiments 4 -6 show on average a greater 
distance travelled by the projectile in comparison to experiments 1 -3, the main 
difference between these experiment groups was that experiments 4 – 6 utilised a 
counterweight with a mass of 1kg rather than a mass of 500g. The greater the mass 
of the counterweight, the greater its gravitational potential energy as it is 
suspended in the air before being released.  
Aforementioned, Eg = mg∆h, so an increase in m, means an increase in gravitational 
potential energy of the counterweight. It is this gravitational potential energy of the 
counterweight that is eventually converted to the kinetic energy of the projectile, 
so an increase in this gravitational potential energy means an increase in the kinetic 
energy of the projectile.  

 
If the counterweight  mass is doubled, for example from 500g, to 1kg then the 
gravitational potential energy of the counterweight is also doubled assuming all 
other factors remain the same (although the 1kg mass is larger than the 500g mass 
so the height above the ground it is suspended is decreased somewhat). However, 
doubling counterweight mass does not double the initial velocity of the projectile 
and therefore double the distance travelled by the projectile. In most experiments it 
can be seen that when the fulcrum-counterweight distance is kept the same, and 
only the mass of the counterweight is doubled, the distance travelled by the 
projectile increases by about 1 metre. The theoretical calculations also predict an 
increase of approximately 2 metres. This is because v α √2(m1g∆h), so doubling the 
counterweight mass from 500g to 1kg, increases the initial velocity by a factor of 
roughly √2. The main problem with investigating this variable was that because of 
the 10N weight being so much larger than the 5N weight; it was extremely difficult 
to suspend both masses equal distances above the ground. This was noticeable in 
experiments 2 & 3, where the extension of the string meant that the 500g 
counterweight was suspended at a lower height in experiment 3 in comparison to 
experiment 2.  

 
In terms of the rotational dynamics of the trebuchet, increasing the counterweight 
mass increases the torque created about the fulcrum, so as a result there is larger 
turning force acting on the trebuchet arm so it undergoes greater angular 
acceleration.  
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However, the greater the mass of the counterweight, the greater its moment of 
inertia, which would therefore reduce the angular acceleration; however the 
increase in torque by a larger factor counteracts this. The formula for moment of 
inertia used in the calculations has been: I = m1d1

2 + m1d2
2, and because of the 

relatively short distance between the counterweight and fulcrum, and the fact that 
this distance is squared, the effect of the increase in mass of the counterweight 
reducing the angular acceleration is far less in comparison to the factor by which the 
torque increases the angular acceleration.  

 

 A greater distance between the fulcrum and counterweight – As a result of the 
construction of the trebuchet, there was only one possible place on the trebuchet 
base where the metal bar supporting the trebuchet arm could be placed despite the 
fact that there were three holes drilled in the trebuchet arm giving three different 
distances between this metal bar and the counterweight. Looking at each individual 
experiment where the counterweight mass is constant, it can be seen from the 
synoptic graph that increasing the distance from the counterweight to fulcrum each 
time, increases the average distance travelled by the projectile. This is because 
increasing the distance between the fulcrum and the counterweight increased the 
height above the ground to which the counterweight was held; therefore increasing 
its gravitational potential energy (you can demonstrate this by running your finger 
down a pen and seeing that one end gets pushed higher up). 

 
Moreover, increasing the distance between the counterweight and fulcrum also 
increases the torque, since torque is given by force x distance.  
However, as can be seen from photos of the trebuchet, the distance between the 
projectile and fulcrum was always larger than the distance between the fulcrum and 
the counterweight. The reason for this is because although increasing the distance 
between the fulcrum and counterweight gives a greater height above the ground to 
which the counterweight is held, it is also antagonistic in the way that it reduces the 
maximum vertical height of the trebuchet arm above ground and reduces the radius 
of the circular path through which the projectile is turned through before release. 
Although increasing the distance between the counterweight and fulcrum 
consistently increased the distance travelled by the projectile despite the decrease 
in maximum vertical height above the ground at which the projectile is released, 
there must be some form of balance to ensure that the two counteracting 
properties do not cancel each other out.  

 
As the lever bar of the trebuchet rotates, the distance each end moves through in 
any given period of time is proportional to its distance from the fulcrum. Therefore, 
the end with the missile moves further each second than the end with the 
counterweight – in other words the end with the missile moves faster than the end 
with the counterweight attached. If the counterweight to fulcrum – distance were 
too large, then each end of the arm would turn through the same distance in the 
same amount of time, so the initial velocity of the projectile would be reduced and 
there would be no mechanical advantage.  

 
One possible way to overcome the fact that increasing the distance between the 
fulcrum and the counterweight reduces the radius of the circular arc through which 
the projectile is turned through, could be to modify the original design in which the 
projectile is attached to the trebuchet arm via a pouch and string.  
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The pouch is stored underneath the trebuchet arm and swings out as the 
counterweight falls, therefore giving a larger radius than the wooden arm of the 
trebuchet can give alone. This also increases the angle through which the projectile 
turns through, therefore increasing its angular velocity. If its angular velocity is 
increased then so too is the tangential velocity. The use of a string and pouch could 
also potentially give the projectile an earlier release, for example at an angle of 45° 
to the horizontal. This in turn would increase the range of the trebuchet as it 
reaches a greater maximum height before falling to the ground.  

 
Similarly a longer trebuchet arm should also increase the distance a thrown 
projectile will achieve as this will increase the radius of the circular arc. However this 
was not possible to investigate due to time constraints and the fact that the metal 
bar could not really support a longer trebuchet arm without it abruptly hitting the 
table.  

 
 A large angle made with the surface and the trebuchet arm – As the distance 

between the counterweight and fulcrum increases, so too does the angle made 
with the surface and the projectile end of the trebuchet arm. In all cases an angle of 
0.855 radians appeared to give the largest range, however only three different 
angles were tested, and with an increased angle came an increased height above 
the ground for the counterweight, so it cannot be said with a great deal of certainty 
that the angle made with the table had a great impact on the range of the 
trebuchet. However, since ω2 = √2θα it would make sense that an increase in angle, 
increases the angular velocity and thus tangential velocity  of the projectile as it 
leaves the arm of the trebuchet.  
A greater variety of angles would be tested if the experiment were to be repeated 
so that this relationship could be investigated further, and to see if there is an 
optimum angle before the projectile starts being released too early or too late.  

 
The friction of the fulcrum and aero dynamicity of the projectiles was not really investigated 
in the experiments due to the metal bar being kept the same throughout the experiments 
and the projectiles having to vary in size and shape because of the lack of availability of 
projectiles of constant dimensions with only their mass increasing. We therefore have no 
comparison and so cannot concur conclusions from the projectiles and fulcrums used. 
However it is quite obvious, that the lower the friction of the metal bar, the easier it will be 
for the trebuchet arm to swing around with its motion unimpeded, and thus the greater its 
velocity, and hence velocity of the projectile. Air resistance was assumed to be negligible, 
and in medieval times, it is likely that sharp jagged rocks that weren’t particularly 
aerodynamic were thrown in order to cause the most damage, so the air resistance of the 
projectiles may have been of less importance to those using trebuchets at the time. The use 
of extremely light projectiles would have also been less likely to destroy a castle or its walls. 
For example, it would take a long time to cut down a tree using the bullets from a handgun.  
 
In summary, although the results obtained for each experiment do not show an identical 
pattern between projectile mass and distance travelled, it can be said with some certainty 
that in order for a trebuchet to achieve its maximum range there must be the use of 
projectiles much lighter than the counterweight (100 times lighter), a large height at which 
the counterweight is suspended above the ground, a large angle through which the 
projectile turns through and a large vertical height above the ground from which the 
projectile is released at.  
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Evaluation 

There are several areas of experimental uncertainty in this experiment, which in turn effect 
the reliability of the data harvested. I would estimate the results are overall 7-15% 
inaccurate, and this percentage error of inaccuracy stems from several aspects of the 
experiment.  

Firstly, despite measuring the distance travelled by the projectile to the nearest millimetre, it 
is estimated that when assuming where the centre of the crater was positioned, this could 
have been out by a maximum of ± 0.01m. In many cases the crater was not a perfect circle 
but a small unsymmetrical dent in the sand. If the assumed centre of the crater was 
incorrect then, as a result, the distance travelled by the projectile noted would also have 
been incorrect by ± 0.01m.  

Figure 31 – An example of a crater left in the sand by the projectile 

 

 

 

 

 

As well as the human error arising from trying to 
estimate where the centre of the crater was there 
is also the possibility that because of the sand 
being raised above ground, this reduced the total 
distance travelled by the projectile by a small 
amount. For example, where the ruler had 
measured 2 metres 78 centimetres, had there 
been no sand this could have read 2.785 metres. 
The height of the sand was so small however, that 
this should not have reduced the distance 
travelled by the projectiles by a large amount.  

In addition, experimental uncertainty is also likely to arise from parallax error when 
observing the measurements and marking them up with a ruler. The edges of the tray 
prevented the ruler being used to measure the vertical distance to the card from being 
placed flat on the crater and so had to be suspended slightly above it. Due to the angle of 
observation it is possible that measurements were misread and therefore lacked accuracy. I 
would say however, in total, it is unlikely that the measurement of distance travelled was 
incorrect by any more than ± 2.00 centimetres.  

 

 

As you can see, the craters left by 
the projectiles were not perfect 
circles, and so the centre of the 
crater had to be estimated.  

Figure 32 – Potential errors caused by the increase in height of the sand above the ground: 
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If we consider the results for each experiment then we can deduce the total maximum 
percentage error overall for measuring the distance travelled by the projectile. All values 
have been rounded to 3 decimal places.  

Experiment 1 

Projectile 
mass (kg) 

Average 
distance 
travelled 
by 
projectile 
(m) 

Maximum 
percentage 
error (%) 
 
[0.02/distance 
(m) x 100] 

0.010 2.247 0.890 

0.020 1.676 1.193 

0.030 1.182 1.692 

0.040 0.792 2.525 

0.050 0.618 3.236 

0.060 0.606 3.300 

0.070 0.418 4.785 

0.080 0.277 7.220 

Average maximum 
percentage error (%) 

3.105 

 

 

 

 

Experiment 2 

Projectile 
mass (kg) 

Average 
distance 
travelled by 
projectile 
(m) 

Maximum 
percentage 
error (%) 
 
[0.02/distance 
(m) x 100] 

0.010 2.759 0.725 

0.020 2.293 0.872 

0.030 1.908 1.048 

0.040 1.430 1.399 

0.050 1.047 1.910 

0.060 0.800 2.500 

0.070 0.617 3.241 

0.080 0.608 3.289 

0.090 0.587 3.407 

0.100 0.541 3.697 

Average maximum 
percentage error (%) 

2.209 
Experiment 3 

Projectile 
mass (kg) 

Average 
distance 
travelled 
by 
projectile 
(m) 

Maximum 
percentage 
error (%) 
 
[0.02/distance 
(m) x 100] 

0.010 2.744 0.729 

0.020 2.555 0.783 

0.030 2.272 0.880 

0.040 1.886 1.060 

0.050 1.581 1.625 

0.060 1.269 1.576 

0.070 0.966 2.070 

0.080 0.761 2.628 

0.090 0.625 3.200 

0.100 0.494 4.049 

Average maximum 
percentage error (%) 

1.824 

Experiment 4 

Projectile 
mass (kg) 

Average 
distance 
travelled 
by 
projectile 
(m) 

Maximum 
percentage 
error (%) 
 
[0.02/distance 
(m) x 100] 

0.010 3.207 0.624 

0.020 2.948 0.678 

0.030 2.609 0.767 

0.040 2.323 0.861 

0.050 2.025 0.988 

0.060 1.882 1.063 

0.070 1.530 1.307 

0.080 1.323 1.512 

0.090 1.068 1.873 

0.100 0.851 2.350 

Average maximum 
percentage error (%) 

1.202 
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As these tables show, the maximum percentage error is greater for smaller projectile 
distances, therefore insinuating that these recordings are less accurate than the 
measurements taken when the projectile had travelled further. The inaccuracy of ±0.02m 
has less of an impact for larger projectile distances; for example, in experiment 1, the 
projectile with mass 0.030kg could have landed anywhere between 1.202 metres or 1.162 
metres.  

However looking at the projectile mass of 0.080kg for the same experiment, the percentage 
error suggests that the projectile could have landed anywhere between 0.257 metres or 
0.297 metres. This gives a larger percentage difference on the smaller spectrum of distance 
travelled.  

The highest value for maximum percentage error of the data resulted with a 7.22% 
percentage error for experiment 1 using the 0.08kg mass. This maximum percentage error is 
quite reasonable considering the simplicity of the experiment. On average, taking into 
account all of the average maximum percentage errors for each experiment, the average 
maximum percentage error of recording the distance travelled by the projectile was equal 
to: 1.67%. This suggests that the recording of the distance of the projectile was somewhat 
accurate; however clearly there are more accurate ways to do this.  

Given the opportunity to perform this experiment differently, there are several changes I 
would make to improve the accuracy of measuring how far the projectile travelled. One 
possibility could be to use electronic timers to control when the trebuchet arm is released 
and to measure how long the projectile takes to hit the ground. This would have to involve 
some kind of mechanism in which the trebuchet arm is held down, perhaps by a metal wire 
or piece of string. As the wire or string is pulled away, this triggers the timer placed a given 
distance away from the trebuchet to begin timing. When the projectile hits the device 
timing, this causes the timer to stop timing.  

Experiment 5 

Projectile 
mass (kg) 

Average 
distance 
travelled 
by 
projectile 
(m) 

Maximum 
percentage 
error (%) 
 
[0.02/distance 
(m) x 100] 

0.010 3.177 0.630 

0.020 3.007 0.665 

0.030 2.701 0.740 

0.040 2.638 0.758 

0.050 2.464 0.812 

0.060 2.267 0.882 

0.070 2.218 0.902 

0.080 1.887 1.060 

0.090 1.713 1.168 

0.100 1.327 1.507 

Average maximum 
percentage error (%) 

0.912 

Experiment 6 

Projectile 
mass (kg) 

Average 
distance 
travelled 
by 
projectile 
(m) 

Maximum 
percentage 
error (%) 
 
[0.02/distance 
(m) x 100] 

0.010 4.410 0.454 

0.020 4.103 0.487 

0.030 3.260 0.613 

0.040 2.774 0.721 

0.050 2.635 0.759 

0.060 2.463 0.812 

0.070 2.406 0.831 

0.080 2.180 0.917 

0.090 2.007 0.997 

0.100 1.706 1.172 

Average maximum 
percentage error (%) 

0.776 
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The time recorded is then used as the time of flight and multiplying this by the horizontal 
velocity gives the total distance travelled. The horizontal velocity could be deduced using 
light gates placed at the point of release of the projectile.  

There are obvious difficulties with such a set up. Firstly, the likelihood of the projectile 
hitting the timing device seems to be rather unlikely, unless the timing device was very large. 
On the other hand, the timing device could be small but also sensitive to vibrations (perhaps 
a piezoelectric crystal), so that as the projectile hits the ground/table, the vibrations of the 
impact are converted to an alternating voltage signal and then using the time taken for this 
signal to be generated the distance could be calculated.  

The major flaw in this design however, is that I do not know how to construct such a circuit 
or where to obtain such equipment. The ‘log-it’ data loggers that the school has available 
can be used as light gates, so this could be used in future experiments to measure the initial 
velocity of the projectile as it leaves the trebuchet arm. How effective the light gates will be 
for such small sized masses moving at high speeds though is not known. The use of these 
light gates however would allow a more direct measure of the efficiency of the trebuchet as 
it is unlikely that the projectile constantly left the arm of the trebuchet with just horizontal 
velocity.  

Although the manual measuring of the crater left by the projectile and thus its distance 
travelled appeared to have a relatively small percentage error, it is thought that the firing of 
the projectiles themselves is the largest source of error. Although as much was done as 
possible to ensure that the trebuchet arm was perfectly aligned and as straight as possible, it 
was noticed that the counterweight did not always fall with a perfect vertical drop and the 
projectile released was more than often not released in a straight line. In most cases the tray 
of sand had to be positioned slightly to the left of the trebuchet rather than directly in front 
of it, suggesting that the projectiles were not being fired in straight lines.  

Projectiles that would have been fired in a straight line would have travelled further than 
those that were fired at a slight angle, which may explain why some of the graphs produced 
don’t show perfect curves or straight lines. Although the measuring of the distance may 
have been correct, the actual firing of the projectiles perfectly straight forward was not, and 
so the measured results may have been slightly less than if the projectile had left with 
forward horizontal velocity only. This could have also explained why the anticipated values 
of distance were so far from the actual values of distance – although this is thought to have 
stemmed from the fact that the projectiles might not have left the trebuchet arm with just 
horizontal velocity and that the transfer of energy was not 100% efficient.  

The structural flaws of the trebuchet are the most likely sources of anomalous data. The 
counterweight did not always strike the floor for each experiment. As the distance between 
the counterweight and fulcrum increased, the maximum vertical height of the trebuchet arm 
decreased so this meant the counterweight hit the floor for experiments 5 and 6. For 
counterweights that did not hit the floor, it was more likely that the counterweight obtained 
some of the energy of the system, thus meaning there was less available as kinetic energy of 
the missile so the projectiles did not fly as far. In summary, I would accredit the firing of 
projectiles in a straight line an inaccuracy of approximately 10%.  

In medieval times, many trebuchets were designed so that the counterweight was 
constrained to fall vertically by forcing it to fall in a vertical slot, reducing the to-and-fro 
movement of it during a launch.  
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Perhaps if I had forced the counterweight to fall perfectly vertically through a slot, rather 
than allowing it to swing to-and-fro, this would have reduced the amount of energy being 
wasted as the kinetic energy of the counterweight, and the results would have produced a 
much more distinct trend. This would have improved the efficiency of the trebuchet and 
perhaps reduced the difference between the theoretical results and the actual results.  

Other causes for a less than 100% energy transfer from counterweight gravitational 
potential energy to projectile kinetic energy could be due to energy being dissipated as heat 
energy as the trebuchet arm moved against the frictional forces of the air and the metal bar 
making up the fulcrum. Carrying out the experiment in a vacuum would be impractical but to 
reduce the frictional forces of the metal bar, lubricant, such as oil could be applied to the 
metal surface. Using many different materials for the fulcrum could also give a comparison 
on which metal surface has the lowest coefficient of friction and this would be another 
variable that would be investigated if more time was available.  

Many medieval trebuchets also adopted wheels into their design. The use of wheels 
provides support as the falling counterweight shakes the base. As was noticed without the 
use of G-clamps, the trebuchet base lurched forward as the projectile was fired forward. 
Although using G-clamps restricted this movement, the trebuchet would still have tried to 
move against the g-clamps, which could be a potential reason as to why the trebuchet 
started creaking in the final experiment. The addition of wheels to the trebuchet would have 
allowed the trebuchet to move as it fired projectiles, without slamming against the floor or 
moving up against the G-clamps. This in turn would have meant that the base of the 
trebuchet would experience less stress and work for a longer amount of time.  

Since the rolling wheels prevent the trebuchet from being thrown forwards and crashing 
back into the ground, the energy of the counterweight is more smoothly channelled into the 
trebuchet’s arm and missile.  

The wheels add power as the trebuchet rolls forward, the forward motion adds velocity to 
the projectile and in general it has been found that the projectile can be launched up to 33% 
further when wheels are incorporated into the design. The rolling back and forth of the 
wheeled counterweight also allows it to fall in a straighter line, giving it the most efficient 
way to respond to gravity. If the counterweight falls in a straight line, then the initial velocity 
of the projectile is increased and hence so too is the distance travelled by the projectile.  

If I were to be given the opportunity to perform this experiment again, then the use of 
wheels would have been a variable I would have investigated to see to what extent this 
affects the range of the trebuchet. I could have then compared the distances achieved by 
two trebuchets under the same conditions, with one of them having wheels and the other 
one not to see if the use of wheels really does improve the range by 33%.   

Another area I would like to investigate would be to see if other siege engines produced 
further ranges than the trebuchet. For example, does the extension of a spring using 
catapult, give a more efficient transfer of elastic potential energy into the kinetic energy of 
the projectile?  

Due to the simplicity of the experiment, the only other variable being measured was the 
masses being used as projectiles and counterweights. The sensitive scales could detect a 
mass 0.01 of a gram; they therefore had an uncertainty of ± 5 x 10-6kg, this uncertainty is so 
small that it can be assumed as negligible.  
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Unfortunately, not all of the masses were of the same size and shape, so air resistance could 
not really be analysed. This is another source of further potential investigation if more time 
was available. The use of many different shaped projectiles all with the same mass, would 
have allowed myself to see which shape of projectile is most aerodynamic and hence travels 
further. As previously mentioned, if the experiment were to be repeated, then an even 
greater range of masses would be utilised, to see if there are any differences in the general 
trend, and to generally improve the accuracy of the experiments and drawing smooth curves 
when plotting the graph.  

If I had the opportunity to do the experiment again, an alternative distance measuring 
method could involve the use a video camera with a high number of frames per second. 
After watching the footage back in slow motion, and recording how far the projectile 
travelled, I could have taken stills of the footage and then analysed those. I could have also 
made use of a stroboscope to improve the accuracy of my results. This instrument would 
have caused the projectile and trebuchet arm to appear slow-moving or stationary. 
Electronic stroboscopes emit brief and rapid flashes of light, the frequency of the flash is 
adjusted so that it matches or is a unit fraction below the objects cyclic speed. This makes 
the object appear stationary. Using this I could have deduced the speed of the trebuchet 
arm by finding the frequency of flashes of light that make it appear to be stationary. This 
could have then been used to more accurately deduce the initial velocity of the projectile. 
The use of a stroboscope would have to be used with the video camera, as the projectiles 
would be travelling too fast for the stroboscope to be of any use by visual observation. There 
would also be the safety issue regarding any epileptic students.  

Generally, although my results are by no means 100% accurate, looking at the graphs and 
the results obtained, I think it can be said with certainty that as the projectile mass 
decreases, and counterweight increases, the distance travelled by the projectile increases. In 
addition, the greater the height above the ground the counterweight is held, and the greater 
the angle through which the projectile turns through, the greater the displacement of the 
projectile. Overall, I would give my experiment a percentage error of 11.67% and despite 
this relatively large percentage error; I believe I have proved my hypothesis and fulfilled the 
aim of the experiment.  
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