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Abstract

Individuals living in society are bound together by a social network

and, in many social and economic situations, individuals learn by ob-

serving the behavior of others in their local environment. This process

is called social learning. Learning in incomplete networks, where dif-

ferent individuals have different information, is especially challenging:

because of the lack of common knowledge individuals must draw in-

ferences about the actions others have observed, as well as about their

private information. This paper reports an experimental investigation

∗The results reported here were previously distributed in a paper titled “Learning in
Networks: An Experimental Study.” This research was supported by the Center for Ex-

perimental Social Sciences (C.E.S.S.) and the C. V. Starr Center for Applied Economics at

New York University. We thank Colin Camerer, Boğaçhan Çelen, Gary Charness, Xiao-
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of learning in three-person networks and uses the theoretical frame-

work of Gale and Kariv (2003) to interpret the data generated by

the experiments. The family of three-person networks includes several

non-trivial architectures, each of which gives rise to its own distinctive

learning patterns. To test the usefulness of the theory in interpreting

the data, we adapt the Quantal Response Equilibrium (QRE) model

of McKelvey and Palfrey (1995, 1998). We find that the theory can

account for the behavior observed in the laboratory in a variety of net-

works and informational settings. This provides important support for

the use of QRE to interpret experimental data.

Journal of Economic Literature Classification Numbers: D82, D83,

C92.

Key Words: Social networks, social learning, Quantal Response Equi-

librium (QRE), experiment.

1 Introduction

Social learning occurs when economic agents learn by observing the behav-

ior of others. Whether choosing a restaurant, adopting a new technology,

or investing in a portfolio, an individual’s actions can reveal useful private

information. So, in social settings, where agents can observe one another’s

actions, it is rational for them to try to learn from one another. Individ-

uals living in society are bound together by a social network, the complex

of relationships that brings them into contact with other agents, such as

neighbors, co-workers, family, and so on. An individual agent observes a

subset of the network, the members with whom he is in direct contact, but

his ability to observe the network is limited. He has imperfect information

about the actions of most agents in the same network.

In the present paper, we analyze data from a series of laboratory experi-

ments of social learning in networks. The experimental design is based on a

model of Bayesian learning in social networks developed by Gale and Kariv

(2003), henceforth GK; the experimental data is described in Choi, Gale

and Kariv (2005), henceforth CGK. Even in the laboratory, the process of

social learning in networks can be complicated. In incomplete networks, the

absence of common knowledge requires subjects to interpret the informa-

tion contained in the actions of others by forming higher order beliefs and

performing complex calculations. It is not at all clear whether experimental

subjects are able to draw correct, Bayesian inferences in this setting. For

this reason, it is important to extend the GK model of Bayesian learning to

allow for mistakes.
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The Quantal Response Equilibrium (QRE) model of McKelvey and Pal-

frey (1995, 1998) allows for idiosyncratic preference shocks, which can be

interpreted, following Harsanyi and Selten, as the effect of a “trembling

hand”. More precisely, the payoff from a given action in the perturbed game

is assumed to be a weighted average of the theoretical payoff and a logistic

disturbance. The “weight” placed on the theoretical payoff is determined

by a regression coefficient. This coefficient will be positive if the theory has

predictive power and approaches infinity if subjects are perfect Bayesians;

for any finite value of the coefficient, there will be a positive probability

that “mistakes” are made. The QRE model has two distinct advantages.

First, the probability of mistakes depends on the payoff differences between

actions, so mistakes are less likely when there is a lot at stake. Second, it

is a consistent equilibrium theory in the sense that subjects’ responses take

into account the mistakes of others.

We estimate a structural QRE model and find that subjects are highly

rational in two senses. First, their behavior is predicted by a parsimoniously

parameterized model. Second, their predicted behavior is highly sensitive to

the correct (rational expectations) payoffs. We also test the model specifica-

tion and find that the prediction of the QRE model–that mistakes are more

likely when payoff differences are small–is confirmed by the data. Thus,

both the rationality of the subjects’ behavior and the model’s qualitative

predictions find strong support in the data.

The experiments reported in CGK involve three-person, connected so-

cial networks. Attention is restricted to connected networks since obviously

disconnected agents cannot learn from others. The set of three-person net-

works contains several non-trivial architectures, each of which gives rise to

its own distinctive learning patterns. The GK model suggests that even in

the three-person case the process of social learning in networks can be com-

plicated. The complete set of networks is illustrated in Figure 1, where a

line segment between any two types represents that they are connected and

the arrowhead points to the subject whose action can be observed. Note

that the links need not be symmetric: the fact that  can observe  does not

necessarily imply that  can observe .

[Figure 1 here]

Three representative networks are used in the experimental design: the

complete network, in which each subject observes the actions chosen by all

the other subjects; the circle network, in which each subject observes the

actions chosen by exactly one other subject and each subject is observed by
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someone; and the star network, in which one subject (the center) observes

the other two subjects and the two (peripheral) subjects only observe the

center. We chose these networks because they illustrate the main features of

the complete set of networks. For practical purposes, these three networks

“span” the set of networks–the excluded networks can each be obtained

by adding a single link to one of the three chosen networks–and provide a

reasonable test of the theory.

In the CGK experimental design, there are two equally likely events

(states of nature). Subjects are of two types: informed agents, who receive

a private signal that is correlated with the unknown events, and uninformed

agents, who know the true prior probability distribution of the states but do

not receive a private signal. Each experimental round consists of six decision

turns. At each decision turn, the subject is asked to predict which of the two

events has taken place, basing his forecast on a private signal and the history

of his neighbors’ past decisions. Each experimental session, consisting of 15

rounds, uses a single network, a single information treatment and a single

group of subjects.

The GK model has a natural recursive structure. At the first decision

turn in any game, an agent makes a decision based on his private signal

(if he is informed) or his prior (if his uninformed). After he has made his

decision, he observes the actions chosen by his neighbors and updates his

beliefs. At the second turn, he chooses a new action based on his updated

beliefs, observes the actions chosen by his neighbors at the second turn, and

updates his beliefs again. At the third turn, he chooses a new action based

on his information from the second turn, and so on. Thus, at each turn, his

decision is backward-looking (based on past information).

The QRE has a similar recursive structure that allows us to estimate

the coefficients of the QRE model for each decision turn sequentially. For

each network and treatment, we begin by estimating a QRE using the data

from the first turn. Then we use the estimated coefficient from the first turn

to calculate the theoretical payoffs from the actions at the second turn. In

effect, we are assuming subjects have rational expectations and use the true

mean error rate when interpreting the actions they observe at the first turn.

We then estimate the random-utility model based on the perturbed payoffs

and the observed decisions at the second turn. Continuing in this way, we

estimate the entire QRE for each network and treatment.

The parameter estimates are highly significant and positive, showing

that the theory does help predict the subjects’ behavior. The predictions of

the QRE model are different from those of the basic game-theoretic model

for two reasons: first, because it allows agents to make mistakes and, sec-
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ond, because it assumes that agents take into account the possibility that

others are making mistakes when drawing inferences from their actions. We

also conduct a series of specification tests to see whether the restrictions of

the QRE model are confirmed by the data and the results are strikingly in

conformity with the theory. The decision rules of the QRE model are quali-

tatively very similar to the empirical choice probabilities. In particular, the

data confirms the prediction of the logistic model that errors are more likely

when there is little at stake (payoff differences are small).

Bayesian learning requires an agent to assign the correct probabilities

to a potentially infinite set of states, implicitly constructing in his mind an

infinite hierarchy of beliefs. In the GK model, agents can revise their actions

as more information becomes available. In this setting, the complexity of an

agent’s decision-problem increases over time. At the first date, an agent only

has to interpret his private information. At the second date, he has to inter-

pret his neighbors’ actions and try to infer the private information on which

it was based. At the third date, because of the lack of common knowledge

about actions, an agent is forced to think about his neighbors’ knowledge of

his neighbors’ actions and the private information they revealed.

In the laboratory, lack of common knowledge forces subjects to think

about hierarchies of beliefs. For example, in the circle network in which

subject  observes subject , subject  observes subject , and subject 

observes subject . Subject , in interpreting ’s actions in the preceding

period, has to think about the action  observed  choose in the period

before that, what private information  thought  had, and what effect it

had on ’s actions. Even in this three-person network, the exploitation of

this information requires subtle reasoning because actions are not common

knowledge. The fact that subjects’ decisions increase in difficulty at each

decision turn suggests that mistakes are more likely to occur, other things

being equal, at later stages of the game. We find that the estimated co-

efficients of the QRE model decline at each decision turn, confirming the

hypothesis that complexity leads to mistakes.

The rich data set generated by these experiments has been used to ad-

dress a variety of important and interesting questions about individual and

group behavior. A related paper, CGK, uses the same data set to investigate

behavioral aspects of individual and group behavior, including comparisons

across networks and information treatments. They show that the experi-

mental data exhibit a strong tendency toward herd behavior and a marked

efficiency of information aggregation. The data also suggest that there are

significant and interesting differences in average subject behavior among the

three networks and three information treatments. These differences can be
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explained by differences in the amount of common knowledge and the sym-

metry or asymmetry of the network or the information treatment. In this

paper, we extend the analysis by providing a more systematic comparison

of the theory with the data using structural methods.

In a paper published in this volume, Choi (2012) explores an alternative

behavioral approach that can be brought to the interpretation of our data

set. The econometric specification is based on a type-mixture model in which

subjects randomly draw cognitive types from a common distribution. Each

type corresponds to a different level of cognitive ability and determines how

much information he can usefully process. Choi (2012) assumes further that

the choice of each type is stochastic. This is done by combining the QRE

approach with the cognitive hierachy model (CH-QRE). In equilibrium, the

value of information processing and the cognitive type distribution are en-

dogenously determined. The estimation procedure finds the distribution of

types that maximizes the likelihood of the empirical data. Choi (2012) finds

that the proportion of rational types is very high and their behavior fits

the predictions of the Gale-Kariv model quite well, taking into account the

existence of boundedly rational subjects in the population. Choi (2012)

compares the QRE model and CH-QRE model and discusses their goodness

of fit.

The rest of the paper is organized as follows. The next section describes

the related literatures. Section 3 describes the experimental design and pro-

cedures. Section 4 illustrates the main features of the Gale-Kariv model, and

Section 5 provides the QRE analysis. Section 6 contains some concluding

remarks. Technical details are gathered in Section 7.

2 Related literature

Our paper contributes to the large and growing body of work which studies

the influence of the network structure on economic outcomes. Jackson (2008)

provide a recent survey of the work in economics focusing on social and

economic networks. Goyal (2005) and Jackson (2005) provide excellent, if

now already somewhat dated, surveys of the theoretical work and Kosfeld

(2004) surveys the experimental work. The preceding paper most closely

related to GK is Bala and Goyal (1998). The models differ in two ways.

First, Bala and Goyal (1998) examines the decisions of boundedly rational

agents, who try to extract information from the behavior of the agents they

observe, but without taking account of the fact that those agents also observe

other agents. Second, in Bala and Goyal (1998), agents observe payoffs as
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well as actions. In other words, it is a model of social experimentation rather

than social learning. DeMarzo, Vayanos, and Zwiebel (2003) also assume

boundedly rational agents. Rosenberg, Solan and Vieille (2009) and Mueller-

Frank (2011) also examine the decisions of rational agents and extend the

analysis of GK.

Whether agents can rationally process the information available in a

network is ultimately an empirical question. There is a large empirical lit-

erature which shows evidence of learning in social networks in many areas.

Griliches (1957) first studied the gradual adoption of a new agricultural tech-

nique, and observed that farmers learned from salespersons and from their

neighbors. Among others, Foster and Rosenzweig (1995), Conley and Udry

(2001) and Munshi (2005) examine how agents in developing countries learn

from their social contacts in various contexts. Duflo and Saez (2002, 2003)

use a quasi-experimental setting to show that the information transmission

through social interactions affects retirement-plan decisions. However, these

observational studies are subject to identification problems. Manski (1993,

1995) provides a formal exposition of the issues involved in identifying social

effects. In the laboratory, by contrast, we can control subjects’ neighbor-

hoods and their private information. This provides an opportunity to test

the model’s predictions and, at the same time, study the effects of variables

about which our existing theory has little to say.

The paper also contributes to a large literature on social learning. Baner-

jee (1992) and Bikhchandani, Hirshleifer andWelch (1992), henceforth BHW,

introduced the basic concepts and their work was extended by Smith and

Sørensen (2000). These models show that social learning can easily give rise

to herd behavior or informational cascades, phenomena that have elicited

particular interest and can arise in a wide variety of social and economic

circumstances. This is an important result and it helps us understand the

basis for uniformity of social behavior. At the same time, these models are

special in several respects. They assume that each agent makes a once-in-

a-lifetime decision and the decisions are made sequentially. Further, when

each agent makes his decision, he observes the decisions of all the agents

who have preceded him. In other words, it is a game of perfect information.

Anderson and Holt (1997) investigate the social learning model of BHW

experimentally and replicate informational cascades in the laboratory. Fol-

lowing Anderson and Holt (1997), a number of experimental papers ana-

lyzed different aspects of social learning. Among others, Hung and Plott

(2001), Kübler and Weizsäcker (2004), Çelen and Kariv (2004, 2005), and

Goeree, McKelvey, Palfrey, and Rogers (2007) extend Anderson and Holt

(1997) to investigate other possible explanations for informational cascades.
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Weizsäcker (2010) presents a meta data analysis of 13 different experiments

of the BHWmodel. This large and growing body of experimental work in the

social learning literature has also successfully utilized QRE models. Note

that the experiment is different from the standard social-learning experi-

ments paradigm of Anderson and Holt (1997) in two important ways. First,

subjects can only observe the actions of subjects to whom they are connected

by a social network. Thus, actions are not public information and subjects

can observe the actions of some, but not necessarily all, of their neighbors.

Second, subjects make decisions simultaneously, rather than sequentially,

and can revise their decisions rather than making a single, irreversible deci-

sion.

3 Design and procedures

The experiment was run at the Experimental Economics Laboratory of the

Center for Experimental Social Sciences (C.E.S.S.) at New York University.

The subjects in this experiment were recruited from undergraduate classes

at New York University and had no previous experience in network or social-

learning experiments. After subjects read the instructions, the instructions

were read aloud by an experimental administrator.1 Sample experimental

instructions are reproduced in Online Appendix I.2 A $5 participation fee

and subsequent earnings for correct decisions were paid in private at the

end of the experimental session. Throughout the experiment we ensured

anonymity and effective isolation of subjects in order to minimize any inter-

personal influences that could stimulate uniformity of behavior.3

We studied three connected, three-person network structures (the com-

plete, star, and circle networks) and three different information treatments

(full, high, and low information). The networks are illustrated in Figure 1

above. The network structure and the information treatment were held con-

stant throughout a given experimental session. In each session, the network

positions were labeled , , or . A third of the subjects were designated

type- participants, one third type- participants and one third type-

participants. The subject’s type, , , or , remained constant throughout

1At the end of the first round subjects were asked if there were any misunderstandings.

No subject reported any difficulty understanding the procedures or using the computer

program.
2Online Appendix I: http://emlab.berkeley.edu/~kariv/CGK_I_A1.pdf.
3Subjects’ work-stations were isolated by cubicles making it impossible for participants

to observe other screens or to communicate. At the end of a session, participants were

paid in private according to the number of their work-stations.
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the session. Each session consisted of 15 independent rounds and each round

consisted of six decision turns.

The following process was repeated in all 15 rounds. Each round started

with the computer randomly forming three-person networks by selecting one

subject of type , one of type  and one of type . The networks formed

in each round depended solely upon chance and were independent of the

networks formed in any of the other rounds. The computer also chose one

of two equally probable urns, labeled  and  , for each network and each

round. Urn  contained 2 red balls, and 1 white ball. Urn  contained 1

red ball and 2 white balls. The urn remained constant throughout the round.

The choice of urn was independent across networks and across rounds. In

each decision turn, subjects were asked to predict which of the two urns had

been chosen in that round.

To help subjects determine which urn had been selected, with probabil-

ity  = 1 23 13 each subject was allowed to observe one ball, drawn at

random with replacement, from the urn. Before subjects were called to make

their first decision, each was informed whether the computer had drawn a

ball for him and whether it was white or red. After everyone had seen his

draw, each subject was asked to input the letter of the urn,  or , that

he thought was most likely to have been chosen by the computer. When

all subjects in the session had made a decision, each subject observed the

choices of the subjects to whom he was connected in his network. This com-

pleted the first of six decision turns in a round. Next, subjects were asked

to make their second decision, without observing a new draw from the urn.

This process was repeated until six decision turns were completed. At each

date, the information available to subjects included the actions they had

observed at every previous date.

When the first round ended, the computer informed subjects which urn

had actually been chosen and their individual earnings. Earnings at each

round were determined as follows: at the end of the round, the computer

randomly selected one of the six decision turns. Everyone whose choice in

this decision turn matched the letter of the urn that was actually used earned

$2. All others earned nothing. This procedure ensured that at each decision

turn subjects would make their best guess as to which urn had been chosen.

After subjects learned the true urn and their earnings, the second round

started by having the computer randomly forming new groups of subjects

in networks and selecting an urn for each group. This process was repeated

until all the 15 rounds were completed.

The experiments provide us with a rich set of data. Each of the nine

sessions (a single network and a single information treatment) comprised
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18 subjects (or in two cases, 15 subjects). A session consists of 15 rounds

and each round consists of six decisions. In each round, the subjects were

randomly formed into six (respectively, five) networks. So for each session

we have observations on 6 × 15 = 90 (respectively, 5 × 15 = 75) different

rounds and a total of 18 × 90 = 1520 (respectively 18 × 75 = 1330) indi-

vidual decisions. More importantly, we use a variety of different network

architectures and information treatments to generate a variety of different

outcomes which are representative of the theory. The variety of different

outcomes provides a serious test of the ability of a structural econometric

model based on the theory to interpret the data.

4 Some theory

In this section we discuss briefly the theoretical implications of the model

tested in the laboratory. GK provide an extensive analysis of a general

version of the model.

4.1 The game

A network consists of three agents indexed by  = . Each agent 

has a set of neighbors, that is, agents whose actions he can observe. Let

 denote the neighbors for agent . The neighborhoods {  }
completely define a three-person network. These networks are illustrated in

Figure 1 above.

There are two equally likely events (states of nature) denoted by  =

−1 1. With probability  an agent is informed and receives a private signal
at the beginning of the game. Signals take two values  = −1 1 and the
probability that the signal  equals the true state  is 23. By convention,

we assume an uninformed agent receives the signal  = 0 in each state. The

agent’s signals are assumed to be independently distributed conditional on

the true state.

Time is divided into a finite set of dates indexed by  = 1 2   . At

the beginning of each date , agents are simultaneously asked to guess the

true state. Agent ’s action at date  is denoted by  = −1 1. Agent 
receives a positive payoff if his action  equals the true state  and zero

otherwise. Then each agent  observes the actions  chosen by the agents

 ∈  and updates his beliefs accordingly. Thus, agent ’s information set

at date  consists of his private signal, if he observed one, and the history of
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neighbors’ actions

 =
n
 ()

−1
=1 |  ∈ 

o


4.2 Equilibrium

We restrict attention to equilibria in which myopic behavior is optimal, that

is, it is rational for agents in equilibrium to choose the actions that maximize

their short-run payoffs at each date . There are several reasons for focusing

on these equilibria. First, we want to stay close to the existing social-learning

literature, in which myopic behavior is usually optimal. Secondly, in the

absence of forward-looking, strategic considerations, the equilibrium has a

recursive structure that simplifies the theoretical and econometric analysis.

Thirdly, our econometric results strongly suggest that myopic behavior is

consistent with the experimental data. Finally, a careful analysis shows

that equilibrium is fully revealing under the tie-breaking assumption that

agents switch actions whenever they are indifferent between choosing the

same action in the next period and switching to the other action. Thus,

there is no incentive to sacrifice short-run payoffs in any period in order to

influence the future play of the game.

Because of the symmetry of the example and the fact that signals take

only discrete values, an agent is often indifferent between choosing  = −1
and  = 1, in which case some tie-breaking rule has to be chosen. It is

important to note that the nature of the equilibrium play depends on the

tie-breaking assumption. Here we assume that, whenever an agent has no

signal, he chooses each action with equal probability and, when an agent

is indifferent between following his own signal and following someone else’s

choice, he follows his own signal. One may assume different tie-breaking

rules, but our experimental data supports this specification and it also eases

the exposition and analysis. The other advantage of this approach is that

agents’ actions are also optimal given perturbed beliefs that take into ac-

count the possibility that others make mistakes. We will point out and dis-

cuss alternatives whenever our tie-breaking assumption becomes relevant.

Note, however, that for the purpose of estimating the QRE model, the tie-

breaking rule is irrelevant because the “trembling hand” ensures that ties

are zero probability events.

GK describe agents’ behavior formally and discuss the essential elements

of the weak perfect Bayesian equilibrium, so we skip the model development

and analysis and instead illustrate how the dynamics of actions and learning

differ across networks and information structures. In order to get a sense

of the challenges of substantive rationality in different settings, as well as
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the implications for equilibrium behavior of the different networks and in-

formation treatments, we consider a series of theoretical examples of the

underlying game. We begin with the complete network.

4.3 The complete network

A network is complete if each agent can observe the actions of all the other

agents in the network. Otherwise the network is called incomplete. There

is a unique complete network, in which  = {},  = {}, and
 = {}. The experimental design uses three information treatments,
corresponding to different values of the probability of being informed. We

refer to these as full information ( = 1), high information ( = 23), and

low information ( = 13), respectively.

Full-information (q =1) When every agent is informed, the equilibrium

behavior is particularly simple and closely resembles the herd behavior found

in BHW. At the first date, each agent’s information consists of his private

signal . The true state is more likely to be  so agent  chooses 1 = .

At the second date, each agent’s first-period action has revealed his signal

and so the signals are common knowledge. Since there must be at least

two signals with the same value, from date 2 onwards all agents agree on

the most likely state and will choose the same action at date 2 and every

following period.

So, in this case, the equilibrium behavior is very simple. An informa-

tional cascade at date 2 causes a herd that continues until the end of the

game. Further, the herd chooses the efficient action, based on the sum of

agents’ information, unlike the model of BHW. Here a rule of thumb that

says “follow the majority” would lead to both a rational and efficient out-

come.

High-information (q = 23) Equilibrium behavior is slightly more com-

plicated when there is high information, because agents have to take account

of the possibility that some other agents are uninformed. In this case, in-

formation revelation may continue after date 2. Suppose, for example, that

agent  receives the signal  = 1 agent  receives the signal  = −1,
and agent  is uninformed  = 0. At date 2, agent  observes that the ac-

tions of agents  and  at date 1 do not match, so he is indifferent between

the two actions. If agent  takes action −1 at date 1 and switches to action
1 at date 2, he reveals that he is uninformed. At date 2, agent  observes

that  and  chose 1 in the previous period, so he switches to action −1 at
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date 2. This can be confirmed with a simple calculation using Bayes’ rule.

However, at date 3, he realizes that  is uninformed and since he is still not

sure whether  is informed ( might have chosen −1 two times in a row by
chance), it is rational for him to switch back to 1.

This example shows that the possibility of uninformed agents changes

the qualitative features of the equilibrium. First, we no longer necessarily

get a herd at date 2 and learning continues after date 2. Secondly, learning

continues even if there is no change in an agent’s actions: the longer 

persists in choosing action −1, the more confident  is that  is informed;

but there is always some positive probability that  is uninformed and chose

consistently by accident. Note that this aspect of the equilibrium depends

on our tie-breaking rule. If the uninformed agent chooses the same action as

last period when he is indifferent, then the distribution of signals assumed

above implies a herd on action −1 starts at date 2.
Unlike the full-information case, the dynamics of actions and beliefs in

the high-information example above are complex and do not correspond to

any simple heuristics. The greater complexity of behavior stems from the

fact that agents have different amounts of information and the ability to

revise decisions reveals this asymmetry over time.

Low-information (q =13) Qualitatively, the low-information case is

like the high information case. The possible existence of uninformed agents

allows learning to continue after date 2. The main difference lies in the fact

that agents think it is much less likely that their opponents will be informed

and hence have less incentive to imitate them. Suppose, for example, that

all the agents are informed and that  = 1,  = 1, and  = −1. A
simple calculation shows that agent  will continue to choose action −1 at
date 2, because he thinks it quite likely that  and  are uninformed. At

date 3, agent  observes that  and  chose action 1 again at date 2, which

reinforces ’s belief that  and  are informed. So here learning contin-

ues but the actions do not change. If the game continues long enough ( is

large)  will eventually switch. This conclusion depends on our tie-breaking

rule that indifferent uninformed agents randomize.

4.4 The star network

The first incomplete network we examine is the star, in which  = {},
 = {}, and  = {}. The most interesting feature of this network is
its asymmetry: agent  can observe both  and  and thus has more infor-

mation than either. In fact, agent  is informed about the entire history of
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actions that have already been taken, whereas  and  have imperfect in-

formation. So here we can see the impact of both lack of common knowledge

and asymmetry on the dynamics of social learning.

Because of the imperfection of information, learning continues after date

2 even in the full information case. Suppose then that there is full informa-

tion ( = 1) and suppose the realizations of the signals are  = 1,  = 1,

and  = −1. Now, at date 2, agent  only observes that his action at

date 1 does not match ’s action, so our tie-breaking assumption becomes

relevant. The tie-breaking rule requires that agent  continue to choose

action −1 at date 2. Agent , on the other hand, sees that agent  has

chosen the same action and this merely increases ’s belief that the true

state is 1. From agent ’s perspective, agent ’s signal cancels out agent

’s, so agent ’s belief about the true state is unchanged. At date 2, each

agent will make the same choice as at date 1.

Although the actions do not change between dates 1 and 2, information

is revealed. In particular, agent  knows that since  did not change his

action at date 2,  must have observed  choose 1 at date 1. Thus,  knows

that  and  both received the signal 1. Thus, it is optimal for  to switch

to action 1 at date 3. We have again reached an absorbing state.

This example shows both the complexity of behavior under full informa-

tion and the subtlety of the reasoning that may be required to draw correct

inferences from the observed actions. Here, agent  serves as a commu-

nication channel between agents  and  as well as a potential source of

private information. It can be shown by example that actions and beliefs

may continue to evolve after the third date.

4.5 The circle network

The second incomplete network is the circle, in which each agent observes

one other agent:  = {},  = {}, and  = {}. In the circle,
every agent has imperfect information about the history of actions chosen

in the game. Further, each agent is forced to make inferences about what

the others have seen. In this network, the equilibrium reasoning required

to identify the optimal strategy is subtle, but the equilibrium strategy itself

is quite simple: an informed agent should always follow his own signal and

an uninformed agent should imitate the one other agent he can observe.

This reminds us that substantive rationality can be simpler than procedural

rationality. It does not imply that behavioral dynamics are simple. For

example, if all agents are uninformed, it may take a long time for the agents

to discover this fact. Both beliefs and actions will continue to evolve until
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this fact is revealed, after which our tie-breaking rule implies that the agents’

behavior is random.

4.6 Summary

The preceding examples have illustrated several features of the theory:

• In spite of the simplicity of the game, the inferences agents must draw
in order to make rational decisions are quite subtle. In particular,

because of the lack of common knowledge, agents have to think about

a large number of possible situations that are consistent with their

limited information.

• Significant differences can be identified in the equilibrium behavior of

agents in different networks. We saw that in the complete network

learning stops almost immediately if there is full information ( = 1),

whereas the existence of asymmetrically informed agents (  1) is

consistent with a longer period of learning and more complex strate-

gies.

• Similarly, different information treatments lead to different dynamics
of beliefs and actions. For example, comparing the full-information

and high-information treatments, we see that less time is required for

beliefs and actions to converge when information is full ( = 1).

We have focused on examples that reveal some of the unexpected fea-

tures of the model. One must remember, however, that in many situations

the outcome is much simpler. As a general rule, we can say that initial di-

versity of private information causes diversity of actions but that, as agents

learn from each other, diversity is replaced by uniformity (barring cases of

indifference). Convergence to a uniform action tends to be quite rapid, typ-

ically occurring within two to three periods. Thus, what happens in those

first few periods is important for the determination of the outcome. Note,

however, that the converse of the convergence result – if all agents choose

the same action, they have reached an absorbing state and will continue to

choose that action at every subsequent date – is not true in general.
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5 Quantal Response Equilibrium (QRE)

5.1 Specification

The potential complexity of equilibrium strategies and the complexity of

the reasoning typically required for substantive rationality confirm the im-

portance of verifying the relevance of the theory empirically. To this end,

we extend the Gale-Kariv model to allow for the possibility of errors in

the behavior of subjects, which leads us to the QRE version of the model.

The QRE model assumes that agents receive idiosyncratic preference shocks.

Formally, for agent  at turn  = 1 2   , the random utility from a binary

action  ∈ {−1 1} is given by


 = 


 +  for  ∈ {−11} ,

where  represents an observed (theoretical) expected payoff from action

 and coefficient  parametrizes the sensitivity of choices to such observed

expected payoffs. The random variable  represents agent ’s preference

shock for action , which is assumed to be privately observed only by agent

. The choice probability for action  ∈ {−11}, conditional on agent ’s
information set  at turn , is given by

Pr ( = 1|) = Pr
©
1  −1

ª
= Pr

©
−1 − 1  

ª
,

where  := 1 − −1 denotes the difference in expected payoffs between

action 1 and −1 given information set

 =
n
 ()

−1
=1

|  ∈ 

o


For tractability, we adopt a parametric version of the QRE model called

the logit-equilibrium model where  is assumed to be independently and

identically distributed with cumulative distribution  () = exp (−−) for
any  ∈ {−11}, each agent  and all  = 1 2   .4 The assumption about
error structures implies no serial correlation of errors across turns for an

agent and no correlation of errors across agents.

In computing the expected payoffs at each turn, an agent uses different

levels of hierarchies of beliefs to infer his neighbors’ signals through their

observed actions, depending on the structure of networks. The hierarchies

4The variance of this distribution is normalized to be 26. It is well known that beta

coefficients and the variance in the error term can not be separately identified.
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of beliefs are mainly grouped into three categories: beliefs about () his

neighbor’s private signal, () his neighbor’s trembling in actions, and ()

his neighbor’s neighbor’s actions at previous turns if hidden from the subject.

To see how such hierarchies of beliefs are utilized in updating beliefs, consider

a type- agent, for  ∈ {}, with neighbors  ⊂ {}. The
posterior belief that the true state is  = 1 conditional on  is given, via

Bayes’ rule, by

Pr ( = 1|) = Pr (| = 1)
Pr (| = 1) + Pr (| = −1)

=
Pr (| = 1)

Q−1
=1

Q
∈

Pr (|  = 1)P
 Pr (|)

Q−1
=1

Q
∈

Pr (| )
,

where the second equality comes from the assumptions on the distributions

of errors and signals. The formula says that an agent processes information

by forming a belief about new observation at each turn given the information

set available up to that turn as well as conditional on the state of the world.

In the QRE model, a rational agent must predict his neighbors’ choice

probabilities correctly to calculate the posterior probabilities correctly. In

effect, we assume that agents have rational expectations about their neigh-

bors’ true error rates (determined by the true value of beta) and use the

estimated beta coefficients to approximate the true beta. Thus agents use

the estimated betas from the prior decision turn − 1 to update their pos-
terior beliefs and expected payoffs at any decision turn   1. These in

turn determine the choice probabilities via a logistic response function. The

logit equilibrium can thus be summarized by a choice probability function

following a binomial logit distribution :

Pr ( = 1|) = 1

1 + exp (−)


where  is the action of agent  at date ,  is agent ’s information set

at date ,  is a coefficient, and  is the difference between the expected

payoffs from actions  = 1 and  = −1, respectively. The choice of action
becomes purely random as  goes to zero, whereas the action with the

higher expected payoff is chosen for sure as  goes to the infinity. For

positive values of , the choice probability is increasing in .

5.2 Estimation

We use repeatedly the standard maximum likelihood (ML) method for the

estimation of the logistic random-utility models. The data employed to im-
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plement the ML estimation for betas at each turn are the current actions

and the implied expected payoffs for the current period. Taking into account

the influence of the networks and information treatments on the calculation

of expected payoffs, we pool homogeneous data at each turn to reduce sam-

pling errors in the estimation of betas. At the first decision turn, in any

network and information treatment, decisions are based only on private in-

formation. So all the data from the first turn of the experiment were pooled

to provide a unique beta estimate.

The information treatment and the number of neighbors matter in the

computation of expected payoffs at the second turn. So we pooled the

data of subjects who observed the same number of neighbors in the same

information treatment to estimate a set of second-turn beta estimates: betas

were estimated separately for each information treatment and for each of

two groups of subjects, () all subjects in the complete network and type-

subjects in the star network and () all subjects in the circle network and

type- and type- subjects in the star network. From the third turn on, we

estimate betas separately for each network and information treatment and,

in the case of the star network, distinguished the betas for the center (type

) and the periphery (types  and ).

We can illustrate the recursive estimation procedure with reference to

the circle network. At the first decision turn, we calculate the difference

in expected payoffs, 1, conditional on the private signals for  = .

Then the beta for the first decision turn is estimated via the ML logit esti-

mation. Then the beta estimate for the first turn, b1, is used to determine
the choice probabilities of each subject’s neighbor , Pr (1|1), for each
possible 1. These choice probabilities, together with Bayes’ rule, are used

to calculate the posterior probability that the state is  = 1 conditional

on subject ’s information set, Pr ( = 1|2), which in turn determines the
difference in expected payoffs, 2(b1). Analogously, the beta estimate for
the second turn, b2, can be obtained. Note that the estimation procedure
follows precisely each subject’s inference problem in the theory and it be-

comes more involved at later decision turns. At the third turn, the incom-

plete structure of the circle network requires each subject to make inferences

about the behavior of his neighbor’s neighbor . Thus, the beta estimates

for the first and second turns are used to determine the choice probabilities

of his neighbor  at the first and second turn, Pr (1|1) and Pr (2|2),
and the choice probabilities of his neighbor’s neighbor  at the first turn,

Pr (1|1). Again, together with Bayes’ rule, these probabilities are used
to compute the posterior probabilities and thus the difference in expected

payoffs at the third turn, 3(b1 b2), which serves as the independent vari-
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able in the estimation of the beta for the third turn. Continuing in this

manner, we can estimate the entire logit equilibrium models for the circle

network and each information treatment. The procedure is analogous for

the other networks. The details for the inference problem in the QRE model

for each network are relegated to Section 7.

5.3 Results

Table 1 below presents the results of the ML logit equilibrium estimation.

Standard errors are given in parentheses. All the beta estimates are signif-

icantly positive. This implies that, under the specification of the logistic

distribution, the behavior of subjects is not entirely random and the model

of logit equilibrium has some predictive power in interpreting their behavior

in the laboratory. Although it seems difficult to identify any marked behav-

ioral differences of beta estimates across networks and information treat-

ments, we found at least one apparent cross-sectional feature of the beta

series: for each decision turn up to and including the fifth, the estimated

beta coefficients from the circle network are monotonic with respect to in-

formation treatment. That is, for a fixed decision turn  the beta coefficient

is lowest for the full-information treatment, higher for the high-information

treatment, and highest for the low information treatment.

[Table 1 here]

Figure 2 provides a graphical re-presentation of the beta series in the

complete, star (type  and types  and ) and circle networks. Figure 2

indicates that subjects in the circle network are more sensitive to the dif-

ference in (theoretical) expected payoffs in the high and low information

treatments. Recall that, in this network, the reasoning required to iden-

tify optimal strategies is complex, but the strategies themselves are quite

simple: an informed subject should always follow his own signal and an un-

informed subject should imitate the one other subject he can observe. We

conclude that, overall, subjects were more likely to follow these strategies

in lower information treatments. However, the differences may be explained

by compositional differences resulting from the changes in the proportion of

informed and uniformed subjects.

[Figure 2 here]

Although the results of the logit analyses show some power in predicting

the behavior observed in the laboratory, further investigation is needed to
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determine whether this parametric specification of QRE fits the data well.

In particular, the parametric specification implies that the probability dis-

tribution of choices has the familiar logistic shape and that subjects are

more likely to make “mistakes” when the differences in expected payoffs are

small. To test the predictions of the model, we first perform a series of graph-

ical comparisons between predicted logit choice probabilities and empirical

choice probabilities. The predicted logit choice probabilities across networks

and treatments are graphed using the corresponding beta estimates. We use

the method of nonparametric regression estimation to represent the empir-

ical choice probabilities. Specifically, define  = 1{=1}, where 1{·} is an
indicator function. Assume that the true relation between  and  may

be expressed in terms of the conditional moment [|] =  (), where

 : R→ [0 1]. Then given a data set {( )}=1we employ the Nadaraya-
Watson estimator with a Gaussian kernel function for the choice probability

associated with each of the parametric cases. The Nadaraya-Watson esti-

mator for  (·) is given by

b () = " X
=1



µ
 − 



¶


#


X
=1



µ
 − 



¶


where  is a bandwidth and  (·) is a kernel function. The Gaussian kernel
function is given by  () = 1√

2
exp

¡−1
2
2
¢
for  ∈ R. Note that we

construct the data of expected payoffs , for  ≥ 2, using the logistic

distribution specification. The bandwidth is chosen to be −15.5 In all

cases the selected bandwidths provided properly smoothed kernel regression

estimates.

Online Appendix II presents a set of comparisons between these two

choice probabilities.6 In each of the figures, a solid line represents the non-

parametrically estimated choice probability of action 1 and a dashed line

represents the parametrically estimated logit choice probability for the same

action. A beta estimate and a selected bandwidth are reported at the top

of each panel. These graphical comparisons presents a rough indication for

5The optimal bandwidth in the nonparametric kernel regression with a single indepen-

dent variable is proportional to −15. We tried several methods of automatic bandwidth-
selection such as Generalized Cross Validation. However, the bandwidth yielded by those

methods resulted in a kernel regression estimate that was too irregular to be plausible. It

is interesting to note that the literature of bandwidth selection in nonparametric regres-

sion indicates that automatic bandwidth selection is not always preferable to graphical

methods with a trial and error approach. See Pagan and Ullah (1999, p.120).
6Online Appendix II: http://emlab.berkeley.edu/~kariv/CGK_I_A2.pdf. The figures

are difficult to see in the small black and white format required in the printed version.
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goodness of fit. Somewhat surprisingly, the fits are generally good except

for the cases of type- subjects in the star network with full information.

In particular, the empirical data confirm the main prediction of the QRE

model that errors are more likely when payoff differences are small. We

investigated the irregularity in the case of type- subjects in the star net-

work with full information and found it was caused by a combination of the

small-sample problem and one subject’s “irrational” behavior.7

The graphical comparison is highly suggestive but a formal test is more

convincing, so we performed specification tests for the functional-form as-

sumption of the logistic random-utility model using Zheng’s (1996) test.

Given the unknown relation between  and  for any decision turn , we

test the null hypothesis that the logit equilibrium model is correct:

0 : Pr
£
E (|) = 

¡
0

¢¤
= 1 for some 0 ∈ R,

where  () = 1 (1 + exp (−)). The alternative hypothesis is that,

without a specific alternative model, the null is false:

1 : Pr [E (|) =  ()]  1 for all  ∈ R.

Note that the alternative includes all the possible departures from the null

model. The test statistic  is given by

 =

P
=1

P
=1
 6=


³
−


´
nP

=1

P
 6= 22
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−

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2


o12 
where (·) is a kernel function,  is a bandwidth, and  = −(b) with
beta estimate b under the null. Under some mild conditions, the asymptotic
distribution of  under the null hypothesis is the standard normal (Theorem

1 in Zheng, 1996).

The results of the series of specification tests are reported in Table 2.

The bandwidth is selected to be −15, where  is equal to 1. The test

results in Table 2 confirm the previous graphical comparisons. In most

of the cases -values (reported in parentheses) are fairly high and support

strongly the parametric specifications. As seen in the graphs, we reject the

null in the case of type- subjects in the star network with full information

7The subject played the following strategy (1 2 3 4 5 6) = (1 0 1 0 1 1) in 12

out of 15 rounds. Further, in 9 rounds out of 12, the optimal strategy required the subject

to choose action 0 for all decision-turns. Most of the time, he did not even coordinate

with his own signal.
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at decision turns  = 3 5 6 with a 5% significance level. Interestingly, we

also reject the null at the third turn, in the high-information, circle-network

treatment, with a 5% significance level.8

[Table 2 here]

6 Conclusion

Many economic decision problems involve incomplete and asymmetric in-

formation. That is, agents are uncertain about some underlying decision-

relevant event and the information about it is shared asymmetrically among

them. Consequently, agents have a very strong incentive to learn by observ-

ing the behavior of others. In social settings, agents are part of a social net-

work and can only observe the actions of agents to whom they are connected

through the network. Thus, networks are natural tools for understanding

the social learning phenomenon.

Whether agents can rationally process the information available in a

network is ultimately an empirical question. To test the relevance of the

theory, we have undertaken an experimental investigation of learning in

three-person networks and focus on using the theoretical framework of GK

to interpret the data generated by the experiments. We find that the theory,

modified to include the possibility of errors, does a good job of interpreting

the subjects’ behavior. Despite the complexity and sophistication of the

decision-making required by the theory, the decision rules of the QRE model

appear to be qualitatively very similar to the data. The series of specification

tests we conducted to see whether the restrictions of the QRE model are

confirmed by the data and the results are strikingly in conformity with the

theory. This provides strong support for the use of theoretical models as the

basis for structural estimation and the use of QRE to interpret experimental

data.

The results that we have developed provide a foundation for future theo-

retical and experimental research and the techniques can be applied to other

setups. For example, we can apply our theoretical model to random graphs,

as long as connectedness is satisfied, and it could also be applied to dy-

namic graphs where the set of neighbors observed changes over time. Thus,

the experimental design offers an elegant setting for further experimental

8To investigate whether the test results are sensitive to the choice of bandwidth, we

also calculated the test statistics when  is equal to 05 and 2. On the whole, we obtained

the quite similar results with a small variation.
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investigation of social learning in networks. Perhaps, the most important

subject for future research is to identify the impact of network architecture

on the efficiency and dynamics of social learning: How does architecture af-

fect the dynamics of social learning? What architectures facilitate or hinder

the choice of an optimal action? Obviously, different network architectures

and information structures may lead to different outcomes.

7 Technical appendix

7.1 The Complete Network

We only consider the inference problem of a type- agent, whose information

set at  = 1 2   is given by  = { (  )=1−1}, because
of the symmetry of the complete network. Due to the common knowledge of

the history of play, a type- agent only needs to infer his neighbors’ private

signals while considering the possibility of their errors. Thus, for instance,

the belief about type ’s action at turn  conditional on  and state  is

decomposed into

Pr (| ) = Pr
³
| {  }−1=1  

´
=
X

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³
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´
× Pr

³
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X
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| {  }−2=1  −1 

´


where Pr (|) contains different values of  in the different summands.
Note that the first term in each summand represents type ’s choice prob-

ability, which is independent of the state of the world, and the second term

represents type ’s belief about type ’s signal conditional on relevant in-

formation and state . The second term in each summand can be further

decomposed into

Pr
³
| {  }−2=1  −1 

´
=

Pr (−1|−1) Pr
³
| {  }−3=1  −2 

´
P

0

Pr
¡
−1| 0−1

¢
Pr
³
0| {  }−3=1  −2 

´ 
for  ≥ 3.
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7.2 The Star Network

The interaction between heterogeneous agents in the star network has also

a salient feature in updating beliefs. First, consider a type- agent who

has the perfect knowledge over the history of play. Just like agents in the

complete network, a type- agent only needs to infer his neighbors’ signals,

taking into account the probability of trembles. However, the formation of

beliefs is different because the peripheral agents can only interact through

the type- agent. For any  ≥ 2,

Pr (| ) = Pr
³
| { }−1=1

 
´

=
X


Pr
³
| { }−1=1

 
´
Pr
³
| { }−1=1

 
´

=
X


Pr (|) Pr
³
| { }−2=1

 −1 
´


Consider the inference problem of an agent on the periphery, for example,

type . Just like agents in the circle network, a type- agent should consider

the impact of a type ’s unobserved actions on a type ’s observed actions.

But, the nature of inference is also different because his action does not

directly influence a type ’s decision problem: for any  ≥ 2,

Pr (| ) = Pr
³
| { }−1=1

 
´

=
X

()
−1
=1

Pr (|) Pr
³
| {  }−2=1

 −1 
´

×
−1Y
=1

Pr
³
| { }−1=1

 
´
.
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7.3 The Circle Network

Type’s information set at turn  is given by  = { ( )=1−1}.
The inference problem becomes more interesting for  ≥ 3 due to the lack
of common knowledge of the history: a type- agent needs to consider type

’s action in processing information from type ’s actions. For any  ≥ 2,

Pr (| ) = Pr
³
| { }−2=1

 −1 
´

=
X

 ()
−1
=1

Pr
³
| {  }−2=1

 −1 −1 
´

× Pr
³
| {  }−2=1

 −1 −1 
´

×
−1Y
=1

Pr
³
| { }−2=1

 −1 {}−1=1  
´

=
X

 ()
−1
=1

Pr (|) Pr
³
| { }−2=1

 −1 
´

×
−1Y
=1

Pr
³
| { }−1=1

 
´


Note that type ’s belief about the new observation entails beliefs about

type ’s actions at all previous turns because they affect beliefs about type

’s signal and trembling. Those beliefs are further decomposed into

Pr
³
| { }−1=1

 
´

=
X


Pr (|) Pr
³
 | {}−1=1

 {}−2=1
 
´

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Figure 1: Three-person connected networks 
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A line segment between any two types represents that they are connected and the arrowhead points to the agent whose action can be 
observed. 



Figure 2: The beta time-series in the each network
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Full-information
Turn Complete Star (type A ) Star (types B & C ) Circle 

2
3 2.73 (0.28) 1.23 (0.27) 3.93 (0.55) 2.19 (0.26)
4 2.60 (0.27) 2.17 (0.39) 3.06 (0.42) 1.84 (0.22)
5 2.58 (0.27) 1.31 (0.27) 2.90 (0.38) 2.23 (0.25)
6 2.74 (0.28) 1.29 (0.26) 3.17 (0.42) 2.34 (0.26)

# of obs. 270 90 180 270

High-information
Turn Complete Star (type A ) Star (types B & C ) Circle 

2
3 2.56 (0.31) 3.12 (0.66) 2.93 (0.41) 2.72 (0.32)
4 2.59 (0.31) 2.85 (0.59) 2.09 (0.29) 2.20 (0.26)
5 2.59 (0.31) 1.94 (0.41) 2.92 (0.39) 2.71 (0.31)
6 2.33 (0.28) 2.17 (0.44) 1.50 (0.23) 1.74 (0.21)

# of obs. 225 90 180 270

Low-information
Turn Complete Star (type A ) Star (types B & C ) Circle 

1
2 2.98 (0.40) 2.42 (0.59) 2.70 (0.48) 4.30 (0.54)
3 2.21 (0.32) 3.14 (0.66) 2.73 (0.45) 3.42 (0.44)
4 2.11 (0.30) 1.56 (0.47) 2.14 (0.39) 3.38 (0.43)
5 2.73 (0.34) 2.97 (0.63) 2.13 (0.38) 2.53 (0.34)
6 270 90 180 225

# of obs. 270 90 180 225

Standard errors are given in parentheses.
# of obs. - the number of individual decisions per type and turn. 

Table 1: ML estimates.

Turn 1 - 4.171 (0.160)

2.42 (0.27) 2.84 (0.25)

2.83 (0.35) 3.19 (0.36)

2.43 (0.22) 2.78 (0.28)



Full-information
Turn Complete Star (type A ) Star (types B & C ) Circle 

2
3 -0.46 (0.644) 3.37 (0.001)* -0.08 (0.935) -0.13 (0.896)
4 0.01 (0.993) 1.42 (0.154) 0.94 (0.345) 0.73 (0.466)
5 -0.67 (0.504) 4.53 (0.000)* 0.14 (0.888) -0.68 (0.494)
6 -0.31 (0.756) 6.96 (0.000)* -0.62 (0.538) -0.78 (0.435)

High-information
Turn Complete Star (type A ) Star (types B & C ) Circle 

2
3 -0.55 (0.580) -0.21 (0.837) -0.86 (0.388) 2.10 (0.036)*
4 -0.32 (0.746) -0.34 (0.737) -0.63 (0.531) -0.47 (0.638) 
5 0.72 (0.475) 0.11 (0.909) -0.18 (0.856) 1.01 (0.312) 
6 -0.40 (0.693) -0.35 (0.727) -0.03 (0.979) -0.02 (0.986)

Low-information
Turn Complete Star (type A ) Star (types B & C ) Circle 

2
3 -0.91 (0.363) 0.27 (0.784) -0.59 (0.557) 1.69 (0.091)**
4 -0.91 (0.364) 0.98 (0.329) -0.94 (0.350) 1.87 (0.061)**
5 -0.09 (0.929) 0.14 (0.886) -0.12 (0.908) -0.12 (0.902)  
6 -0.14 (0.886) -0.80 (0.424) -0.74 (0.459) -0.37 (0.714)

* The null hypothesis can be rejected with 5% significance level.
** The null hypothesis can be rejected with 10% significance level.

Table 2: Specification tests

0.83 (0.409) -0.47 (0.640)

-0.94 (0.345) 0.33 (0.743)

-1.12 (0.264) 0.94 (0.346)


