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1. Identi�cation

At the start of this course we considered what restrictions, embodied in an econometric model,
could allow identi�cation of interesting features of the data generating process. These two
lectures return to this fundamental topic.
Consider some feature of a data generating process, for example the value of a coe¢ cient in

a linear equation of an econometric model. Di¤erent data generating processes can imply the
same probability distribution for outcomes given covariates. Data generating processes with this
property are said to be observationally equivalent.

De�nition 1.1. A feature of a data generating process, S, is identi�able if it takes the same
value in all data generating processes that are observationally equivalent to S.

If this identi�cation property does not hold then even with complete knowledge of the prob-
ability distribution of outcomes given covariates we could not determine the value of the feature
of interest of the data generating process. Of course �nite amounts of data only ever give us
incomplete knowledge of this probability distribution.
If only one value of a feature of a data generating process is concordant with a joint probability

distribution of outcomes given covariates then the value of that feature in the data generating
process is identi�ed. Values of identi�able parameters can be estimated, values of non-identi�able
parameters cannot.
We now investigate identi�cation in a number of models.

1.1. The linear model

We saw that if a linear econometric model was speci�ed,

Y = X 0� + "

for an outcome Y given k covariates (or �explanatory variables�) X = (X1; : : : ; Xk) and if
the restriction E["jX = x] = 0 was added to the restrictions of the model, then the vector of
coe¢ cients � could be identi�ed as long as the values of X available showed su¢ cient variation.
This result arises because in this model

E[Y jX = x] = x0�

and on the left hand side of this equation we have a feature of the conditional distribution of Y
given X = x about which data are informative. If we knew E[Y jX = x] at k or more values of
x then we could solve for � using any subset of k linearly independent x values.
In practice we do not know E[Y jX = x] at any value of x, but we do have data on Y at each

of n values of x. With yn representing these data, and with Xn representing a n � k matrix
containing the values of x, and with "n now representing the n unobserved values of " we have

yn = Xn� + "n

and the OLS estimator
�̂OLS = (X

0
nXn)

�1X 0
nyn
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or the GLS estimator
�̂GLS = (X

0
n�

�1
n Xn)

�1X 0
n�

�1
n yn

which are unbiased estimators of � under the restrictions of the model. E¢ ciency considerations
lead to the choice of one estimator rather than another.

1.2. Nonlinear models

If instead we posit a nonlinear model

Y = g(X; �) + "

with some particular function g speci�ed, and the restriction:

E["jX = x] = 0

then
E[Y jX = x] = g(x; �) (1.1)

and with su¢ cient values of x available and knowledge of E[Y jX = x] at these values we may
be able to solve for a unique value of � in which case � is identi�able. In practice we do not
know E[Y jX = x] at any value of x, but we do have data on Y at each of n values of x.
In this circumstance we can de�ne the nonlinear least squares estimator

�̂ = argmin
�

nX
i=1

(yi � g(xi; �))2

which, in well behaved problems is the solution to

nX
i=1

(yi � g(xi; �̂))
d

d�
g(xi; �̂) = 0

which can be thought of as �owing from the following (but not the only) implication of (1.1).

E[(Y � g(X; �)) d
d�
g(X; �)jX = x] = 0:

1.3. Models in which the probability distribution of outcomes is parametrically spec-
i�ed

In some models the complete probability distribution of outcomes given covariates is speci�ed.
We have studied maximum likelihood estimation of parameters of such models. But, when are
values of parameters of such models identi�ed?
Consider an example of such a model in which it is maintained that Y1; : : : ; Yn are identically

and independently distributed, each with the exponential probability density function

f(y;�) = � exp(��y); � > 0
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The joint probability density function of Y1; : : : ; Yn is therefore

f(y1; : : : ; yn;�) = �
n exp(��

nX
i=1

yi):

Suppose we were told that, for a certain data generating process which conforms to this
model, the joint probability density function of Y1; : : : ; Yn is

f(y1; : : : ; yn;�) = 4
n exp(�4

nX
i=1

yi):

It is clear that in that process the value of �, �0 say, must be �0 = 4 and, evidently, the value
of � is identi�ed.
But suppose the maintained model is that Y1; : : : ; Yn are identically and independently dis-

tributed, each with the exponential probability density function

f(y;�1; �2) =
�
�1 + �2

�
exp(�

�
�1 + �2

�
y):

In this case, knowing that the joint probability density function of Y1; : : : ; Yn is: 4n exp (�4
Pn

i=1 yi)
does not allow us to deduce the data generating values: �10 and �

2
0. We can identify the

value of �10 + �
2
0 as 4, but not the values �

1
0 or �

2
0 because, for example

�
�10; �

2
0

�
= (1; 3)

and
�
�10; �

2
0

�
= (2; 2) both result in the same joint probability density function of Y1; : : : ; Yn.1

In practice we do not know the joint density function of Y1; : : : ; Yn, just that it has the form,
in the �rst case considered, �n0 exp(��0

Pn
i=1 yi) where �0 is the data generating value of �.

The maximum likelihood estimator for this problem solves the equation

n

�̂
�

nX
i=1

yi = 0

which can be thought of as �owing from the result that the expectation of the derivative with
respect to � of the log likelihood function evaluated at the data generating value of � is zero,
that is that

E[
n

�0
�

nX
i=1

Yi] = 0

where �0 is the data generating value of �.

2. Identi�cation when latent variables are correlated with covariates

In many problems studied in econometrics it is not possible to maintain restrictions requiring
that the expected value of the latent variable in an equation is zero given the values of the right
hand side variables in the equation. Here is an example.

1Of course we can be sure that each of �10 and �
2
0 are less than 4 since both must be positive. This is an

example of identi�cation within a set of values.
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Consider a simple version of the Mincer model for returns to schooling with the following
structural equations.

W = �0 + �1S + �2Z + "1 (2.1)

S = �0 + �1Z + "2 (2.2)

HereW is the log wage, S is years of schooling, Z is some characteristic of the individual, and "1
and "2 are unobservable latent random variables. We might expect those who receive unusually
high levels of schooling given Z to also receive unusually high wages given Z and S, a situation
that would arise if "1 and "2 were a¤ected positively by ability, a characteristic not completely
captured by variation in Z.

2.1. Endogeneity

In this problem we might be prepared to impose the following restrictions.

E["1jZ = z] = 0 (2.3)

E["2jZ = z] = 0 (2.4)

We could not impose the restriction

E["1jS = s; Z = z] = 0

unless "1 was believed to be uncorrelated with "2 and we have already argued that ability may
positively in�uence "1 and "2 which results in them being positively correlated.
Considering just the �rst (W ) equation,

E[W jS = s; Z = z] = �0 + �1s+ �2z + E["1jS = s; Z = z]

and the �nal term here will not in general be zero because, if "1 is positively correlated with "2,
then "1 will tend to be large when s is large relative to �0 + �1z, that is when "2 is large. A
variable like S, appearing in a structural form equation and correlated with the latent variable
in the equation, is called an endogenous variable.

2.2. Reduced form equations

What can be learned about the values of parameters given the restrictions (2.3) and (2.4)? We
can see the impact of these restrictions by substituting for S in the equation (2.1) for W , giving
the following.

W = (�0 + �1�0) + (�1�1 + �2)Z + "1 + �1"2 (2.5)

S = �0 + �1Z + "2 (2.6)

Equations like this, in which each equation involves exactly one endogenous variable are called
reduced form equations.
The restrictions (2.3) and (2.4) imply that

E[W jZ = z] = (�0 + �1�0) + (�1�1 + �2) z (2.7)

E[SjZ = z] = �0 + �1z (2.8)
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and given enough (at least 2) distinct values of z and knowledge of the left hand side quantities
we can solve for (�0 + �1�0), (�1�1 + �2), �0 and �1. So, the values of these functions of
parameters of the structural equations can be identi�ed.
In practice we do not know the left hand side quantities but with enough data we can estimate

the data generating values of (�0 + �1�0), (�1�1 + �2), �0 and �1, for example by OLS applied
�rst to (W;Z) data and then to (S;Z) data.
The values of �0 and �1 are identi�ed but the values of �0, �1 and �2 are not, for without

further restrictions their values cannot be deduced from knowledge of (�0 + �1�0), (�1�1 + �2),
�0 and �1, and the restrictions (2.3) and (2.4) have no further implications.

2.3. Identi�cation using an exclusion restriction

One restriction we might be prepared to add to the model is the restriction �2 = 0. Whether
or not that is a reasonable restriction to maintain depends on the nature of the variable Z.
If Z were a measure of some characteristic of the environment of the person at the time that

schooling decisions were made (for example the parents�income, or some measure of an event
that perturbed the schooling choice) then we might be prepared to maintain the restriction that,
given schooling achieved (S), Z does not a¤ect W , i.e. that �2 = 0.
This restriction may be su¢ cient to identify the remaining parameters. If the restriction

is true then the coe¢ cients on Z in (2.5) and on z in (2.7) become �1�1. We have already
seen that (the value of) the coe¢ cient �1 is identi�ed. If �1 is not itself zero (that is Z does
indeed a¤ect years of schooling) then �1 is identi�ed as the ratio of the coe¢ cients on Z in the
regressions of W and S on Z. With �1 identi�ed and �0 already identi�ed, identi�cation of �0
follows directly.

2.4. Indirect least squares estimation

Estimation could proceed under the restriction �2 = 0 by calculating OLS (or GLS) estimates
of the �reduced form�equations

W = �01 + �11Z + U1

S = �02 + �12Z + U2

where
�01 = �0 + �1�0 �11 = �1�1
�02 = �0 �12 = �1
U1 = "1 + �1"2 U2 = "2

and
E[U1jZ = z] = 0 E[U2jZ = z] = 0

which follow from the restrictions (2.3) and (2.4), and solving the equations

�̂01 = �̂0 + �̂1�̂0 �̂11 = �̂1�̂1
�̂02 = �̂0 �̂12 = �̂1
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given values of the �̂�s for values of the �̂�s and �̂�s, as follows.

�̂0 = �̂01 � �̂02 (�̂11=�̂12) �̂1 = �̂11=�̂12
�̂0 = �̂02 �̂1 = �̂12

Estimators obtained in this way, by solving the equations relating structural form parameters
to reduced form parameters with OLS estimates replacing the reduced form parameters, are
known as Indirect Least Squares estimators. They were �rst proposed by Jan Tinbergen in
1930.

2.5. Over identi�cation

Suppose that there are two covariates, Z1 and Z2 whose impact on the structural equations we
are prepared to restrict so that both a¤ect schooling choice but neither a¤ect the wage given
the amount of schooling achieved.
The structural equations then take the following form

W = �0 + �1S + "1

S = �0 + �1Z1 + �2Z2 + "2

and the reduced form equations are as follows

W = �01 + �11Z1 + �21Z2 + U1

S = �02 + �12Z1 + �22Z2 + U2

where
�01 = �0 + �1�0 �11 = �1�1 �21 = �1�2
�02 = �0 �12 = �1 �22 = �2

and
U1 = "1 + �1"2 U2 = "2:

The values of the reduced form equations�coe¢ cients are identi�ed under restrictions (2.3)
and (2.4). Now, note, there are two ways in which the coe¢ cient �1 can be identi�ed, as follows

�1 =
�11
�12

�1 =
�21
�22

In this situation we say that the value of the parameter �1 is over identi�ed. In the case we
examined before, in which there is just one way of deducing the value of a structural form
parameter from knowledge of the reduced form equations� coe¢ cients, we say the structural
form parameter is just identi�ed.
Of course the over identi�cation of �1 is of no particular interest if we know the reduced

form equations�coe¢ cients. But in practice we do not know the value of these coe¢ cients and
when we come to compute Indirect Least Squares estimates of �1 using estimated reduced form
coe¢ cients:

�̂Z11 =
�̂11
�̂12

�̂Z21 =
�̂21
�̂22
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we will usually �nd that �̂Z11 6= �̂Z21 even though these are both estimates of the value of the
same structural form parameter.
If the discrepancy was found to be very large then we might doubt whether the restrictions

of the model are correct. This suggests that tests of over identifying restrictions can detect
misspeci�cation of the econometric model. If the discrepancy is not large then there is scope
for combining the estimates to produce a single estimate that is more e¢ cient than either taken
alone.

2.6. Indirect least squares and instrumental variables

Return to the problem of estimation of structural form coe¢ cients under the restrictions which
cause �1 to be just identi�ed.
Another way to look at this problem is as follows. With the restriction �2 = 0 imposed the

structural form equations (2.1) and (2.2) are as follows.

W = �0 + �1S + "1

S = �0 + �1Z + "2

and we have the restriction E["1jZ = z] = 0 which implies that

E[W � �0 � �1SjZ = z] = 0

and, from this

E[W � �0 � �1S] = 0

E[(W � �0 � �1S)Z] = 0

equivalently �
E[W ]
E[WZ]

�
=

�
1 E[S]

E[Z] E[SZ]

� �
�0
�1

�
and so �

�0
�1

�
=

�
1 E[S]

E[Z] E[SZ]

��1 �
E[W ]
E[WZ]

�
=

1

E[SZ]� E[S]E[Z]

�
E[SZ] �E[S]
�E[Z] 1

� �
E[W ]
E[WZ]

�
from which note that

�1 =
E[WZ]� E[W ]E[Z]
E[SZ]� E[S]E[Z] =

Cov(W;Z)

Cov(S;Z)
: (2.9)

Replacing these moments by sample analogues (that is sample means and mean products) gives
an estimator of �1 which is identical to the Indirect Least Squares estimator. The estimators
are identical because

�̂11 =
dCov(W;Z)dV ar(Z) �̂12 =

dCov(S;Z)dV ar(Z)
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and so

�̂ILS1 =
�̂11
�̂12

=
dCov(W;Z)dCov(S;Z)

which is the same as the right hand side of (2.9) with moments replaced by sample based
estimates.

3. Instrumental variables

Consider again the linear model for an outcome Y given covariates (k in number) X

Y = X 0� + " (3.1)

and suppose that the restriction E["jX = x] = 0 cannot be maintained but that there exist m
variables Z for which the restriction E["jZ = z] = 0 can be maintained.
This restriction implies that

E[Y �X 0�jZ = z] = 0
and thus that

E[Z (Y �X 0�) jZ = z] = 0
which implies that, unconditionally

E[Z (Y �X 0�)] = 0:

and thus
E[ZY ] = E[ZX 0]�: (3.2)

First suppose m = k, and that E[ZX 0] has rank k. Then � can be expressed in terms of
moments of Y , X and Z as follows

� = E[ZX 0]�1E[ZY ]:

and � is (just) identi�able. This leads directly to an analogue type estimator if we replace
expectations by sample moments of realisations of ZX 0 and ZY , denoted here by ZX 0 and ZY ,
as follows.

�̂ = (ZX 0)�1(ZY )

If Xn denotes a matrix of realisations of the vector random variable X, with realisation
i 2 (1; : : : ; n) occupying row i, with Zn similarly denoting a matrix of realisations of Z and if
yn denotes a vector of realisations of Y , then

(ZX 0) = n�1(Z 0nXn)

(ZY ) = n�1(Z 0nyn)

and
�̂ = (Z 0nXn)

�1Z 0nyn:

In the context of the just identi�ed returns to schooling model set out above, this is the Indirect
Least Squares estimator.
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Now suppose that m > k. We could try to de�ne an estimator �̂, as before, as the solution
to

(ZX 0)�̂ = (ZY ) (3.3)

where bar indicates a sample average. But in any �nite sized sample it is unlikely that we will
�nd a solution since we have m > k equations in k unknowns. If the sample moments were
exactly equal to the moments E[ZX 0] and E[ZY ] then an estimator could be produced, the
same value being obtained using any subset of k of the m equations by virtue of (3.2). But in
practice the sample moments will almost certainly not be realised in this fortuitous manner. In
this case we could de�ne estimators using any subset of size k of the m equations (3.3) involving
the sample moments. But this seems an ine¢ cient way to proceed, involving the discarding of
information.

3.1. Generalised Method of Moments estimation

An alternative is to de�ne an estimator which comes as close as possible (in some sense) to
satisfying all of the equations (3.3). One way to do this is to de�ne a family of estimators, �̂W
as

�̂W = argmin
�

�
(ZY )� (ZX 0)�

�0
W
�
(ZY )� (ZX 0)�

�
where W is a m � m full rank, positive de�nite symmetric matrix. This M-estimator is an
example of what is known as the Generalised Method of Moments (GMM) estimator.
Di¤erent choices of W lead to di¤erent estimators unless m = k and the choice among these

is commonly made by considering their accuracy. In most cases exact sampling variances are
di¢ cult to calculate and depend on �ne details of the data generating process about which we
are likely to be ignorant. So we consider the limiting distribution of the GMM estimator for
alternative choices of W and choose W to minimise the variance of the limiting distribution of
n1=2(�̂W � �0). In standard cases this means choosing W to be proportional to a consistent
estimator of the inverse of the variance of the limiting distribution of n1=2

�
(ZY )� (ZX 0)�

�
.

3.2. Generalised Instrumental Variables estimation

Now write �̂W explicitly in terms of sample moments, as follows

�̂W = argmin
�

�
n�1(Z 0nyn)� n�1(Z 0nXn)�

�0
W
�
n�1(Z 0nyn)� n�1(Z 0nXn)�

�
(3.4)

= argmin
�

�
n�1=2(Z 0nyn)� n�1=2(Z 0nXn)�

�0
W
�
n�1=2(Z 0nyn)� n�1=2(Z 0nXn)�

�
and consider what the (asymptotically) e¢ cient choice of W is by examining the variance of
n�1=2(Z 0nyn)� n�1=2(Z 0nXn)�.
We have, since yn = Xn� + "n,

n�1=2(Z 0nyn)� n�1=2(Z 0nXn)� = n�1=2(Z 0n"n)

and if we suppose that V ar("njZn) = �2In,

V ar
�
n�1=2(Z 0n"n)jZn

�
= �2(n�1Z 0nZn):
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This suggests choosing W = (n�1Z 0nZn) in the equation below (3.4) leading to the following
minimisation problem

�̂n = argmin
�

�
n�1=2(Z 0nyn)� n�1=2(Z 0nXn)�

�0
(n�1Z 0nZn)

�1
�
n�1=2(Z 0nyn)� n�1=2(Z 0nXn)�

�
= argmin

�
((Z 0nyn)� (Z 0nXn)�)

0
(Z 0nZn)

�1 ((Z 0nyn)� (Z 0nXn)�)

where on the second line factors involving n have been multiplied through.
The �rst order conditions for this problem, satis�ed by �̂n are:

2�̂
0
n(X

0
nZn)(Z

0
nZn)

�1(Z 0nXn)� 2(X 0
nZn)(Z

0
nZn)

�1(Z 0nyn) = 0

leading to the following estimator.

�̂n =
�
(X 0

nZn)(Z
0
nZn)

�1(Z 0nXn)
��1

(X 0
nZn)(Z

0
nZn)

�1(Z 0nyn)

This is known as the generalised instrumental variable estimator (GIVE)
The asymptotic properties of this estimator are obtained as follows.
Substituting yn = Xn� + "n gives

�̂n = � +
�
X 0
nZn(Z

0
nZn)

�1Z 0nXn
��1

X 0
nZn(Z

0
nZn)

�1Z 0n"n

= � +
�
n�1X 0

nZn(n
�1Z 0nZn)

�1n�1Z 0nXn
��1

n�1X 0
nZn(n

�1Z 0nZn)
�1n�1Z 0n"n

and if

plim
n!1

(n�1Z 0nZn) = �ZZ (3.5)

plim
n!1

(n�1X 0
nZn) = �XZ (3.6)

plim
n!1

(n�1Z 0n"n) = 0

with �ZZ having full rank (m) and �XZ having full rank (k) then

plim
n!1

�̂n = �

and we have a consistent estimator.
To obtain the limiting distribution of n1=2(�̂ � �) note that

n1=2(�̂ � �) =
�
n�1X 0

nZn(n
�1Z 0nZn)

�1n�1Z 0nXn
��1

n�1X 0
nZn(n

�1Z 0nZn)
�1n�1=2Z 0n"n

Here n�1=2 multiplying the �nal term arises because of the scaling, n1=2, applied to �̂ � �.
Under the conditions above (3.5) and (3.6) we have the limiting distribution result:

plimn1=2(�̂ � �) =
�
�XZ�

�1
ZZ�ZX

��1
�XZ�

�1
ZZ plim

�
n�1=2Z 0n"n

�
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where �ZX = �0XZ , and if a Central Limit Theorem applies to n�1=2Z 0n"n giving

plim
�
n�1=2Z 0n"n

�
= N(0; �2�ZZ)

then
plimn1=2(�̂ � �) = N(0; V )

where

V = �2
�
�XZ�

�1
ZZ�XZ

��1
�XZ�

�1
ZZ�ZZ�

�1
ZZ�ZX

�
�XZ�

�1
ZZ�ZX

��1
= �2

�
�XZ�

�1
ZZ�ZX

��1
and so

plimn1=2(�̂ � �) ' N(0; �2
�
�XZ�

�1
ZZ�ZX

��1
):

There are three important points to note here.

3.2.1. GIVE in just identi�ed models

When m = k so that there are the same number of instrumental variables as elements in X, the
formula for �̂n simpli�es (check that this is true) to

�̂n = (Z
0
nXn)

�1
Z 0nyn

because then X 0
nZn and its transpose are square and (by assumption non-singular) and so can

be separately inverted.

3.2.2. Elements of X as instruments

If some elements of X, say X1, are such that E["jX1 = x1] = 0 then these elements can serve as
instruments, i.e. can be elements of Z. Check that if all elements of X have this property then,
above, on choosing Zn = Xn we retrieve the conventional OLS estimator.

3.2.3. GIVE is equivalent to OLS using predicted endogenous variables

Suppose there is a model for X,
X = Z�+ V

where E[V jZ] = 0. The OLS estimator of � is

�̂n = (Z
0
nZn)

�1
Z 0nXn

and the �predicted value�of X for a given Z is

X̂n = Zn (Z
0
nZn)

�1
Z 0nXn:

Note that
X̂ 0
nX̂n = X

0
nZn(Z

0
nZn)

�1Z 0nXn
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and
X̂ 0
nyn = X

0
nZn(Z

0
nZn)

�1Z 0nyn:

So the Generalised Instrumental Variables Estimator can be written as

�̂n =
�
X̂ 0
nX̂n

��1
X̂ 0
nyn:

that is, as the OLS estimator of the coe¢ cients of a linear relationship between yn and the
predicted values of Xn got from OLS estimation of a linear relationship between Xn and the
instrumental variables Zn.

4. Another structural model: market demand and supply

Elementary demand theory leads to demand equations which express quantity demanded by a
consumer as a function of prices and income and other variables which a¤ect tastes. Aggregated
across consumers this leads to a market demand function which we write here for the sake of
this example as the linear function

qD = Dp+ x
0�D + "D (4.1)

where x contains a measure of income and perhaps its distribution, prices other than that of the
good under consideration and variables that capture variation in tastes2 . We might be prepared
to maintain the restriction E["Djp; x] = 0, which implies that Dp+ x0�D is the expected value
of qD on p and x.
The elementary theory of the �rm suggests a supply equation giving the desired supply on

the part of �rms at any given price,

qS = Sp+ x
0�S + "S (4.2)

and we might be prepared to maintain the restriction that E["S jp; x] = 0.
We might expect di¤erent elements of x to be relevant in the determination of the two desired

quantities (demanded by consumers and supplied by �rms) and this can be captured by allowing
particular (di¤erent) elements of �D and �S to be zero. For example desired demand is likely
to be shifted by variations in consumers�incomes and by things that a¤ect tastes, while desired
supply will likely be shifted by variation in variables a¤ecting �rm�s costs.
We focus on the price coe¢ cients and note that these may be of direct interest. For example

if the government is contemplating an indirect tax on a good (e.g. tobacco) or a subsidy on a
good (e.g. children�s clothing) it may wish to know how demand would alter purely as the price
paid by consumers varies. In this case the government is interested in the coe¢ cient D above.
It is rarely the case that we have data that bears directly on the aggregate (desired) demand

curve. Rather we see a common quantity supplied and consumed and a market clearing price at
which these transactions take place. Formally, we observe realisations of qe where qe = qD = qS

and of pe where pe is the market clearing price at which the equalities amongst desired and
transacted quantities hold. Data on qe, pe and x, perhaps obtained by observation over a period
of time or across a series of regions, gives us information about the joint distribution of qe and

2 In this section the upper/lowercase convention for random variables and their realisations is not respected.
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pe given x. This enables us to, for example, estimate the regression of qe on x and of pe on x.
These are reduced form equations. The original relationships (4.1) and (4.2) together with the
price clearing condition are the structural form equations.
When prices clear, equilibrium quantity and price, qe and pe, are determined by the structural

form equations

qe = Dp
e + x0�D + "D (4.3)

qe = Sp
e + x0�S + "S (4.4)

which can be written in matrix notation as follows,�
1 �D
1 �S

� �
qe

pe

�
=

�
�0D
�0S

�
x+

�
"D
"S

�
;

a special case of the generic linear simultaneous structural equation form

�y = Bx+ ":

Note that the restrictions E["Djp; x] = 0 and E["S jp; x] = 0 do not in general imply that
E["Djpe; x] = 0 and E["S jpe; x] = 0 because the market clearing price will be a function of
"D and "S . The earlier discussion suggests that these conditions on the latent variables in the
desired demand and supply equations may not be useful in identifying the coe¢ cients of those
equations when the data available are generated with markets clearing. Further, OLS, GLS
and similar estimation procedures applied to (4.3) and (4.4) will generally produce inconsistent
estimators of the coe¢ cients in these equations.
However we might be prepared to maintain the restrictions

E["Djx] = 0 E["S jx] = 0 (4.5)

and these are su¢ cient restrictions to allow identi�cation of the reduced form equations�coe¢ -
cients.
We obtain the reduced form equations as

y = ��1Bx+ ��1"

or
y = �x+ U

where � = ��1B and U = ��1" and in this market model,

��1 =
1

D � S

�
�S D
�1 1

�
:

The conditions (4.5) imply that E[U jx] = 0 which is, as we have seen before, su¢ cient (with
su¢ cient variation in x) to identify the coe¢ cients �.
The reduced form equations for the market model are:

qe =
1

D � S
x0 (�S�D + D�S) +

1

D � S
(�S"D + D"S)

pe =
1

D � S
x0 (��D + �S) +

1

D � S
(�"D + "S) :
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which we write as

qe = x0�Q + uQ

pe = x0�P + uP :

Under the conditions stated OLS, GLS etc., will give well behaved estimators of the coe¢ -
cients on x in these equations. Note that the government�s coe¢ cient of interest, D, is entwined
here with many other coe¢ cients. It is not clear how one would retrieve an estimate of D from
estimates of these combinations of D, S , �D, and �S . Indeed it is not clear that it can be
done at all.
To see the problem, note that all structural forms

A�y = ABx+A"

with full rank A have identical reduced forms because (A�)�1AB = ��1B = �, independent
of A, and (A�)�1A" = ��1" = U . Without further restrictions we cannot identify � and B
separately though we can identify ��1B = �.
If we could maintain the restriction that an element of x does not feature in the structural

demand equation (perhaps because it only a¤ects producers�costs) then, as in the returns to
schooling model, the parameters of the structural demand equation could be identi�ed. Similarly,
if we could maintain the restriction that an element of x does not feature in the structural supply
equation (perhaps because it only a¤ects consumers�preferences) then the parameters of the
structural supply equation could be identi�ed.
These are, of course, the sorts of exclusion restrictions that we have already met when

studying the returns to schooling model. There are general results on identi�cation under
exclusion restrictions, discussed now.

5. Identi�cation in simultaneous equations models

The identi�ability of structural form coe¢ cients in linear simultaneous equations models with
restrictions only on the conditional expectation of latent variables given covariates depends upon
our ability to deduce structural form coe¢ cients from knowledge of reduced form coe¢ cients.
The main result that we need here is as follows. When the only restrictions available are

exclusion restrictions, i.e. restrictions that set certain structural form coe¢ cients to zero (e.g.
factors that a¤ect �rm�s costs do not appear in structural demand functions) then, in order
to be able to identify the coe¢ cients of a structural form equation (i) in which there are Mi

endogenous variables with non-zero coe¢ cients, a priori, there must be at leastMi�1 exogenous
variables that appear elsewhere in the system that are excluded from equation i. By �appear
elsewhere� we mean feature, with non-zero coe¢ cients, in at least one other structural form
equation.
The proof of this result involves consideration of the conditions under which the part of the

equation �� = B relating to equation i (�i� = Bi where �i and Bi are the ith columns of �
and B) can be solved for unrestricted elements of �i and Bi given values for �. Here we do
not give a proof but note that the IV method could only work when there are Mi endogenous
variables in an equation (one normalised to have a coe¢ cient equal to one and appearing on the
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left hand side of the equation) if we could �nd Mi � 1 exogenous variables, correlated with the
endogenous variables, and not already appearing in the equation. This will be the case under
the condition outlined in the previous paragraph.
The exogenous variables excluded from the equation of interest serve as instruments for the

included endogenous variables. The IV method provides a route to estimation of just and over
identi�ed equations. In just identi�ed equations the IV estimator is, as has been shown earlier,
the Indirect Least Squares estimator.
In over identi�ed equations the GIVE estimator produces an estimator known in the simul-

taneous equations context as the Two Stage Least Squares estimator - �two stage�because in
the �rst stage one calculates predictions of the endogenous variables in the equation of interest
applying OLS to the reduced form equations and in the second stage one estimates the struc-
tural form equation�s coe¢ cients by applying OLS using predicted values of right hand side
endogenous variables in place of their observed values.

6. Concluding remarks

More detail on the topics covered here is available in the two recommended texts and you should
read these.
Endogeneity and identi�cation are very important, but subtle, topics lying at the core of

econometrics - they are primary aspects of econometric method and approach that distinguish
econometrics from statistics. They arise in econometrics because we develop models of behaviour
and outcomes which are on occasions in some way removed from the probabilistic process about
which the data we see are informative.


