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1. Introduction

These notes start with an introduction to large sample approximate inference and the concepts
of convergence in probability to a constant and to a random variable. These ideas are used
to develop approximate methods for making inferences using the OLS and GLS estimators in
non-normal models. A general method for developing the limiting distribution of M-estimators
is sketched and applied to the non-linear least squares estimator.

2. Approximate inference

The results set out in the previous notes let us make inferences about coe¢ cients of regression
functions, �, when the distribution of y given X is Gaussian (normal) and the variance of
the unobservable disturbances is known. But in practice the normal distribution at best holds
approximately and of course we never know the value of the nuisance parameter �. So how
can we proceed? The most common approach and the one outlined here involves employing
approximations to exact distributions1 . They have the disadvantage that they can be inaccurate
and the magnitude of the inaccuracy can vary substantially from case to case. They have the
following advantages.

1. They are usually very much easier to derive than exact distributions,

2. They are often valid for a wide family of distributions for y while exact distributional results
are only valid for a speci�c distribution of y, and we rarely know which distribution to use
to produce an exact distributional result.

The most common sort of approximation employed in econometrics is what is known as a
large sample approximation.
Suppose we have a statistic, Sn, computed using n realisations, for example the OLS esti-

mator, �̂, or the variance estimator �̂2, or one of the test statistics developed earlier.
To produce a large sample approximation to the distribution of the statistic, Sn, we regard

this statistic as a member of a sequence of statistics, S1; : : : ; Sn; : : : , indexed by n, the number
of realisations. We write this sequence as fSng1n=1. Denote the distribution function of Sn by
P [Sn � s] = FSn(s). We then consider how the distribution function FSn(s) behaves as we pass
through the sequence, that is as n takes larger and larger values. In particular we ask what
properties the distribution function has as n tends to in�nity2 . The distribution associated
with the limit of the sequence of statistics is sometimes referred to as a limiting distribution.
Sometimes this distribution can be used to produce an approximation to FSn(s) which can be
used to conduct approximate inference using Sn. In many cases the limiting behaviour of FSn(s)
is the same under a variety of conditions. Then the approximation may be useful under all, or
many of, these conditions.

1The main, and increasingly popular, alternative to the use of approximations is to use the bootstrap, The
Jacknife, the Bootstrap and Other Resampling Plans, B. Efron, Philadelphia: Society for Industrial and Applied
Mathematics, 1982. The relationship between bootstrap methods and large sample approximations is drawn out
in The Bootstrap and the Edgeworth Expansion, P. Hall, New York: Springer-Verlag, 1992, a book written at a
rather advanced level.

2 It is very important to realise that this is merely a construction to enable an approximation to be found.
Whether a sample ever could be large in a particular application of a large sample approximation is irrelevant.
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2.1. Convergence in probability to a constant and consistency

In many cases of interest the distributions of a sequence of statistics becomes concentrated on
a single point, say c, as we pass through the sequence, increasing n. That is, FSn(s) becomes
closer and closer to a step function as n is increased, a step function which is zero up to c, and
at c, jumps to 1. In this case we say that Sn converges in probability to the constant c.
Formally, we say that a sequence of (possibly vector valued) statistics converges in probability

to a constant (possibly vector), c, if, for all3 " > 0,

lim
n!1

P [kSn � ck > "] = 0;

that is, if for every "; � > 0, there exists N (which typically depends upon " and �), such that
for all n > N

P [kSn � ck > "] < �:

We then write plimn!1 Sn = c, or, Sn
p! c, and c is referred to as the probability limit of Sn.

When Sn = �̂n is an estimator of a parameter, �, which takes the value �0 and �̂n
p! �0,

we say that �̂n is a consistent estimator. Determining whether or not an estimator is consistent

can be quite straightforward. If every member of the sequence fE
h
�̂n

i
g1i=1 and fV ar

h
�̂n

i
g1i=1

exists, and

lim
n!1

E
h
�̂n

i
= �

lim
n!1

V ar
h
�̂n

i
= 0

then we say that �̂n converges in mean square to �. It is quite easily shown that convergence in
mean square implies convergence in probability4 . It is often easy to derive expected values and
variances of statistics. So a quick route to proving consistency is to prove convergence in mean
square. Note, though, that an estimator can be consistent but not converge in mean square.
There are commonly occurring cases in econometrics5 where estimators are consistent but the
sequences of moments required for consideration of convergence in mean square do not exist.
Consistency is generally regarded as a desirable property for an estimator to possess. Note

though that in all practical applications of econometric methods we have a �nite sized sample
at our disposal. The consistency property on its own does not tell us about the quality of
the estimate that we calculate using such a sample. It might be better sometimes to use an
inconsistent estimator that generally takes values close to the unknown � than a consistent
estimator that is very inaccurate except at a much larger sample size than we have available.
The consistency property does tell us that with a large enough sample our estimate would likely
be close to the unknown truth, but not how close, nor even how large a sample is required to
get an estimate close to the unknown truth. To get some idea of this we consider the concept
of convergence in distribution.

3Here the notation jj � jj is used to denote the Euclidean length of a vector, that is: kzk = (z0z)1=2. This is
the absolute value of z when z is a scalar.

4A proof using Chebyshef�s inequality is available in most of the intermediate textbooks.
5For example, the two stage least squares estimator in just identi�ed linear models, i.e. the indirect least

squares estimator.
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2.2. Convergence in distribution

A sequence of statistics fSng1n=1 that converges in probability to a constant has a variance
(if one exists) which becomes small as we pass to larger values of n. If we multiply Sn by a
function of n, chosen so that the variance of the transformed statistic remains approximately
constant as we pass to larger values of n, then we may obtain a sequence of statistics which
converge not to a constant but to a random variable. If we can work out what the distribution
of this random variable is, then we can use this distribution to approximate the distributions of
the transformed statistics in the sequence, and in particular of the statistic we calculate using
a particular �nite sized sample. This approach can be formalised as follows. First we de�ne
convergence in distribution.
Consider a sequence of random variables fTng1n=1. Denote the distribution function of Tn

by
P [Tn � t] = FTn(t):

Let T be a random variable with distribution function

P [T � t] = FT (t):

We say that fTng1n=1 converges in distribution to T if for all " > 0 there exists N (which will
generally depend upon ") such that for all n > N ,

jFTn(t)� FT (t)j < "

at all points t at which FT (t) is continuous. Then we write Tn
d! T . The de�nition applies for

vector and scalar random variables. In this situation we will also talk in terms of Tn converging
in probability to (the random variable) T .
Now return to the sequence fSng1n=1 that converges in probability to a constant. Let Tn =

h(n)(Sn) with h(�) > 0 chosen so that fTng1n=1 converges in distribution to a random variable
T that has a non-degenerate distribution. Usually the statistics Sn are centered so that their
expectations converge to a constant value, and they are usually scaled so that the distribution
of T is parameter free, if this can be done. A common case that will arise is that in which
h(n) = n�. In this course we will only encounter the special case in which � = 1=2, that is
h(n) = n1=2.
We can use the limiting random variable T to make approximate probability statements as

follows. Since Sn = Tn=h(n),

P [Sn � s] = P [Tn=h(n) < s]

= P [Tn < s� h(n)]
' P [T < s� h(n)]
= FT (s� h(n))

which allows approximate probability statements concerning the random variable Sn.

Example 2.1. Consider the mean, �Xn of n independently and identically distributed random
variables with common mean and variance respectively � and �2. One of the simplest Central

Limit Theorems (see below) says that, if Tn = n1=2( �Xn��)=� then Tn
d! T � N(0; 1). We can



Course Notes 3, Andrew Chesher, 31.10.2005 4

use this result to say that Tn ' N(0; 1) where �'�here means �is approximately distributed
as�. This sort of result can be used to make approximate probability statements. Since T has
a standard normal distribution

P [�1:96 � T � 1:96] = 0:95

and so, approximately,

P [�1:96 � n1=2( �Xn � �)
�

� 1:96] + 0:95

leading, if �2 were known, to the approximate 95% con�dence interval for �,

f �Xn � 1:96�=n1=2; �Xn + 1:96�=n1=2g;

approximate in the sense that

P [ �Xn � 1:96�=n1=2 � � � �Xn + 1:96�=n
1=2] + 0:95

Approximate hypothesis tests, that is tests whose size is approximately equal to some nominated
size are produced in a similar way.

It is very important to realise that in making this approximation there is no sense in which
we ever think of the sample size actually becoming large. Sometimes the use of large sample
approximations is criticised by saying that �the sample isn�t large� or a particular form of
approximation is criticised by saying �the sample size couldn�t become large�. These are both
ignorant comments. These large sample approximations are just that, approximations, and they
are as good or bad as the size of the error incurred in using the approximation. Of course that
depends to some extent on the sample size but it also depends on other factors.
For example we know that when y given X is normally distributed the OLS estimator is

exactly normally distributed conditional on X. For non-normal y, under some conditions, as
we will see, the limiting distribution of an appropriately scaled OLS estimator is normal. The
quality of that normal approximation depends upon the sample size, but also upon the extent
of the departure of the distribution of y given X from normality and upon the disposition of the
values of the covariates. For y close to normality the normal approximation to the distribution
of the OLS estimator is good even at very small sample sizes.
So, the sequence fSng1n=1 indexed by the sample size is just a hypothetical construct in the

context of which we can develop an approximation to the distribution of a statistic. Of primary
interest is the extent to which, at the value of n that we have, the deviations jFTn(t)�FT (t)j are
large or small. This is commonly studied by Monte Carlo simulation or by considering higher
order approximations.

2.3. Functions of statistics - Slutsky�s Theorem

The result embodied in Slutsky�s Theorem is of great help in developing the limiting distribu-
tions of statistics. Slutsky�s Theorem states that if Tn is a sequence of random variables that
converges in probability to a constant c, and g(�) is a continuous function, then g(Tn) converges
in probability to g(c). Tn can be a vector or matrix of random variables in which case c is a
vector or matrix of constants. Sometimes c is called the probability limit of Tn.
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A similar result holds for convergence to a random variable, namely that if Tn is a sequence of
random variables that converges in probability to a random variable T , and g(�) is a continuous
function, then g(Tn) converges in probability to g(T ). For example, if

T 0n =
h
T 10n

... T 20n

i
and

Tn
d! T =

h
T 10

... T 20
i0

then
T 1n + T

2
n

d! T 1 + T 2

with similar results for matrix and scalar products, inverses and so forth. Note that convergence
in probability to a constant is essentially a special case of convergence in distribution in which
the limiting distribution has all its probability mass concentrated on a single point. So above,

if T 1n
d! T 1 and T 2n

p! c, then T 1n + T
2
n

d! T 1 + c where we interpret the result as a random
variable T 1 shifted in location by a constant c.
Often the limiting distribution of a statistic is obtained by writing the statistic as a function

of simple components, obtaining the limiting distributions and/or probability limits of the com-
ponents and then combining these using the preceding results. We will see this operation done
with the OLS estimator shortly. First we introduce some theorems which enable us to state
the limiting distributions of relatively simple expressions which appear as components of some
econometric statistics.

2.4. Limit theorems

The theorems we need are called central limit (or sometimes just limit) theorems. We give two
of these here.
The Lindberg-Levy Central Limit Theorem gives the limiting distribution of a mean of identi-

cally distributed random variables. The Theorem states that if fYig1i=1 are mutually independent
random (vector) variables each with expected value � and positive de�nite covariance matrix 

then if �Yn = n�1

Pn
i=1 Yi,

n1=2( �Yn � �)
d! Z; Z � N(0;
):

Many of the statistics we encounter in econometrics can be expressed as means of non-
identically distributed random vectors, whose limiting distribution is the subject of the Lindberg-
Feller Central Limit Theorem. The Theorem states that if fYig1i=1 are independently distributed
random variables with E[Yi] = �i, V ar[Yi] = 
i with �nite third moments and

�Yn =
1

n

nX
i=1

Yi
1

n

nX
i=1

�i = ��n

lim
n!1

1

n

nX
i=1

�i = � lim
n!1

1

n

nX
i=1


i = 
;



Course Notes 3, Andrew Chesher, 31.10.2005 6

where 
 is �nite and positive de�nite, and for each j

lim
n!1

 
nX
i=1


i

!�1

j = 0; (2.1)

then
n1=2( �Yn � ��n)

d! Z; Z � N(0;
):

2.5. The approximate distribution of the OLS estimator

Consider the OLS estimator Sn = �̂n = (X
0
nXn)

�1X 0
nyn where we index �̂ etc., by n to indicate

that a sample of size n is involved. We know that when

yn = Xn� + " E["njXn] = 0 V ar["njXn] = �2In

then
E[�̂njXn] = �

and

V ar[�̂njXn] = �2(X 0
nXn)

�1 = n�1�2(n�1X 0
nXn)

�1 = n�1�2(n�1
nX
i=1

xix
0
i)
�1:

2.5.1. Consistency

First consider when the consistency property applies. To do this we have to consider the manner
in which Xn varies as we pass down the sequence fSng1n=1. If the xi�s were independently
sampled from some distribution such that n�1

Pn
i=1 xix

0
i = n�1X 0X

p! �xx = E[xx0], and if
this matrix of expected squares and cross-products is non-singular then

lim
n!1

V ar[�̂njXn] = 0:

In this case �̂n converges in mean square to � (recall that E[�̂jX] = �), so �̂n
p! � and the OLS

estimator is consistent.
Another way to proceed is to imagine that as n increases, a �xed matrix Xn is replicated

over and over again, in which case after m replications when the matrix of covariate values is
Xmn containing Xn replicated m times,

V ar[�̂mnjXmn] = m�1�2(X 0
nXn)

�1

which passes to zero as m tends to in�nity as long as X 0
nXn is non-singular.
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2.5.2. Limiting distribution

To make large sample approximate inference using the OLS estimator, consider the centred
statistics

Sn = �̂n � �

and the associated scaled statistics

Tn = n1=2Sn

= n1=2(�̂n � �)
= (n�1X 0

nXn)
�1n�1=2X 0

n"n:

Note that, in the last line, the functions of n multiply together to produce n1=2 as in the second
line. Thinking in terms of obtaining the x values by random sampling, under suitable conditions6

(n�1X 0
nXn)

�1 p! ��1xx :

Consider the term

n�1=2X 0
n"n = n

�1=2
nX
i=1

xi"i:

Let Ri = xi"i and note that

E[Ri] = 0; V ar[Ri] = �
2xix

0
i.

Under suitable conditions on the vectors xi, the Ri�s satisfy the conditions of the Lindberg-Feller
Central Limit Theorem and we have

n�1=2
nX
i=1

Ri = n
�1=2X 0

n"n
d! N(0; �2�xx):

Finally, by Slutsky�s Theorem

Tn = n
1=2(�̂n � �)

d! N(0; �2��1xx ).

We use this approximation to say that

n1=2(�̂n � �) ' N(0; �2��1xx ):

In practice of course �2 and �xx are unknown and we replace them by estimates, e.g. �̂2n
and n�1X 0

nXn. If these are consistent estimates then we can use Slutsky�s Theorem to obtain
the limiting distributions of the resulting statistics.
For example in testing the hypothesis H0 : R� = r, we have already considered the statistic

Sn = (R�̂n � r)0
�
R (X 0

nXn)
�1
R0
��1

(R�̂n � r)=�2

6 In the previously circulated version �XX was (incorrectly) not inverted on the right hand side of the next
expression. Thanks to Albrecht Glitz for pointing this out.
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where the subscript �n� is now appended to indicate the sample size under consideration. In
the normal linear model, Sn � �2(j). When y given X is non-normally distributed the limiting
distribution result given above can be used, as follows.
Rewrite Sn as

Sn =
�
n1=2(R�̂n � r)

�0 �
R
�
n�1X 0

nXn
��1

R0
��1 �

n1=2(R�̂n � r)
�
=�2:

Let Pn be such that
Pn

�
R
�
n�1X 0

nXn
��1

R0
�
P 0n = Ij

and consider the sequence of random variables

Tn =
n1=2

�
Pn(R�̂n � r):

Tn
d! N(0; Ij) as long as Pn

p! P where P 0(R��1xxR
0)P = Ij . Application of the results on

limiting distributions of functions of random variables given in Section 2.3 gives

T 0nTn
d! �2(j):

Now

T 0nTn =
n

�2
(R�̂n � r)0

�
R
�
n�1X 0

nXn
��1

R0
��1

(R�̂n � r)

where we have used

P 0nPn =
�
R
�
n�1X 0

nXn
��1

R0
��1

:

Cancelling the terms involving n:

T 0nTn = Sn
d! �2(j):

Finally, if �̂2n is a consistent estimator of �
2 then it can replace �2 in the formula for Sn and the

approximate �2(j) still applies, that is:�
n1=2(R�̂n � r)

�0 �
R
�
n�1X 0

nXn
��1

R0
��1 �

n1=2(R�̂n � r)
�
=�̂2n

d! �2(j):

The other results we developed earlier for the normal linear model with �known� �2 also
works as approximations when a normality restrictions does not hold and when �2 is replaced
by a consistent estimator.

2.6. The approximate distribution of the GLS estimator

In Course Notes 2 we saw that in the model

y = X� + "

E["jX] = 0

V ar["jX] = 
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the GLS estimator, ~� =
�
X 0
�1X

��1
X 0
�1y (note using 
, not an estimate 
̂) is BLU, and

when y given X is normally distributed

~� � N(�;
�
X 0
�1X

��1
):

When y given X is non-normally distributed we can proceed as above, working in the context of
a transformed model in which transformed y given X has an identity covariance matrix giving,
under suitable conditions ~�

p! � and the limiting distribution

n1=2(~� � �) d! N(0;
�
n�1X 0
�1X

��1
):

We noted that in practice 
 is unknown and suggested using a feasible GLS estimator,
~� =

�
X 0
̂�1X

��1
X 0
̂�1y in which 
̂ was some estimate of the conditional variance of y given

X. Suppose 
̂ is a consistent estimator of 
. Then it can be shown that ~� is a consistent
estimator of � and under suitable conditions

n1=2(~� � �) d! N(0;
�
n�1X 0
�1X

��1
):

When 
̂ is a consistent estimator the limiting distribution of the feasible GLS estimator is
the same as the limiting distribution of the estimator that employs 
. Of course the exact
distributions di¤er in a �nite sized sample to an extent that depends upon the accuracy of the
estimator of 
 in that �nite sized sample.
When the elements of 
 are functions of a �nite number of parameters it may be possible to

produce a consistent estimator, 
̂.
For example consider a heteroscedastic model in which 
 is diagonal with diagonal elements

!ii = f(xi; 
):

A �rst step OLS estimation produces residuals, "̂i and

E["̂2i jX] = (M
M)ii =M
0
i
Mi = !iiMii

where M 0
i is the ith row of M and Mii is the (i; i) element of M . This simpli�cation follows

from the diagonality of 
 and the idempotency of M . We can therefore write7

"̂2i
Mii

= f(xi; 
) + ui

where E[uijX] = 0, and under suitable conditions a nonlinear least squares estimation will
produce a consistent estimator of 
, leading to a consistent estimator of 
.

7Under suitable conditions on the evolution of the xi�s, Mii ! 1, and the division by Mii on the left hand
side below can be (and routinely is) ignored.
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2.7. The approximate distribution of M-estimators

We have already met two M-estimators - the OLS and the NLS estimator. Below we will
study another M-estimator, the maximum likelihood estimator. It is di¢ cult to develop exact
distributions for these estimators, except under very special circumstances (e.g. for the OLS
estimator with normally distributed y given X) and, as pointed out earlier, in practice an
exact distributional result rarely leads to practical exact inference. So, we need to develop
approximations to the distributions of M-estimators. As before we will study large sample
approximations. This Section gives an overview of the strategy used to develop large sample
approximations to the distributions of M-estimators. The next Section considers the particular
case of the NLS estimator.
Consider an M-estimator de�ned as

�̂n = argmax
�

U(Zn; �)

where � is a vector of parameters and Zn is a vector random variable. In the applications we
will consider Zn contains n random variables representing outcomes observed in a sample of size
n. We wish to obtain the limiting distribution of �̂n.
The �rst step is to show that �̂n

p! �0, the true value of �. This is done by placing con-
ditions on U and on the distribution of Zn which ensure that (a) for � in a neighbourhood of
�0, U(Zn; �)

p! U�(�), (b) the sequence of values (indexed by n) of � that maximise U(Zn; �)
converges in probability to the value of � that maximises U�(�), (c) the value of � that uniquely
maximises U�(�) is �0, the unknown parameter value. Condition (c) is essentially an identi�ca-
tion condition.
To obtain the limiting distribution of n1=2

�
�̂n � �0

�
, consider situations in which the M-

estimator can be de�ned as the unique solution to �rst order conditions

U�(Zn; �̂n) = 0

where

U�(Zn; �̂n) =
@

@�
U(Zn; �)j�=�̂n

This is certainly the case when U(Zn; �) is concave. We �rst consider a Taylor series expansion
of U(Zn; �) regarded as a function of � around � = �0, as follows.

U�(Zn; �) = U�(Zn; �0) + U��(Zn; �0) (� � �0) +R(�; �0; Zn) (**)

Evaluating this at � = �̂n (at which point U�(Zn; �̂n) = 0) gives

0 = U�(Zn; �̂n) = U�(Zn; �0) + U��(Zn; �0)
�
�̂n � �0

�
+R(�̂n; �0; Zn) (**)

where

U��(Zn; �) =
@2

@�@�0
U(Zn; �):

The remainder term, R(�̂n; �0; Zn), involves the third derivatives of U(Zn; �) and in many situ-
ations converges in probability to zero as n becomes large, in part because of the consistency of
�̂n.
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This allows us to write

U�(Zn; �0) + U��(Zn; �0)
�
�̂n � �0

�
+ 0 (**)

and then �
�̂n � �0

�
+ �U��(Zn; �0)�1U�(Zn; �0):

Equivalently:

n1=2
�
�̂n � �0

�
+ �

�
n�1U��(Zn; �0)

��1
n�1=2U�(Zn; �0):

In the situations we will encounter it is possible to �nd conditions under which

n�1U��(Zn; �0)
p! A(�0) n�1=2U�(Zn; �0)

d! N(0; B(�0));

for some matrices A(�0) and B(�0), concluding that

n1=2
�
�̂n � �0

�
d! N(0; A(�0)

�1B(�0)A(�0)
�10):

The details vary from case to case and the conditions under which the claimed convergence
(in probability and distribution) occur are often complicated and will not be considered here.
Of primary interest here are the forms taken by A(�) and B(�).
Consider the case of the OLS estimator:

�̂n = argmax
�

(
�

nX
i=1

(Yi � x0i�)
2

)
when Yi = x0i�0 + "i and the "i�s are independently distributed with expected value zero and
common variance �20.
Note that OLS maximises the negative of the sum of squared residuals,

U(Zn; �) = �
nX
i=1

(Yi � x0i�)
2

n�1=2U�(Zn; �) = 2n�1=2
nX
i=1

(Yi � x0i�)xi

n�1U��(Zn; �) = �2n�1
nX
i=1

xix
0
i

and, de�ning �XX � plimn!1 n
�1Pn

i=1 xix
0
i:

A(�0) = �2�XX
which does not depend upon �0 in this special case,

B(�0) = 4�
2
0�XX

A(�0)
�1B(�0)A(�0)

�10 = �20�
�1
XX

and �nally the OLS estimator has the following limiting normal distribution.

n1=2
�
�̂n � �0

�
d! N(0; �20�

�1
XX):
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2.8. (*) The approximate distribution of the NLS estimator

This Section studies a slightly more complicated case: the limiting distribution of the NLS
estimator. At each step compare with the results above for the OLS estimator in the linear
model.
The NLS estimator is de�ned as follows.

�̂n = argmax
�

(
�

nX
i=1

(Yi � g(xi; �))2
)

In the previous Section g(xi; �) = x0i�. There is:

U(Zn; �) = �
nX
i=1

(Yi � g(xi; �))2

n�1=2U�(Zn; �) = 2n�1=2
nX
i=1

(Yi � g(xi; �)) g�(xi; �)

n�1U��(Zn; �) = 2n�1
nX
i=1

(Yi � g(xi; �)) g��(xi; �)� 2n�1
nX
i=1

g�(xi; �)g�(xi; �)
0

where

g�(xi; �) � @

@�
g(xi; �)

g��(xi; �) � @2

@�@�0
g(xi; �):

We know that
E [(Yi � g(xi; �0)) g��(xi; �0)jX] = 0

and, under suitable conditions:

2n�1
nX
i=1

(Yi � g(xi; �0)) g��(xi; �0)
p! 0

so that

n�1U��(Zn; �0)
p! �2 plim

n!1
n�1

nX
i=1

g�(xi; �0)g�(xi; �0)
0 = A(�0):

Now consider

n�1=2U�(Zn; �0) = 2n
�1=2

nX
i=1

(Yi � g(xi; �0))g�(xi; �0):

We know that
E [(Yi � g(xi; �0)) g�(xi; �0)jX] = 0:
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Suppose that V ar[Yi � g(xi; �0)jX] = �20. Then

V ar[n�1=2U�(Zn; �0)] = 4n
�1�20

nX
i=1

g�(xi; �0)g�(xi; �0)
0

and we can �nd conditions under which

n�1=2U�(Zn; �0)
p! N(0; 4�20 plim

n!1
n�1

nX
i=1

g�(xi; �0)g�(xi; �0)
0);

so that, in the notation of the previous Section

B(�) = 4�20 plim
n!1

n�1
nX
i=1

g�(xi; �0)g�(xi; �0)
0:

Finally, noting that

A(�0)
�1B(�0)A(�0)

�10 = �20

 
plim
n!1

n�1
nX
i=1

g�(xi; �0)g�(xi; �0)
0

!�1
we obtain the limiting distribution of the NLS estimator as follows.

n1=2
�
�̂n � �

�
d! N(0; �20

 
plim
n!1

n�1
nX
i=1

g�(xi; �0)g�(xi; �0)
0

!�1
)

To check on this result, consider the case in which g(xi; �) = x0i�, when g�(xi; �) = xi. In
this case

plim
n!1

n�1
nX
i=1

g�(xi; �)g�(xi; �)
0 = plim

n!1
n�1

nX
i=1

xixi
0 = plim

n!1
n�1X 0X

and we obtain the now familiar limiting distribution of the OLS estimator.
As an example suppose that g(x; �) = �0 + �1x�2 . In this case

g�(x; �) =

24 1
x�2

�1x
�2 log(x)

35
and if �̂ denotes the nonlinear least squares estimator then the approximate variance of n1=2

�
�̂n � �

�
is as follows8 .

�20

24 1 plimn!1 n
�1Pn

i=1 x
�2 plimn!1 n

�1Pn
i=1 �1x

�2 log(x)
� plimn!1 n

�1Pn
i=1 x

2�2 plimn!1 n
�1Pn

i=1 �1x
2�2 log(x)

� � plimn!1 n
�1Pn

i=1 �
2
1x
2�2 log(x)2

35�1

8The matrix is symmetric and only elements on or above the leading diagonal are shown.
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In practice one would estimate this using

�̂20

264 1 n�1
Pn

i=1 x
�̂2 n�1

Pn
i=1 �̂1x

�̂2 log(x)

� n�1
Pn

i=1 x
2�̂2 n�1

Pn
i=1 �̂1x

2�̂2 log(x)

� � n�1
Pn

i=1 �̂
2

1x
2�̂2 log(x)2

375
�1

where the �̂i�s are elements of the NLS estimator, �̂n, and �̂
2
0 is an estimator of the variance

around the regression function, for example the mean of the squared NLS residuals,

�̂20 = n
�1

nX
i=1

(yi � g(xi; �̂))2:

2.9. Approximate distributions of functions of estimators - the �delta method�

Often we want to make inferences about some function of parameters, for example the ratio of
two parameters. Value of time estimation provides a good example of this. If the indirect utility
a person derives from action i (e.g. choosing plane route i) can be written as U(�1ci + �2ti)
where ci is the cost incurred when action i is chosen and ti is the time incurred when action i
is chosen, then the ratio v = �2=�1 measures the value of time. (Why?)
Discrete choice modelling and estimation provide a route to getting estimates of �2 and �1

along with estimates of their accuracy and so we can compute an estimate of the value of time
using9 v̂ = �̂2=�̂1. How accurate will this estimate be, and what is its approximate distribution?
We proceed in a more general context in which we are interested in a scalar function of

a vector of parameters, h(�), and suppose that we have a consistent estimator �̂ of � whose
approximate distribution is given by

n1=2(�̂ � �0)
d! N(0;
)

where �0 is the data generating value of �. What is the approximate distribution of h(�̂)?
Consider a Taylor series expansion of h(�) around � = �0 as follows

h(�) = h(�0) + (� � �0)0h�(�0) +
1

2
(� � �0)0h��(��)(� � �0)

where h�(�0) is the vector of derivatives of h(�) evaluated at � = �0, h��(�
�) is the matrix of

second derivatives of h(�) evaluated at � = ��, a value between10 � and �0. Evaluate this at
� = �̂ and rearrange to give

n1=2
�
h(�̂)� h(�0)

�
= n1=2(�̂ � �0)0h�(�0) +

1

2
n1=2(�̂ � �0)0h��(�̂

�
)(�̂ � �0)

where �̂
�
lies between �̂ and �0. Since �̂ is consistent, �̂

�
must converge to �0 and if h��(�0) is

bounded then the second term above disappears11 as n!1. So, we have12

n1=2
�
h(�̂)� h(�0)

�
d! h�(�0)

0Z

9 In this Section the subscript �n� indicating the sample size is suppressed.
10 In the sense that jj�� � �0jj < jj� � �0jj.
11n1=2(�̂ � �0)

d! N(0;
) and (�̂ � �0)
p! 0.

12 In the previously circulated version, in the next expression, there was incorrectly a factor n1=2 on the right
hand side. Thanks to Albrecht Glitz for pointing this out.
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where
n1=2(�̂ � �0)

d! Z � N(0;
):

Using our result on linear functions of normal random variables

n1=2
�
h(�̂)� h(�0)

�
d! N(0; h�(�0)

0
h�(�0)):

In the value of time example

� =

�
�1
�2

�
and h(�) = �2=�1 leading to

h�(�) =

�
��2=�21
1=�1

�
:

Write the approximate variance of n1=2(�̂ � �0) as


 =

�
!11 !12
!12 !22

�
:

Then the approximate variance of n1=2
�
h(�̂)� h(�0)

�
is

�
��2=�21
1=�1

�0 �
!11 !12
!12 !22

� �
��2=�21
1=�1

�
=

�
�22=�

4
1

�
!11 � 2

�
�2=�

3
1

�
!12 +

�
1=�21

�
!22

=
�
1=�21

� ��
�22=�

2
1

�
!11 � 2 (�2=�1)!12 + !22

�
in which �1 and �2 are here taken to indicate the data generating values. Clearly if �1 is very
close to zero then this will be large. Note that if �1 were actually zero then the development
above would not go through because the condition on h��(�0) being bounded would be violated.
The method we have used here is sometimes called the �delta method�.


