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1. Introduction

These notes introduce the concept of a likelihood function and the maximum likelihood es-
timator. The estimator�s properties are studied using the tools developed for M-estimators.
Important microeconometric examples of the application of maximum likelihood estimation are
introduced.

2. Maximum likelihood estimation

Some of the models used in econometrics specify the complete probability distribution of the
outcomes of interest are speci�ed rather than just a regression function. Sometimes this is
because of special features of the outcomes under study - for example because they are discrete
or censored, or because there is serial dependence of a complex form, a situation which arises
when event histories (e.g. of labour market transitions or fertility) are studied.1

When the complete probability distribution of outcomes given covariates is speci�ed we can
develop an expression for the probability of observation of the responses we see as a function
of the unknown parameters embedded in the speci�cation. With this to hand we can ask
what values of these parameters maximise this probability for the data we have. The resulting
statistics, functions of the observed data, are calledmaximum likelihood estimators. They possess
important optimality properties and have the advantage that they can be produced in a rule
directed fashion.
We start with a very simple problem, the estimation of the probability that an event occurs

(e.g. �nding a job, getting married) in a situation in which this probability is the same for all
agents that are observed. Later we extend the model to cover situations in which the probability
may vary across agents, that is when we are interested in the conditional probability of the event
occurring given characteristics of the agents and their environment. Some elements of the theory
of maximum likelihood estimators are outlined.

2.1. Estimating a probability

Suppose Y1; : : : Yn are binary independently and identically distributed random variables with
P [Yi = 1] = p, P [Yi = 0] = 1 � p for all i. We might use such a model for data recording the
occurrence or otherwise of an event for n individuals, for example being in work or not, buying
a good or service or not, etc. Shortly we will consider how to proceed when p depends upon
characteristics of individuals and of their environment, but for the moment we stay with the
very simple model in which p is the same for all individuals. Let y1; : : : ; yn indicate the data

1The �ne detail of this sort of speci�cation rarely �ows from economic theory so we must be on the alert for
misspeci�cation and not place too much trust on information �owing from a �tted model that is sensitive to minor
changes in the detail of the model speci�cation. Analysis of this sort is particularly fragile if the identi�ability
of interesting features of structures rests on restrictions only arising in the detail of the speci�cation of the
probability law.
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values obtained and note that in this model

P [Y1 = y1 \ � � � \ Yn = yn] =
nY
i=1

pyi(1� p)(1�yi)

= p
Pn

i=1 yi(1� p)
Pn
i=1(1�yi)

= L(p; y):

With any set of data L(p; y) can be calculated for any value of p between 0 and 1. The result
is the probability of observing the data to hand for each chosen value of p. One strategy
for estimating p is to use that value that maximises this probability. The resulting estimator
is called the maximum likelihood estimator (MLE) and the maximand, L(p; y), is called the
likelihood function.
The maximum of the log likelihood function, l(p; y) = logL(p; y), is at the same value of p as

is the maximum of the likelihood function (because the log function is monotonic). It is often
easier to maximise the log likelihood function (LLF) - further, because in many cases this is
a sum of terms, one for each data point, central limit theorems will apply to suitably scaled
versions of the LLF and statistics derived from it. For the problem considered here the LLF is

l(p; y) =

 
nX
i=1

yi

!
log p+

nX
i=1

(1� yi) log(1� p):

Let2

p̂ = argmax
p

L(p; y) = argmax
p

l(p; y):

On di¤erentiating we have the following.

lp(p; y) =
1

p

nX
i=1

yi �
1

1� p

nX
i=1

(1� yi)

lpp(p; y) = � 1
p2

nX
i=1

yi �
1

(1� p)2
nX
i=1

(1� yi):

Note that lpp(p; y) is always negative for admissable p so the optimisation problem has a unique
solution corresponding to a maximum. The solution to lp(p̂; y) = 0 is

p̂ =
1

n

nX
i=1

yi

just the mean of the observed values of the binary indicators, equivalently the proportion of 1�s
observed in the data.

2By argmax
p

l(p; y) I mean the value of the argument p at which l(p; y) achieves a maximum.
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2.2. Likelihood functions and estimation in general

Let Yi, i = 1; : : : ; n be continuously distributed random variables with joint probability den-
sity function f(y1; : : : ; yn; �). The probability that Y falls in in�nitesimal intervals of width
dy1; : : : dyn centred on values y1; : : : ; yn is

A = f(y1; : : : ; yn; �)dy1dy2 : : : dyn

Here only the joint density function depends upon � and the value of � that maximises f(y1; : : : ; yn; �)
also maximises A. In this case the likelihood function is de�ned to be the joint density function
of the Yi�s.
When the Yi�s are discrete random variables the likelihood function is the joint probability

mass function of the Yi�s, and in cases in which there are discrete and continuous elements
the likelihood function is a combination of probability density elements and probability mass
elements. In all cases the likelihood function is a function of the observed data values that
is equal to, or proportional to, the probability of observing these particular values, where the
constant of proportionality does not depend upon the parameters which are to be estimated.
When Yi, i = 1; : : : ; n are independently distributed the joint density (mass) function is the

product of the marginal density (mass) functions of each Yi, the likelihood function is

L(y; �) =

nY
i=1

fi(yi; �);

and the log likelihood function is the sum:

l(y; �) =
nX
i=1

log fi(yi; �):

There is a subscript on f to allow for the possibility that each Yi has a distinct probability
distribution. This situation arises when modelling conditional distributions of Y given some
covariates x. Then f varies depending upon the covariate values. In particular, fi(yi; �) =
fi(yijxi; �), the conditional density (mass) function of Y given x. Often in this context we
will de�ne the conditional distribution of Y given x to be the same function for all i, i.e.
fi(yijxi; �) = f(yijxi; �). In setting out the properties of maximum likelihood estimators below
we will suppress any dependence on covariates in the notation except where this would cause
confusion.
In time series and panel data problems there is often dependence among the Yi�s, indeed

this is sometimes of central interest. For any list of random variables Y = fY1; : : : ; Yng de�ne
the i� 1 element list Yi� = fY1; : : : ; Yi�1g. Since the joint density (mass) function of Y can be
written as the product of conditional density (mass) functions and the marginal density of Y1
as follows,

f(y) =
nY
i=2

fyijyi�(yijyi�)fy1(y1);

we can always write the log likelihood function as the sum

f(y) =
nX
i=1

log fyijyi�(yijyi�) + log fy1(y1):
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2.2.1. Invariance

Note that (parameter free) monotonic transformations of the Yi�s (for example, a change of
units of measurement, or use of logs rather than the original y data) usually leads to a change
in the value of the maximised likelihood function when we work with continuous distributions.
For example if we transform from y to z where y = h(z) and the joint density function of y is
fy(y; �) then the joint density function of z is

fz(z; �) =

����@h(z)@z

���� fy(h(z); �):
For any given set of values, y�, the value of � that maximises the likelihood function fy(y�; �)
also maximises the likelihood function fz(z�; �) where y� = h(z�), so the maximum likelihood
estimator is invariant with respect to such changes in the way the data are presented. However

the maximised likelihood functions will di¤er by a factor equal to
���@h(z)@z

���
z=z�

. The reason for

this is that we omit the in�nitesimals dy1; : : : dyn from the likelihood function for continuous
variates and these change when we move from y to z because they are denominated in the
units in which y or z are measured. The implication of this is that two researchers estimating
the same model but using di¤erent transformations of the data will produce the same MLE
but di¤erent values for the maximised likelihood function, so these values cannot be directly
compared, though they can clearly be adjusted to make them comparable, by multiplying by
the factor identi�ed above.
Maximum likelihood estimators possess another important invariance property. Suppose two

researchers choose di¤erent ways in which to parameterise the same model. One uses �, and
the other uses � = h(�) where this function is one-to-one. Then faced with the same data and
producing estimators �̂ and �̂, it will always be the case that �̂ = h(�̂). There are a number of
important consequences of this.
One arises in the following situation. There are some cases in which an economically in-

teresting magnitude is a function of the parameters in which a model is perhaps naturally
parameterised. For example in travel demand studies we �nd models in which the indirect util-
ity gained using alternative travel modes is a function of an index x0� where one element of x
records travel time and another records travel cost. The ratio of the coe¢ cients on these two
covariates can be interpreted as the value of time because this ratio shows the rate at which
cost has to be adjusted to compensate for travel time increases, keeping utility unchanged. The
invariance property just described implies that the MLE of the value of time is just the ratio of
the MLEs of the two coe¢ cients in the index.
Another important consequence of the invariance property arises because sometimes a re-

parameterisation can improve the numerical properties of the likelihood function. Newton�s
method and its variants may in practice work better if parameters are rescaled. An example
of this often arises when, in index models, elements of x involve squares, cubes, etc., of some
covariate, say x1. Then maximisation of the likelihood function may be easier if instead of
x21, x

3
1, etc., you use x

2
1=10, x

3
1=100, etc., with consequent rescaling of the coe¢ cients on these

covariates. You can always recover the MLEs you would have obtained without the rescaling by
rescaling the estimates.
There are some cases in which a re-parameterisation can produce a globally concave likelihood

function where in the original parameterisation there was not global concavity - recall Newton�s
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method works best with concave maximisation problems (convex minimisation problems). An
example of this arises in the �Tobit�model. This is a model in which each Yi is N(x0i�; �

2) with
negative realisations replaced by zeros. The model is sometimes used to model expenditures and
hours worked, which are necessarily non-negative. In this model the likelihood as parameterised
here is not globally concave, but re-parameterising to � = �=�, and  = 1=�, produces a globally
concave likelihood function. The invariance property tells us that having maximised the �easy�
likelihood function and obtained estimates �̂ and ̂, we can recover the maximum likelihood
estimates we might have had di¢ culty �nding in the original parameterisation by calculating
�̂ = �̂=̂ and �̂ = 1=̂.

2.3. Properties of maximum likelihood estimators

Here we just sketch the main results which we will use later. Let l(�;Y ) be the log likelihood
function now regarded as a random variable, a function of a set of (possibly vector) random
variables Y = fY1; : : : ; Yng. Let l�(�;Y ) be the gradient of this function, itself a vector of
random variables (scalar if � is scalar) and let l��(�;Y ) be the matrix of second derivatives of
this function (also a scalar if � is a scalar). Let

�̂ = argmax
�

l(�;Y ):

This is a function of Y as long as the maximum is de�ned. In order to make inferences about
� using �̂ we need to determine the distribution of �̂. This is hard to obtain exactly except in
simple problems3 so instead we consider developing a large sample approximation.
The limiting distribution for a quite wide class of maximum likelihood problems is as follows.

n1=2(�̂ � �) d! N(0; V0)

where
V0 = � plim

n!1
(n�1l��(�0;Y ))

�1

and �0 is the unknown parameter value. To get an approximate distribution that can be used
in practice we use (n�1l��(�̂;Y ))�1 or some other consistent estimator of V0 in place of V0.

3Actually we can obtain it exactly in the case considered in Section 2.1. In that model

P [

nX
i=1

Yi = m] =
n!

m!(n�m)!
pm(1� p)n�m

which is the probability mass associated with a binomial distribution. Therefore

P [p̂ = a] = P [

nX
i=1

Yi = na]

=
n!

(na)!(n� na)!
pna(1� p)n�na

where a 2 f0; 1=n; 2=n; : : : ; 1g. Further

E[p̂] = p

V ar[p̂] = p(1� p)=n:

Clearly p̂ converges in mean square to p and so p̂ is a consistent estimator.
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The argument that leads to this comes by applying our method for dealing with M-estimators
set out earlier.
Suppose �̂ is uniquely determined as the solution to the �rst order condition

l�(�̂;Y ) = 0

and that �̂ is a consistent estimator of the unknown value of the parameter, �0. Weak conditions
required for consistency are quite complicated and will not be given here - they can be found in
the intermediate textbooks. They require independence or at most weak dependence across log
likelihood function contributions, existence and boundedness of low order derivatives of the log
likelihood function, existence of certain moments involving these derivatives, and, when there are
covariates, consideration of a benign evolution of covariate values as the sample size increases.
An important condition is that the probability limit of n�1 times the log likelihood function
have a unique maximum, located at the unknown parameter value.
Taking a Taylor series expansion around � = �0 and then evaluating this at � = �̂ gives

0 ' l�(�0;Y ) + l��0(�0;Y )(�̂ � �0)

and rearranging and scaling by powers of the sample size n

n1=2(�̂ � �0) ' �
�
n�1l��0(�;Y )

��1
n�1=2l�(�;Y ):

As in our general treatment of M-estimators if we can show that

n�1l��0(�0;Y )
p! A(�0)

and
n�1=2l�(�0;Y )

d! N(0; B(�0))

then
n1=2(�̂ � �0)

d! N(0; A(�0)
�1B(�0)A(�0)

�10):

Clearly,
A(�0) = plim

n!1
n�1l��0(�0;Y );

but what is the limiting distribution of n�1=2l�(�0;Y )?
First note that in problems for which the Yi�s are independently distributed, n�1=2l�(�0;Y )

is a scaled (by n1=2) mean of random variables and we may be able to �nd conditions under
which a central limit theorem applies, indicating a limiting normal distribution. We must now
�nd the mean and variance of this distribution.
Since L(�;Y ) is a joint probability density function (we just consider the continuous distri-

bution case here), Z
L(�; y)dy = 1

where multiple integration is over the support of Y . If this support does not depend upon �,
then

@

@�

Z
L(�; y)dy =

Z
L�(�; y)dy = 0:
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But, because l(�; y) = log L(�; y), and l�(�; y) = L�(�; y)=L(�; y), we haveZ
L�(�; y)dy =

Z
l�(�; y)L(�; y)dy = E [l�(�;Y )]

and so E [l�(�;Y )] = 0. This holds for any value of �, in particular for �0 above. If the variance
of l�(�0;Y ) converges to zero as n becomes large then l�(�0;Y ) will converge in probability to
zero and the mean of the limiting distribution of n�1=2l�(�0;Y ) will be zero.
We turn now to the variance of the limiting distribution. We have just shown thatZ

l�(�; y)L(�; y)dy = 0:

Di¤erentiating again

@

@�0

Z
l�(�; y)L(�; y)dy =

Z
(l��0(�; y)L(�; y) + l�(�; y)L�0(�; y)) dy

=

Z
(l��0(�; y) + l�(�; y)l�(�; y)

0)L(�; y)dy

= E [l��0(�;Y ) + l�(�;Y )l�(�;Y )
0]

= 0:

Separating the two terms in the penultimate line,

E [l�(�;Y )l�(�;Y )
0] = �E [l��0(�;Y )] (2.1)

and note that, since E [l�(�;Y )] = 0,

V ar[l�(�;Y )] = E [l�(�;Y )l�(�;Y )
0]

and so

V ar[l�(�;Y )] = �E [l��0(�;Y )]
) V ar[n�1=2l�(�;Y )] = �E

�
n�1l��0(�;Y )

�
giving

B(�0) = � plim
n!1

n�1l��0(�0;Y ):

The matrix
I(�) = �E [l��(�;Y )]

plays a central role in likelihood theory - it is called the Information Matrix.
Finally, because B(�0) = �A(�0)

A(�)�1B(�)A(�)�10 = �
�
plim
n!1

n�1l��0(�;Y )

��1
:

Of course a number of conditions are required to hold for the results above to hold. These
include the boundedness of third order derivatives of the log likelihood function, independence



Course Notes 4, Andrew Chesher, 25.10.2005 8

or at most weak dependence of the Yi�s, existence of moments of derivatives of the log likelihood,
or at least of probability limits of suitably scaled versions of them, and lack of dependence of
the support of the Yi�s on �.
The result in equation (2.1) above leads, under suitable conditions concerning convergence,

to
plim
n!1

�
n�1l�(�;Y )l�(�;Y )

0� = � plim
n!1

�
n�1l��0(�;Y )

�
:

This gives an alternative way of �estimating �V0, namely

V̂ o0 =
n
n�1l�(�̂;Y )l�(�̂;Y )

0
o�1

which compared with
~V o0 =

n
�n�1l��0(�̂;Y )

o�1
has the advantage that only �rst derivatives of the log likelihood function need to be calculated.
Sometimes V̂ o0 is referred to as the �outer product of gradient� (OPG) estimator. Both these
estimators use the �observed� values of functions of derivatives of the LLF and. It may be
possible to derive explicit expressions for the expected values of these functions. Then one can
estimate V0 by

V̂ e0 =
�
E[n�1l�(�;Y )l�(�;Y )

0]j�=�̂
	�1

=
�
�E[n�1l��0(�;Y )]j�=�̂

	�1
:

These two sorts of estimators are sometimes referred to as �observed information�(V̂ o0 , ~V
o
0 ) and

�expected information�(V̂ e0 ) estimators.
Maximum likelihood estimators possess optimality property, namely that, among the class

of consistent and asymptotically normally distributed estimators, the variance matrix of their
limiting distribution is the smallest that can be achieved in the sense that other estimators in
the class have limiting distributions with variance matrices exceeding the MLE�s by a positive
semide�nite matrix.
We will shortly consider how to conduct inference in a likelihood framework. First, here are

a couple of applications.

2.4. Estimating a conditional probability

Suppose Y1; : : : Yn are binary independently and identically distributed random variables with

P [Yi = 1jX = xi] = p(xi; �)

P [Yi = 0jX = xi] = 1� p(x; �):

This is an obvious extension of the model in the previous section which we would use if we
wanted to understand how characteristics of agents and their environment a¤ect choices or the
occurrence of events.
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The likelihood function for this problem is

P [Y1 = y1 \ � � � \ Y1 = y1jx] =
nY
i=1

p(xi; �)
yi(1� p(xi; �))(1�yi)

= L(�; y):

where y denotes the complete set of values of yi and dependence on x is suppressed in the
notation. The log likelihood function is

l(�; y) =
nX
i=1

yi log p(xi; �) +
nX
i=1

(1� yi) log(1� p(xi; �))

and the maximum likelihood estimator of � is

�̂ = argmax
�

l(�; y):

So far this is an obvious generalisation of the simple problem met in the last section.
To implement the model we choose a form for the function p(x; �), which must of course lie

between zero and one. One common choice is

p(x; �) =
exp(x0�)

1 + exp(x0�)

which produces what is commonly called a logit model. Another common choice is

p(x; �) = �(x0�) =

Z x0�

�1
�(w)dw

�(w) = (2�)�1=2 exp(�w2=2)

in which � is the standard normal distribution function. This produces what is known as a probit
model. Both models are widely used, and often rather uncritically. Note that in both cases a
single index model is speci�ed, the probability functions are monotonic increasing, probabilities
arbitrarily close to zero or one are obtained when x0� is su¢ ciently large or small, and there is
a symmetry in both of the models in the sense that p(�x; �) = 1 � p(x; �). Any or all of these
properties might be inappropriate in a particular application but there is rarely discussion of
this in the applied econometrics literature.

2.4.1. Single index models

We can cover both cases by considering general single index models, so for the moment rewrite
p(x; �) as g(w) where w = x0�. Then the �rst derivative of the log likelihood function is as
follows.

l�(�; y) =
nX
i=1

gw(x
0
i�)xi

g(x0i�)
yi �

gw(x
0
i�)xi

1� g(x0i�)
(1� yi)

=
nX
i=1

(yi � g(x0i�))
gw(x

0
i�)

g(x0i�) (1� g(x0i�))
xi
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Here gw(w) is the derivative of g(w) with respect to w. The expression for the second derivative
is rather messy. Here we just note that its expected value given x is quite simple, namely

E[l��(�; y)jx] = �
nX
i=1

gw(x
0
i�)

2

g(x0i�) (1� g(x0i�))
xix

0
i;

the negative of which is the Information Matrix for general single index binary data models.

2.4.2. The logit model

For the logit model there is major simpli�cation

g(w) =
exp(w)

1 + exp(w)

gw(w) =
exp(w)

(1 + exp(w))
2

) gw(w)

g(w) (1� g(w)) = 1:

Therefore in the logit model the MLE satis�es

nX
i=1

 
yi �

exp(x0i�̂)

1 + exp(x0i�̂)

!
xi = 0;

the Information Matrix is

I(�) =

nX
i=1

exp(x0i�)

(1 + exp(x0i�))
2xix

0
i;

the MLE has the limiting distribution

n1=2(�̂n � �)
d! N(0; V0)

V0 =

 
plim
n!1

n�1
nX
i=1

exp(x0i�)

(1 + exp(x0i�))
2xix

0
i

!�1
;

and we can conduct approximate inference using the following approximation

n1=2(�̂n � �) ' N(0; V0)

using the estimator

V̂0 =

0B@n�1 nX
i=1

exp(x0i�̂)�
1 + exp(x0i�̂)

�2xix0i
1CA
�1

when producing approximate hypothesis tests and con�dence intervals.
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2.4.3. The probit model

In the probit model

g(w) = �(w)

gw(w) = �(w)

) gw(w)

g(w) (1� g(w)) =
�(w)

�(w)(1� �(w)) :

Therefore in the probit model the MLE satis�es

nX
i=1

�
yi � �(x0i�̂)

� �(x0i�̂)

�(x0i�̂)(1� �(x0i�̂))
xi = 0;

the Information Matrix is

I(�) =
nX
i=1

�(x0i�)
2

�(x0i�)(1� �(x0i�))
xix

0
i;

the MLE has the limiting distribution

n1=2(�̂n � �)
d! N(0; V0)

V0 =

 
plim
n!1

n�1
nX
i=1

�(x0i�)
2

�(x0i�)(1� �(x0i�))
xix

0
i

!�1
;

and we can conduct approximate inference using the following approximation

n1=2(�̂n � �) ' N(0; V0)

using the estimator

V̂0 =

 
n�1

nX
i=1

�(x0i�̂)
2

�(x0i�̂)(1� �(x0i�̂))
xix

0
i

!�1
when producing approximate tests and con�dence intervals.

2.5. Models for count data

The methods developed above are useful when we want to model the occurrence or otherwise
of an event. Sometimes we want to model the number of times an event occurs - above this
was zero or one. In general it might be any nonnegative integer. Count data are being used
increasingly in econometrics. An interesting application is to the modelling of the returns to
R&D investment in which data on numbers of patents �led in a series of years by a sample of
companies is studied and related to data on R&D investments.
Binomial and Poisson probability models provide common starting points in the development

of count data models. If Z1; : : : ; Zm are identically and independently distributed binary random
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variables with P [Zi = 1] = p, P [Zi = 0] = 1 � p, then the sum of the Zi�s has a Binomial
distribution,

Y =
mX
i=1

Zi � Bi(m; p)

and

P [Y = j] =
m!

j!(m� j)!p
j(1� p)m�j ; j 2 f0; 1; 2; : : : ;mg

Asm becomes large,m1=2(m�1Y�p) becomes approximately normally distributed, N(0; p(1�
p)), and as m becomes large while mp = � remains constant, Y comes to have a Poisson distri-
bution,

Y � Po(�)

and

P [Y = j] =
�j

j!
exp(��); j 2 f0; 1; 2; : : : g:

In each case letting p or � be functions of covariates creates a model for the conditional
distribution of a count of events given covariate values. The Poisson model is much more widely
used, in part because there is no need to specify or estimate the parameter m. In the application
to R&D investment one might imagine that a �rm seeds a large number of research projects
in a period of time, each of which has only a small probability of producing a patent. This is
consonant with the Poisson probability model but note that one might be concerned about the
underlying assumption of independence across projects built into the Poisson model.
With a model speci�ed, maximum likelihood estimation proceeds as set out above. The

Poisson model is used as an example. Suppose that we specify a single index model:

P [Yi = yijxi] =
�(x0i�)

yi

yi!
exp(��(x0i�)); j 2 f0; 1; 2; : : : g:

The log likelihood function is

l(�; y) =
nX
i=1

yi log �(x
0
i�)� �(x0i�)� log yi!

with �rst derivative

l�(�; y) =
nX
i=1

�
yi
�w(x

0
i�)

�(x0i�)
� �w(x0i�)

�
xi

=
nX
i=1

(yi � �(x0i�))
�w(x

0
i�)

�(x0i�)
xi

where �w(w) is the derivative of �(w) with respect to w.
The MLE satis�es

nX
i=1

�
yi � �(x0i�̂)

� �w(x0i�̂)
�(x0i�̂)

xi:
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The second derivative matrix is

l��(�; y) =
nX
i=1

(yi � �(x0i�))
 
�ww(x

0
i�)

�(x0i�)
�
�
�w(x

0
i�)

�(x0i�)

�2!
xix

0
i �

nX
i=1

�w(x
0
i�)

2

�(x0i�)
xix

0
i

where, note, the �rst term has expected value zero. Therefore the Information Matrix for this
conditional Poisson model is

I(�) =
nX
i=1

�w(x
0
i�)

2

�(x0i�)
xix

0
i:

The limiting distribution of the MLE is (under suitable conditions)

n1=2(�̂ � �0)
d! N (0; V0)

V0 =

 
plim
n!1

n�1
nX
i=1

�w(x
0
i�)

2

�(x0i�)
xix

0
i

!�1
and we can make approximate inference about �0 using

(�̂ � �0) ' N
�
0; n�1V0

�
with V0 estimated by

V̂0 =

 
n�1

nX
i=1

�w(x
0
i�̂)

2

�(x0i�̂)
xix

0
i

!�1
:

In applied work a common choice is �(w) = exp(w) for which

�w(w)

�(w)
= 1

�w(w)
2

�(w)
= exp(w):


