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1. Introduction

These notes start with a discussion of hypothesis testing in a likelihood context and we introduce
the notions of Wald, Likelihood ratio and score tests. The latter are widely used as the basis
for speci�cation tests which is the second topic covered here.
The notes continue with an example of a commonly occurring problem in which maximum

likelihood methods provide one of the few easily implemented solutions - the modelling of out-
comes when they are not fully revealed.
The notes end with a brief discussion of Bayesian inferential methods.

2. Tests of hypotheses in a likelihood framework

We now consider test of hypotheses in econometric models in which the complete probability
distribution of outcomes given conditioning variables is speci�ed. In this situation the maximum
likelihood estimator can be computed and it possesses optimality properties.
There are three natural ways to develop tests of hypotheses when a likelihood function is

available.

1. Is the unrestricted ML estimator signi�cantly far from the hypothesised value? This leads
to what is known as the Wald test.

2. If the ML estimator is restricted to satisfy the hypothesis, is the value of the maximised
likelihood function signi�cantly smaller than the value obtained when the restrictions of
the hypothesis are not imposed? This leads to what is known as the likelihood ratio test.

3. If the ML estimator is restricted to satisfy the hypothesis, are the Lagrange multipliers
associated with the restrictions of the hypothesis signi�cantly far from zero? This leads
to what is known as the Lagrange multiplier or score test.

In the normal linear regression model all three approaches, after minor adjustments, lead to
the same statistic which has an F (j)(n�k) distribution when the null hypothesis is true and there
are j restrictions.
Outside that special case, in general the three methods lead to di¤erent statistics, but in large

samples the di¤erences tend to be small. All three statistics have, under certain weak conditions,
�2(j) limiting distributions when the null hypothesis is true and there are j restrictions. The exact
distributional result in the normal linear regression model �ts into this large sample theory on

noting that plimn!1

�
jF

(j)
(n�k)

�
= �2(j).

We now consider tests of a hypothesis H0 : �2 = 0 where the full parameter vector is parti-

tioned into �0 = [�01
...�02] and �2 contains j elements. Recall that the MLE has the approximate

distribution
n1=2(�̂ � �) d! N(0; V0)

where
V0 = � plim

n!1
(n�1l��(�0;Y ))

�1 = I(�0)
�1

and I(�0) is the asymptotic information matrix per observation.
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2.1. The Wald test

This test is obtained by making a direct comparison of �̂2 with the hypothesised value of �2, zero.
Using the approximate distributional result given above leads to the following test statistic.

SW = n�̂
0
2
cW�1
22 �̂

0
2

Here cW22 is a consistent estimator of the lower right hand j�j block of V0. Recall that a variety
of ways of estimating this matrix were given in the previous notes. Any of these can be used

here. Under the null hypothesis SW
d! �2(j) and we reject the null hypothesis for large values of

SW .
Using one of the formulas for the inverse of a partitioned matrix the Wald statistic can also

be written as
SW = n�̂

0
2

�bI(�̂)22 � bI(�̂)021bI(�̂)�111 bI(�̂)12� �̂02
where the elements bI(�̂)ij are consistent estimators of the appropriate blocks of the asymptotic
Information Matrix per observation evaluated at the (unrestricted) MLE.

2.2. The Score - or Lagrange Multiplier - test

To conduct a Wald test we have to estimate �2. Sometimes we are in a situation where a model
has been estimated with �2 = 0, and we would like to see whether the model should be extended
by adding additional parameters and perhaps associated conditioning variables or functions of
ones already present. In such a situation it is convenient to have a method of conducting a
test of the hypothesis that the additional parameters are zero ( in which case we might decide
not to extend the model) without having to estimate the additional parameters. The score test
provides such a method.
The score test considers the gradient of the log likelihood function evaluated at the point

�̂
R
=

"
�̂
R

1

0

#
and examines the departure from zero of that part of the gradient of the log likelihood function

that is associated with �2. Here �̂
R

1 is the MLE of �1 when �2 is restricted to be zero. If the
unknown value of �2 is in fact zero then this part of the gradient should be close to zero - recall
that the expected value of the gradient evaluated at the true parameter values is zero. The score
test statistic is

SS = n
�1l�(�̂

R
;Y )0bI(�̂R)�1l�(�̂R;Y )

and SS
d! �2(j) under the null hypothesis. Again there are a variety of ways, as set out earlier,

of estimating bI(�0) and hence its inverse.
Note that the complete score (gradient) vector appears in this formula. Of course the part

of that associated with �1 is zero because we are evaluating at the restricted MLE. That means
the score statistic can also be written, using the formula for the inverse of a partitioned matrix,
as the algebraically identical

SS = n
�1l�2(�̂

R
;Y )0

�bI(�̂R)22 � bI(�̂R)021bI(�̂R)�111 bI(�̂R)12��1 l�2(�̂R;Y ):
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When the information matrix is block diagonal1 , which means that the MLEs of �1 and �2 are
asymptotically uncorrelated, the second term in the inverse above vanishes.

2.3. Likelihood ratio tests

The �nal method for constructing hypothesis tests that we will consider involves comparing the

value of the maximised likelihood function at the restricted MLE ( �̂
R
) and the unrestricted

MLE (now written as �̂
U
). This likelihood ratio test statistic takes the form

SL = 2
�
l(�̂

U
;Y )� l(�̂

R
;Y )

�
and it can be shown that under H0, SL

d! �2(j).

2.4. Discussion

All three statistics have the same limiting distribution under the null hypothesis but they have
di¤erent exact distributions and generally produce di¤erent, though frequently similar, values
in any application. Which of the tests to use in any particular application is partly a matter of
convenience. The Wald test does not require estimation of the restricted model and when that
estimation would be di¢ cult one might choose to use a Wald test. Conversely the score test does
not require estimation of the unrestricted model and when that is di¢ cult one might choose the
score test. The likelihood ratio test requires calculation of both estimates but sometimes that
is simple enough and the subsequent calculation is very simple.
An issue not given enough attention in practice is that in �nite samples the Wald test is not

parameterisation invariant. This means that, for example, testing H0 : �
� = 0 produces di¤erent

answers depending on the value of � > 0 that we use. Indeed by choosing a mad enough value
of � it is possible in some cases to always reject the null hypothesis. This is rather bizarre as for
any value of � the only value of � consonant with the null hypothesis is zero, so tests using any
positive value of � are essentially testing the same hypothesis. The score and likelihood ratio
tests are parameterisation invariant in the sense that whatever one-to-one reparameterisation is
adopted the same numerical values of the test statistics are produced. In this respect they are
to be preferred.

3. Speci�cation testing

Maximum likelihood estimation requires a complete speci�cation of the probability distribution
of the random variables whose realisations we observe2 . In practice we do not know this distri-
bution though we may be able to make a good guess. If our guess is badly wrong then we may
produce poor quality estimates, for example badly biased estimates, and the inferences we draw
using the properties of the likelihood function may be incorrect. In regression models the same
sorts of problems occur. If there is homoskedasticity or serial correlation then, though we may
produce reasonable3 point estimates of regression coe¢ cients if we ignore these features of the

1 In this case there is said to be �parameter orthogonality�.
2Note that the distribution of conditioning variables does not have to be speci�ed.
3Though maybe not e¢ cient.
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data generating process, our inferences will usually be incorrect if these features are not allowed
for, because we will use incorrect formulae for standard errors and so forth.
It is important then to seek for evidence of departure from a model speci�cation, that is

to conduct speci�cation tests. In a likelihood context the score test provides an easy way of
generating speci�cation tests. One produces a generalisation of the speci�ed model which does
capture potential elements not picked up in the model as originally speci�ed and which is a
special case of that model when a subset of the parameters are set to zero. One then conducts a
score test of the hypothesis that these additional parameters are zero. Note that we never need
to estimate the more general model when conducting the score test. Further it turns out that
many classes of generalisation of any given model lead to identical (score) speci�cation tests.
This is good because it means that we sometimes do not have to be absolutely speci�c about
the potential failure of the originally speci�ed model. On the other hand it is bad in the sense
that on detecting model misspeci�cation the (score) speci�cation test does not tell us exactly
how the model should be extended.

3.1. Detecting heteroskedasticity

We consider one example here, namely detecting heteroskedasticity in a normal linear regression
model. In the model considered, Y1; : : : ; Yn are independently distributed with Yi given xi being
N(x0i�; �

2h(z0i�)) where h(0) = 1 and h
0(0) = 1, both achievable by suitable scaling of h(�). Let

�U = [�; �2; �] and let �R = [�; �2; 0]. A score test of H0 : � = 0 will provide a speci�cation test
to detect heteroskedasticity.
The log likelihood function when � = 0, in which case there is homoskedasticity, is as follows.

l(�R; yjx) = �n
2
log 2� � n

2
log �2 � 1

2�2

nX
i=1

(yi � x0i�)
2

whose gradients with respect to � and �2 are

l�(�
R; yjx) = � 1

�2

nX
i=1

(yi � x0i�)xi

l�2(�
R; yjx) = � n

2�2
+

1

2�4

nX
i=1

(yi � x0i�)
2

which lead to the restricted MLEs under homoskedasticity, as follows.

�̂ = (X 0X)
�1
X 0y

�̂2 =
1

n

nX
i=1

�
yi � x0i�̂

�2
The log likelihood function for the unrestricted model is

l(�U ; yjx) = �n
2
log 2� � n

2
log �2 � 1

2

nX
i=1

log h(z0i�)�
1

2�2

nX
i=1

(yi � x0i�)
2

h(z0i�)
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whose gradient with respect to � is

l�(�
U ; yjx) = �1

2

nX
i=1

h0(z0i�)

h(z0i�)
zi +

1

2�2

nX
i=1

(yi � x0i�)
2
h0(z0i�)

h(z0i�)
2

zi

which evaluated at the restricted MLE (for which � = 0) is

l�(�̂
R
; yjx) = �1

2

nX
i=1

zi +
1

2�̂2

nX
i=1

�
yi � x0i�̂

�2
zi

=
1

2�̂2

nX
i=1

�
"̂2i � �̂2

�
zi:

The speci�cation test examines the correlation between the squared OLS residuals and zi. The
score test will lead to rejection when this correlation is large. Details of calculation of this test
are given in the intermediate textbooks and the test (Breusch-Pagan-Godfrey) is built into many
of the econometric software packages. Note that the form of the function h(�) does not �gure in
the score test. This would not be the case had we developed either a Wald test or a Likelihood
Ratio test.

3.2. Information Matrix tests

When the complete probability distribution of outcomes given conditioning variables is speci�ed
maximum likelihood estimation is usually feasible. We have seen that the results on the limiting
distribution of the MLE rest at one point on the Information Matrix Equality

E[l�(�0; Y )l�(�0; Y )
0] = �E[l��0(�0; Y )]

where Y = (Y1; : : : ; Yn) are n random variables whose realisations constitute our data.
In the case relevant to much microeconometric work the log likelihood function is a sum of

independently distributed random variables, e.g. in the continuous Y case

l(�; Y ) =
nX
i=1

log f(Yi; �);

where f(Yi; �) is the probability density function of Yi. Here the Information Matrix Equality
derives from the result

E[
@

@�
log f(Y; �)

@

@�0
log f(Y; �) +

@2

@�@�0
log f(Y; �)] = 0:

Given a value �̂ of the MLE we can calculate a sample analogue of the left hand side of this
equation

IM =
1

n

nX
i=1

�
@

@�
log f(Yi; �)

@

@�0
log f(Yi; �) +

@2

@�@�0
log f(Yi; �)j�=�̂

�
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and, if the likelihood function is a correct speci�cation for the data generating process, then we
expect the resulting statistic (which is a matrix of values unless �i is scalar) to be close to (a
matrix of zeros). A general purpose statistic for detecting incorrect speci�cation of a likelihood
function is produced by considering a quadratic form in a vectorised version of all or part of
n1=2IM . This Information Matrix Test statistic was introduced by Halbert White4 in 1982.

4. (*) An application of maximum likelihood methods: censored data

Censored data is data which is incomplete in the sense that some values are not revealed. We
always consider cases in which there is an unambiguous revelation rule. Here are some examples.
Consider an investigation of the in�uences on the speed of return to work of unemployed

workers. We might study this by developing a model, based in job search theory for example, and
then try to estimate parameters of the model using information from a survey of unemployed
workers. One way in which such a survey might be conducted involves sampling entrants to
unemployment, observing how long it takes them to return to work, also recording features of
the workers (e.g. marital status, educational attainment, wage in their previous job) and of
the labour market in which they operate. Since unemployment durations can be very long it
is possible that, by the time such a survey is terminated, some workers will not have returned
to work. For these workers we will not know their unemployment duration, all we will know is
that it is longer than the duration observed at the time the study was terminated. This is an
example of censored data. In this case we talk of �right censored�data because high (to the
right on a horizontal axis) values are not revealed to us.
Left censoring arises when low values of a response are not revealed to us. Many years

ago James Tobin developed a simple model for household expenditure on cars. He proposed
that the expenditure data revealed in surveys, which contains many zero expenditures over
typical recording periods (e.g. a year), could be modelled as a left censored value of a normally
distributed variable with a mean which depends upon household characteristics such as income.
Speci�cally he modelled observed expenditures as if they were realisations of a random variable
Z, where conditional on covariate values, x, there is a latent variable Z� � N(x0�; �2), with
Z = Z� when Z� > 0, Z = 0 otherwise. This model is often referred to as a Tobit model.
Here the censoring occurs as an essential part of the modelling process rather than as a part

of the observation process. We might question the appropriateness of the Tobin model, perhaps
because the appearance or otherwise of zero expenditures may be a consequence of the necessary
discreteness of purchasing.
Another example arises in labour supply studies in which, we observe wages only for people

who are working. In the context of a simple model of the decision to work such people will be
those for whom the wage rate exceeds the value of leisure time at zero hours of work. Here we
will have left censored wage rate data. If we were to study hours worked data we would �nd
these only available for working people. In this case we can think of the hours data as censored
according to a revelation rule that involves variables other than hours.

4See �Maximum Likelihood Estimation in Misspeci�ed Models�, Halbert White, Econometrica 1982. In
�Testing for Neglected Heterogeneity�, Andrew Chesher, Econometrica, 1984, I show that in a wide class of
problems the Information Matrix test is in fact a test of the hypothesis that the �parameter� vector, �, is
constant across observations (individuals).
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Frequently in surveys we �nd responses which tell us a range in which some value lies (e.g.
that household annual income is in the range £ 20,000 - £ 30,000, etc.). There were discussions
recently involving a major Government survey in which it was argued that there should be a
move towards recording income data in this way and away from asking for an �exact� income
value, on the grounds that non-response to the sensitive income question would be reduced. Data
like this are usually called �grouped�data but sometimes they are called �interval censored�.

4.1. Maximum likelihood methods for censored data

Here we tackle estimation in censored data models using maximum likelihood methods. Recall
that the likelihood function is a function of parameters and data values which is proportional
to5 the probability of observing the data values at the values speci�ed for the parameters.
The maximum likelihood estimator is a value for the parameters, a function of the data, that
maximises the likelihood function. We now derive this probability for some censored data cases.
First consider left censoring and suppose that in the absence of censoring we observe re-

alisations of random variables Yi which, conditional on covariates, xi have probability density
functions f(yijxi; �). Suppose left censoring occurs at a value ci so that if a realisation of Yi is
less than ci then its value is not observed.
De�ne binary random variables Di such that Di = 0 if Yi � ci and Di = 1 if Yi > ci. The

probability mass function for these binary variables is

P [Di = dijxi] = F (cijxi; �)1�di (1� F (cijxi; �))di (4.1)

where

F (cijxi; �) = P [Yi � cijxi] =
Z ci

�1
f(yijxi; �)dyi (4.2)

is the distribution function of Yi evaluated at ci. This would be the basis for constructing a
likelihood function which only employed information on whether or not data were censored.
Values of Yi are only observed when Di = 1. The conditional probability density function of

Yi given Di = 1 (and xi) is the truncated density function

g(yijxi; Di = 1) =
f(yijxi; �)

(1� F (cijxi; �))
; yi > ci:

Note that this is a proper density function, integrating to one over the range of Yi. This would
be the basis for constructing a likelihood function which only employed information contained
in non-censored data. Such data is sometimes called truncated data.
The joint probability density - probability mass function for the censoring indicators and the

revealed values, yri of Yi is the product of (4.1) and (4.2), namely

h(di; y
r
i jxi; �) = F (cijxi; �)1�di (1� F (cijxi; �))di

�
f(yri jxi; �)

(1� F (cijxi; �))

�di
= F (cijxi; �)1�dif(yri jxi; �)di :

5Equal to, in the case of discrete data.
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The log likelihood function is the sum across i (from 1 to n, the sample size) of the logarithm
of this expression, as follows.

l(�; d; yrjx) =
nX
i=1

di log f(y
r
i jxi; �) + (1� di) logF (cijxi; �)

Check for yourself that, with right censoring and with Di = 1 when Yi � ci in which case yri is
revealed, and equal to zero otherwise, the log likelihood function is

l(�; d; yrjx) =
nX
i=1

di log f(y
r
i jxi; �) + (1� di) log (1� F (cijxi; �)) :

A case that arises frequently in econometric practice has the continuous random variables
Yi normally distributed with mean x0i� and variance �

2. With left censoring and with ci = 0
for all realisations this gives the classical Tobit model for which the log likelihood function is as
follows.

l(�; d; yrjx) =

nX
i=1

di

�
�1
2
log 2� � 1

2
log �2 � 1

2�2
(yri � x0i�)

2
�

+

nX
i=1

(1� di) log �
�
�x

0
i�

�

�
Here �(�) is the standard normal distribution function. Maximisation of the log likelihood
function is done using numerical methods and is more straightforward if done with respect to

 = �=� and � = 1=�, in which parameterisation the log likelihood function is globally concave.
By the parameterisation invariance of ML, the MLEs of � and � are �̂ = 
̂=�̂ and �̂ = 1=�̂. Most
modern econometrics software programmes have estimation of this and related models built in.
Finally consider the case in which there is grouping, or interval censoring. Suppose that all

we know is which of M intervals realisations of Yi falls in: (ci; ci+1]; i = 1; : : :M , ci+1 > ci. For
random variables with unbounded support we will have one or both of c1 = �1, cM+1 = 1
holding.
De�neM binary indicators, Dm

i = 1 if ci < Yi � ci+1, equal to zero otherwise,m = 1; : : : ;M .
The data consist of realisations of these M indicators. The probability that Dm

i equals one is

P [Di = 1jxi] = F (ci+1jxi; �)� F (cijxi; �)

so the probability mass function for D1
i ; : : : D

M
i is

P

"
M\
m=1

(Dm
i = d

m
i ) jxi

#
=

MY
m=1

(F (ci+1jxi; �)� F (cijxi; �))d
m
i

and the log likelihood function for n realisations of theseM binary indicators, i.e. for the interval
censored data is

l(�; djx) =
nX
i=1

MX
m=1

dmi log (F (ci+1jxi; �)� F (cijxi; �)) :
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5. Bayesian methods6

With outcomes Y1; : : : ; Yn the likelihood function, L(�; y[n]), gives the probability7 of the realised
outcomes, y[n] = fy1; : : : ; yng, as a function of �, the value of the parameter (vector) that
determines the data generating process. The subscript on y[n] is now helpful in keeping track of
the sample size.
In a Bayesian approach the value of this parameter vector is regarded as a random variable

with a prior distribution, say p(�). This is �prior� in the sense of prior to observing the real-
isations of the outcomes. A Bayesian analysis uses the information about � contained in the
posterior distribution of � given the realised values of outcomes. The posterior distribution is
obtained by applying Bayes Theorem.

5.1. Bayes Theorem

For events A and B, since:

P [A \B] = P [BjA]P [A] = P [AjB]P [B]

there is

P [AjB] = P [BjA]P [A]
P [B]

which is known as Bayes Theorem.
For continuous random variables U and V there is the similar relationship amongst condi-

tional and marginal density functions

fU jV (ujv) =
fV jU (vju)fU (u)

fV (v)
(5.1)

which arises because there are the alternative iterated decompositions of the joint density func-
tion

fUV (u; v) = fV jU (vju)fU (u) = fU jV (ujv)fV (v):

The denominator in (5.1) is the marginal density of V and is just the de�nite integral of the
numerator across the support of U .

fV (v) =

Z
fV jU (vju)fU (u)du

There are similar expressions when U and/or V is discrete. U and V can be vector random
variables.

6There is a �ne exposition in Tony Lancaster�s recently published An Introduction to Modern Bayesian
Econometrics, Basil Blackwell, Oxford, 2004.

7The density function in the continuous case.
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5.2. Posterior distributions

Let p(y[n]j�) denote the likelihood function, that is p(y[n]j�) � L(�; y[n]). The discussion proceeds
for the moment in terms of continuous random variables. The Bayesian posterior distribution
is the conditional density of the parameter � given the realised values of the outcomes, that is
p(�jy[n]) where

p(�jy[n]) =
p(y[n]j�)p(�)
p(y[n])

and

p(y[n]) =

Z
p(y[n]j�)p(�)d�. (5.2)

In the case of discrete outcomes the function p(y[n]j�) is the probability mass function:

p(y[n]j�) = P [Y1 = y1 \ � � � \ Yn = yn]:

In a Bayesian analysis the posterior distribution may be used to make explicit probability
statements about the value of � conditional on the realised outcomes. the posterior probability
that � falls in some set A is

P [� 2 Ajy[n]] =
Z
�2A

p(y[n]j�)p(�)
p(y[n])

d� (5.3)

Of course the prior distribution can have signi�cant in�uence on these statements. That can be
good in a policy and decision making contexts. In academic discourse it is common to work with
prior distributions which do not have great in�uence - so called uninformative prior distributions.
It may be di¢ cult to derive an exact expression for the integral in (5.3) and also for the

integral in (5.2) which de�nes the function p(y[n]). In modern Bayesian inference these di¢ culties
are overcome by using sampling approximations of various sorts. For example when p(�jy[n]) can
be computed (i.e. there is no great di¢ culty in calculating p(y[n])) one way to proceed is to draw
a sample of values of � from the posterior distribution, p(�jy[n]) and calculate the proportion of
sampled values that fall in the set A.
Moments of the posterior distributions, for example expected values and variances, can

provide useful summaries of posterior distributions. Again the integrals may be di¢ cult to
calculate but means and variances of sampled values can provide good approximations. In
cases in which the prior distribution is very slowly varying with � the mode of the posterior
distribution will be close to the maximum likelihood estimator. In many cases it is possible
to show that in large samples Bayesian posterior distributions are approximately multivariate
normal providing a link between large sample Bayesian and ML theory. In large samples with
relatively uninformative prior distributions Bayesian estimators calculated as expected values of
posterior distributions will be close to ML estimators. Cases in which this correspondence does
not prevail are interesting and may be cases in which Bayesian methods produce.

5.3. Bayesian updating

The discussion proceeds in terms of densities, as if the outcomes are continuous. An additional
observation is available, a realisation yn+1 of Yn+1. There is

p(y[n+1]j�) = p(yn+1jy[n]; �)� p(y[n]j�)
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and so
p(�jy[n+1]) / p(yn+1jy[n]; �)p(�jy[n]):

As each new realisation arrives a new posterior distribution, p(�jy[n+1]), is obtained by updating
the previous posterior distribution, p(�jy[n]), using the probability law for the random variable
whose realisation has arrived, allowing for any dependence on previously observed random vari-
ables. If outcomes are independent (given �) then p(yn+1jy[n]; �) = p(yn+1j�). For the purpose of
processing the (n+1)th realisation, yn+1, the prior distribution for � is the posterior distribution
for �after n realisations, p(�jy[n]).

5.4. Predictive distributions

We have n realisations and want to make probability statements about the values that the
(n+1)th realisation, yn+1, may take. Its density given the random variables for which there are
already the realisations y[n], and � is p(yn+1jy[n]; �). If outcomes are independent given � this
simpli�es to p(yn+1j�).
For this purpose one can use the predictive distribution de�ned as:

p(yn+1jy[n]) =
Z
p(yn+1; �jy[n])d� =

Z
p(yn+1jy[n]; �)p(�jy[n])d� /

Z
p(yn+1jy[n]; �)p(y[n]j�)p(�)d�:

This captures prior uncertainty about � and the updates on this provided by the information
in y[n]. The predictive distribution can be summarised in a variety of ways. One could report
its mean, median or mode, or report quantiles in the style of the charts (not Bayesian) issued
recently by the UK Monetary Policy Committee.

5.5. Examples

5.5.1. Identically distributed binary outcomes.

Y1; : : : ; Yn are identically and independently distributed binary random variables and y =
fy1; : : : ; yng are realisations. For all i, P [Yi = yi] = �yi(1 � �)1�yi and of course yi 2 f0; 1g.
The likelihood function is

p(yj�) = �Sn(1� �)n�Sn

where S0n � �ni=1yi and S
1
n � n � �ni=1yi are the numbers of 0�s and 1�s amongst the realised

outcomes. The posterior distribution of � is

p(�jy) = �S
0
n(1� �)S

1
np(�)

where p(�) is the prior distribution one chooses to employ. A common and convenient choice is
the Beta distribution in which8

p(�) / �a(1� �)b

with � 2 [0; 1], for which the posterior distribution is

p(�jy) / �a+S
0
n(1� �)b+S

1
np(�):

Choosing a = b = 0 gives a uniform prior for �.9 Then the likelihood function and posterior
density function are very similar functions but with very di¤erent interpretations.

8�/� indicates �is proportionate to�.
9 Is that uninformative about �?
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5.5.2. The probit model

Now for each independently distributed Yi there is a vector of covariates xi, and the data
generating process is supposed to be such that

P [Yi = yijxi] = �(x0i�)yi(1� �(x0i�))1�yi :

The posterior density of the vector of parameters � is

p(�jy; x) /
nY
i=1

�(x0i�)
yi(1� �(x0i�))1�yip(�)

where p(�) is the prior distribution one chooses to employ. Now there are conditioning variables
x the posterior density is conditional on their values as well as on the values of the realised
outcomes. Clearly whatever the form of the prior distribution integration with respect to �
cannot be done explicitly, for example to �nd the value of p(yjx) or the value of a probability as in
(5.3). Here as in most cases arising in microeconometric practice sampling based approximations
are the route to practical Bayesian inference.

5.5.3. Exponentially distributed outcomes

Y1; : : : ; Yn are identically and independently distributed continuous positive random variables
and y = fy1; : : : ; yng are realisations. For all i the density function of Yi is

f(yj�) = � exp(��y); �; y > 0:

The posterior density of � is

p(�jy) / �n exp(���ni=1yi)p(�)

and if p(�) is chosen to be a gamma distribution with

p(�) / �a exp(�b�)

there is obviously simpli�cation and the posterior density is in the gamma distribution family
too. This is an example of a so called natural conjugate prior which are such that posterior
densities are in the same family of distributions as the prior density.

5.6. Issues and Challenges

Some of the di¢ culties that arise in classical (Fisherian) inference do not arise in a Bayesian
approach. Given a prior distribution and a parametric speci�cation of the data generating
process one can proceed to exact inference based on the posterior distribution which carries a
wealth of information and can be summarised in many ways honed to the purpose at hand. The
predictive distribution is a powerful tool for forecasting and for detecting misspeci�cation of the
probability law of the data generating process. Posterior and predictive distributions are just
what is required in a decision theoretic attack on policy determination.
Computational issues posed a huge barrier to use of Bayesian methods until high speed simu-

lation and sampling became feasible. Now Bayesian methods can be almost routinely employed
in problems of realistic scale but one rarely sees them used. Why?
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1. Some people have a philosophical di¢ culty with the notion that parameters can be re-
garded as random variables. Some see an �objective�random variation in outcomes and
accept the idea of a �subjective�random variation in parameters but have di¢ culty with
the blending of these two types of randomness that a Bayesian analysis entails. When there
is a real decision to be made and money to be gained or lives to be lost these philosophical
di¢ culties can sometimes be put to one side.

2. There is the problem of constructing a prior distribution. This is di¢ cult when there
is a high dimensional parameter. It is easier if one is prepared to use an uninformative
prior but even then some care must be taken to ensure that specious information is not
inadvertently introduced. For academic discourse one will often not want to bring any
prior information to the problem.

3. One must be quite speci�c about details of the data generating process. In these brief
introductory notes I have concentrated on cases in which there is a parametric speci�cation
of the data generating process - that is a parametric speci�cation of the likelihood function.
Much modern econometrics tries to get by with less than this although in professional
practice parametric likelihood based analysis is quite common. Identi�cation is frequently
obtained through moment conditions without speci�cation of the precise families within
which distributions of outcomes lie. Inference requires one to be more speci�c about
the distributions involved but not very speci�c. Some of the most exciting challenges in
Bayesian research lie in trying to �nd ways of doing Bayesian analysis without strong
parametric restrictions. Empirical likelihood seems to be a good place to start.10

10See Art Owen�s Empirical Likelihood, Chapman and Hall and CRC Press, 2001.


