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1. Introduction

In the �rst set of notes we considered econometric models for investment in schooling (S) and
a labour market outcome (e.g. the log wage), W , given an observable characteristic of an
individual, X. The linear model we considered had the following form.

W = �0 + �1S + �2X + "1 + �"2 (1.1)

S = �0 + �1X + "2 (1.2)

We saw that without further restrictions, even if we knew the values of "1 and "2, knowledge of
values of W , S, and X could not provide information about the values of the parameters �0,
�1, �2 and � for the data generating process - structure - which produced the data1 . However,
if the values of X that we obtain have su¢ cient variation and we could observe the values of "2
then we could deduce the values of �0 and �1 in the data generating process which produced
the data2 .
In practice we do not observe the values of "1 and "2 - values which we will think of as

realisations of random variables with a probability distribution conditional upon X.
Considering the equation for S, data on S and X cannot then be informative about �0 and

�1 without some restriction on the way in which this probability distribution depends upon X.
To see this, suppose that "2 tends to take large values when X takes large values, and small
values when X takes small values, that is "2 is positively correlated with X. In this situation,
if, as is always the case, we cannot observe the values of "2 then we cannot distinguish the e¤ect
of "2 on S from the direct e¤ect of X on S (which is what the parameter �1 measures) and so
the value of �1 is not identi�able.
In constructing econometric models various sorts of restriction on the covariation of unob-

servable and observable variables are employed in order to achieve identi�cation. A particularly
severe restriction, but one we sometimes �nd employed, is that the unobservable random vari-
ables ("1 and "2 above) and X are independently distributed. Another restriction on covariation
we �nd used is that conditional medians of unobservable random variables are independent of
X.
By far the most common restriction employed in practice requires conditional expected values

of unobservables given X to be invariant with respect to changes in the value of X. Consider
the example of the structural equation (1.2). With the restriction E["2jX = x] = c2, a constant,
there is

E[SjX = x] = �0 + �1X + c2

and �1 is identi�ed as the co¢ cient on X in the regression function of S given X. Typically we
�nd that the conditional expectations of unobservables are normalised to be zero which serves,
in the example above, to identify the value of �0 in (1.2). These notes are concerned with the
issues that arise when we work with econometric models in which there are such conditional

1We saw that with the additional restrictions �2 = 0, �1 6= 0, the parameters �0, �1 and � could be identi�ed.
2Just two observations (S1; X1; "21) and (S2; X2; "22) would su¢ ce if X1 6= X2 because then we have

S1 � "21 = �0 + �1X1

S2 � "22 = �0 + �1X2

which is a pair of simultaneous equations which can be solved for unique values of �0 and �1.
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expected value restrictions on unobservable random variables. In such cases we are lead to
consider estimation of (mean) regression functions.

1.1. Regression functions

Let us now use Y to denote an outcome and x =
�
x1 : : : xk

�0
to denote a k � 1 vector of

variables whose e¤ect on Y is of interest, and consider an econometric model as follows

Y = x0� + "

where �0�denotes matrix (vector) transposition, � =
�
�1 : : : �k

�0
is a vector of parameters,

and " is a scalar random variable with E["jx] = 0.3 I will call the variables X covariates. You
will also �nd the expressions regressors and explanatory variables used in the literature.
In this linear regression model for Y ,

E[Y jx] = x0� (1.3)

which, written without using matrix notation is:

E[Y jX = x] = �1x1 + �2x2 + � � �+ �kxk:

We start with some preliminary marks about the interpretation and scope of this linear regression
model. Then we consider ways of estimating � and how we can make probability statements
about the unknown value of �. Finally we consider estimation of the parameters of non-linear
regression models.

1.2. Intercepts and the location and scale of covariates

The model (1.3) does not include an intercept, or constant, term explicitly. If the expectation
of Y given x is not zero when x = 0, then there must be a constant term (or non-zero intercept)
in the regression function, that is:

E[Y jx] = �0 + x0�:

This can be accommodated in the general formulation (1.3) by letting one element of x always
equal 1, and unless noted we will assume that this has been done if a non-zero intercept is to be
identi�ed and estimated.
The value of the intercept is sensitive to the origin from which the elements of x are measured.

If we measure x via z = x� a then (1.3) becomes

E[Y jx] = x0� = (z + a)0 � = �0 + z0�

where �0 = a0�, modifying the value of the intercept if one was originally in the model and
introducing an intercept otherwise. It is quite common to �nd x measured as a deviation from
the mean of its observed values.

3A more expansive notation would write Y = X0� + " and E["jX = x] = 0, leading to E[Y jX = x] = x0�.
I abbreviate this as in the main text. The equation Y = x0� + " should be taken to mean that, when X = x,
Y = x0� + ".
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There is always the freedom to choose alternative units of measurement for x. For example
if the regression function for Y given a scalar X1 is

E[Y jx1] = �0 + �1x1 (1.4)

when X1 is measured in pounds, then, if Z1 is the same magnitude measured in thousands of
pounds, we have X1 = 1000� Z1, and so

E[Y jz1] = �0 + �1 � 1000z1

and the coe¢ cient on z1 in this latter regression equation is 1000 times the coe¢ cient on x1 in
the regression function (1.4).
In a matrix formulation a change of scale is achieved by measuring vector x via z = �x

where � is a square diagonal matrix. This changes (1.3) into

E[Y jx] = x0� =
�
��1z

�0
� = z0

where  = ��1�..
Finally note that we can express the model in terms of full rank linear combinations of

conditioning variables without changing the meaning of the model. Suppose that x is measured
via z = Ax where A has rank k.4 Then (1.3) becomes

E[Y jx] = x0� =
�
A�1z

�0
� = z0

where  = A�10�. If we knew  and A we could deduce �.

1.3. Linearity

Most of the discussion below is concerned with linear models. The use of the term �linear�here
is a little deceptive because in what follows it is perfectly in order for some elements of x to be
nonlinear functions of other elements or of some variable not appearing in x at all. In practice
it is quite common to �nd x containing squares, and cross-products of conditioning variables
when non-linearity is suspected in the dependence of Y on x. What is important, as will become
clear, is that the regression function is linear in parameters, �, above. Later we will consider
estimation when regression functions are nonlinear in parameters.

1.4. Regime and group speci�c regression functions

The linear regression model we will study is �exible in another way too. Suppose the model is
constructed to capture the dependence of Y on x in a situation where the dependence may vary
across groups of agents (e.g. urban and rural households), or, in a time series context, across
periods of time (regimes - e.g. quarters of the year, phases of the business cycle).
Suppose there are G groups, or regimes. De�ne G binary random variables, D1; : : : ; DG,

with Dg = 1 when group g is encountered, or in a time series context, when regime g prevails,
and Dg = 0 otherwise. These binary or indicator variables are called �dummy variables� in

4Which means that A can be inverted.
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some of the textbooks. Suppose there is a di¤erent regression function in each group or regime,
thus:

E[Y jX = x;Dg = 1] = x
0�g

in which the regression coe¢ cients are regime speci�c. This can be accommodated in the
formulation (1.3) by writing

E[Y jX = x;D = d] = d1x
0�1 + d2x

0�2 + � � �+ dGx0�G

=
�
d1x

0 d2x
0 : : : dGx

0 �
26664
�1
�2
...
�G

37775 :
Note that this model is linear in the parameters �1; : : : �G but nonlinear in the conditioning
variables, which involve cross-products of the values, dg, taken by the binary indicators and the
elements of x. Since it is linear in parameters it can be handled in the linear regression model
framework which we study below.
Often some of the parameters of the regression function are restricted to be common across

groups or regimes. On many occasions, all parameters are so restricted except the intercepts

2. Estimation in linear models

2.1. Introduction

Now we consider how data can be used to estimate regression functions. Suppose we have n
records of values of Y and x. We model these as realisations of n random variables, Y1; : : : ; Yn,
which we arrange in a n�1 vector, y. We arrange the associated values of x in a n�k matrix X.
Unless noted otherwise we will assume that the matrix X has rank k. We return to this point
in Section 2.2. Here xij is value i of the variable xj . We will call the x variables �covariates�.

y =

26664
Y1
Y2
...
Yn

37775 ; X =

26664
x01
x02
...
x0n

37775 =
26664
x11 x12 : : : x1k
x21 x22 : : : x2k
...

...
...

xn1 xn2 : : : xnk

37775
Here x0i is the ith observation on all the covariates arranged as a row vector - that is the ith row
of the matrix X.
In some cases it makes sense to regard the Yi�s as mutually independent given the xi�s.

This is a quite common position to take in microeconometric work where data may arise by
random sampling of households, people or �rms from some population. Sometimes it is clear
a priori that there is dependence among the Yi�s, for example in time series analysis, where
often it is precisely the dependence between successive Yi�s that is of primary interest, perhaps
because it opens the possibility of developing informative forecasts. As another example, in
microeconometric work we might have data recording responses of many members of a number
of households. Then we might expect there to be dependence amongst responses from members
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of the same household, but perhaps independence among responses from members of di¤erent
households. We will consider both cases, y�s elements independent and dependent.
In some cases the values of x can reasonably be thought of as realisations of a vector random

variable5 . We can think in these terms, for example, when our data are a sample of households,
randomly chosen from a population, and x records a household�s characteristics. Then the x
data carry meaningful information about the population distribution of X.
Sometimes we meet data for which the values of x cannot be thought of in this way. For

example, sometimes, in order to obtain a good range of values of x, we purposively seek groups
of agents with interesting values of x and observe the realisations of Y that they generate. And
sometimes we even assign a value of x, for example when attempting to measure the impact
of an intervention where we might give some households a treatment, for example, an income
subsidy, leaving others untreated, with unchanged income.
As long as we are only interested in regression functions conditional on x these alternative

mechanisms for generating data do not a¤ect our choice of estimation method. The principle
of conditionality, commonly regarded as a useful principle6 , tells us that, in the interests of
accuracy, inferences about parameters should be made conditional on all values of random
variables whose marginal distribution is invariant with respect to the parameters of interest.
In the case being considered here, even when x values are informative about the marginal

distribution of X, they are rarely informative about the conditional distribution of Y given X
and in particular about the regression function, except to the extent that di¤erent values of x
give a wider view of the sensitivity of the regression function of Y on X to values realised for X.
So even when x values are obtained by some form of random sampling, we will conduct inference
conditional on the realised x values - an approach which is the only one available when x values
are purposively chosen.
We write the linear regression model as

y = X� + "

where " is a n� 1 vector of values of the unobservable, that is:

" =
�
"1 "2 : : : "n

�0
:

We now seek statistics (that is, functions of y and X) which serve as useful estimators of �.

2.2. Analogue estimation and the ordinary least squares estimator

One way to proceed is by what we will loosely call the analogue principle7 . In the simple form
considered here this involves expressing the parameter to be estimated (here �) as a function
of expected values of random variables and replacing expected values by sample data based
analogues of them.

5By this I mean that it makes sense to think in terms of the probability of observing particular values or
ranges of values of x.

6There is a good discussion in �Theoretical Statistics�, D.R. Cox and D.V. Hinkley, Chapman and Hall,
London: 1974.

7An excellent book devoted to this topic and its wide-ranging applications is: Analog Estimation Methods in
Econometrics, C.F. Manski, New York, Chapman and Hall, 1988. The book is freely available on the internet,
along with a few others, at http://emlab.berkeley.edu/books.html.
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To see how this can lead to an estimator of �, note that8 E["jX] = 0 implies that

E[y �X�jX] = 0

and therefore

X 0E[(y �X�) jX] = E[X 0 (y �X�) jX]
= E[X 0y]�X 0X� (2.1)

= 0

and so,
� = (X 0X)

�1
E[X 0yjX]

as long as X 0X has full rank (k) so that its inverse exists. Replacing E[X 0yjX] by X 0y leads to
an estimator

�̂ = (X 0X)
�1
X 0y

which is clearly unbiased, that is, E[�̂jX] = E[�̂] = �. This estimator is known as the ordinary
least squares (OLS) estimator, for reasons that will become clear.
Note that to calculate this estimator it must be the case that the rank of X is equal to k. In

this case, for all non-zero k�1 vectors, c, Xc 6= 0. When the rank of X is less than k, there exists
a non-zero vector c such that Xc = 0. In words, there is a linear combination of the columns
of X which is a vector of zeros. In this situation the OLS estimator cannot be calculated.
Looking back to (2.1) we see that really what is going on here is that � cannot de�ned by using
the information contained in X. Perhaps one could obtain other values of x and then be in a
position to de�ne �. But sometimes this is not possible, and then � is not identi�able given the
information in X. Perhaps we could estimate functions (e.g. linear functions) of � that would
be identi�able even without more x values..
The variance of the OLS estimator (conditional on X) is

V ar(�̂jX) = E[
�
�̂ � E[�̂jX]

��
�̂ � E[�̂jX]

�0
jX]

= E[
�
�̂ � �

��
�̂ � �

�0
jX]

= E[(X 0X)
�1
X 0""0X (X 0X)

�1 jX]
= (X 0X)

�1
X 0E[""0jX]X (X 0X)

�1

= (X 0X)
�1
X 0�X (X 0X)

�1

where � = V ar["jX]. Here, at line 2 we have used the result on the unbiasedness of �̂, at line 3
8Expectations here and later in this section are taken conditional on X. Note that this would not make much

sense in a time series context in which X contained lagged values of elements of y, e.g. if we had, for t = 1; : : : ; n,

yt = �yt�1 + "t

and E["tjyt�1] = 0. So the arguments here will not apply in a time series context - a setting considered later in
the course.
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we have used

�̂ = (X 0X)�1X 0y

= (X 0X)�1X 0(X� + ")

= � + (X 0X)�1X 0"

and throughout the fact that conditional on X, the matrix X and functions of it alone are
constant when taking expected values.
If � = �2In, which means that the unobservables, "i, (and therefore the Yi�s) have, condi-

tional on X, common variance, independent of X, and are pairwise uncorrelated, then

V ar(�̂jX) = �2 (X 0X)
�1
: (2.2)

Pairwise uncorrelatedness would arise if the Yi�s were mutually independently distributed given
X.
The diagonal elements of V ar(�̂jX) are the variances of the OLS estimators of the elements

of �. Their square roots (standard deviations) are commonly referred to as standard errors. Note
that these involve a parameter, �2, which will usually be unknown. We will shortly consider
ways of estimating �2. Using an estimator of �2 in (2.2) produces an estimated variance of the
OLS estimator, dV ar(�̂jX) = �̂2 (X 0X)

�1
:

The square roots of the diagonal elements of this matrix are often referred to as estimated
standard errors.
Inspecting (2.2) we see that the OLS estimator is less variable the smaller is �2 (i.e. the

less variation there is in Y around its regression function), and the smaller are the elements of
(X 0X)

�1. In situations where we can choose the values of X then it is well to choose them to
make the elements of (X 0X)

�1 small. There is a whole statistical literature on this topic under
the heading �design of experiments�. In many cases it is best to have a wide range of variation
for each element9 .
We can write (2.2) as

V ar(�̂jX) = �2

n

�
n�1X 0X

��1
and if we think of the rows inX as being obtained by sampling from some probability distribution
then we might expect n�1X 0X (which contains the average squares and cross-products of the
values of the covariates) to remain fairly constant as the sample size (n) increases. It is clear then
that larger samples (larger n) tend to lead to more accurate (lower variance) OLS estimators.

2.3. (*)10 Alternative analogue estimators

The operation done in the previous Section, that is obtaining an expression for � in terms of
moments and then replacing moments by their sample analogues to produce an estimator, can

9When would that be a bad thing to have?
10Starred sections can be omitted at a �rst reading.
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be done in many ways. Let H be a n� k matrix containing elements which are functions of the
elements of X then, arguing as above11 :

E[H 0"jX] = E[H 0(y �X�)jX]
= E[H 0yjX]� E[H 0XjX]�
= E[H 0yjX]� (H 0X)�

= 0:

If the matrix H 0X has rank k then

� = (H 0X)
�1
E[H 0yjX]:

So, � can be written as a simple function of conditional moments involving H, X, and y.
We can get from here to a family of estimators, �̂H by replacing E[H 0yjX] by H 0y itself

leading to
�̂H = (H

0X)
�1
H 0y

which has the unbiasedness property

E[�̂H jX] = � = E[�̂H ]:

The variance (matrix) of �̂H .is, arguing as in the last Section

V [�̂H jX] = (H 0X)
�1
H 0�H (X 0H)

�1

where � = V ["jX] which might depend upon X. In the special case in which � does not
depend on X and elements of y are uncorrelated with one another and have common variance
(all conditional on X) we can write � = �2I where I is a n� n identity matrix and �2 > 0 is a
constant. Then

V [�̂H jX] = �2 (H 0X)
�1
H 0H (X 0H)

�1
:

Di¤erent choices ofH generally lead to di¤erent estimators. One has to choose between these,
for which one needs a criterion that ranks estimators. One criterion commonly used considers
the accuracy of the estimator as measured by its variance. This will be taken up further in
Section 2.7 where we show that, when V ["jX] = �2In, the estimator with smallest variance (in
a sense to be de�ned) is got by choosing H = X which is what we did in the previous Section,
a choice that produced the OLS estimator.

2.4. Misspeci�cation

Suppose that the regression model (1.3) is not correct. How does the OLS estimator perform?
One way it could be incorrect is if the true regression function is non-linear. Suppose

E[Y jX = x] = g(x; �);

11 In the previsou Section we used H = X.
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equivalently

Y = g(x; �) + "

E["jX = x] = 0;

and de�ne the n element vector

G(X; �) =

264 g(x1; �)
...
g(xn; �)

375 :
Then

E[�̂jX] = E[(X 0X)
�1
X 0yjX]

= (X 0X)
�1
X 0G(X; �)

6= �:

The OLS estimator is biased and its bias depends upon the values of x and the value of the
parameter �. Di¤erent researchers faced with di¤erent values of x will come to di¤erent conclu-
sions about the value of � using the OLS estimator if they use a linear regression model and a
non-linear model is appropriate.
The variance of the OLS estimator is

V ar(�̂jX) = E[
�
�̂ � E[�̂jX]

��
�̂ � E[�̂jX]

�0
jX]

= E[(X 0X)
�1
X 0 (y �G(X; �)) (y �G(X; �))0X (X 0X)

�1 jX]
= E[(X 0X)

�1
X 0""0X (X 0X)

�1 jX]
= (X 0X)

�1
X 0�X (X 0X)

�1

exactly as it is when the regression function is correctly speci�ed. Here V ar["jX] = �. When
� = �2In, V ar(�̂jX) = �2 (X 0X)

�1.

2.5. Omitted regressors

In most of the standard textbooks there is an analysis of the bias of the OLS estimator when
there are �omitted regressors�. Suppose that conditional on X and on a matrix Z the expected
value of y is Z, equivalently

y = Z + "

E["jX;Z] = 0:

Consider the OLS estimator, �̂ = (X 0X)
�1
X 0y, calculated using data X. It is possible that X

and Z have common columns. The expected value of the OLS estimator conditional on X and
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Z is:

E[�̂jX;Z] = E[(X 0X)
�1
X 0yjX;Z]

= E[(X 0X)
�1
X 0 (Z + ") jX;Z]

= (X 0X)
�1
X 0Z + (X 0X)

�1
X 0E["jX;Z]

= (X 0X)
�1
X 0Z

It is worth drawing out one implication of this. Let

Z =
h
X

... Q

i
; 0 =

h
0X

... 0Q

i
so that the matrix X containing the values of the covariates used in calculating �̂ is a part of
the matrix Z. In the �tted model the variables Q have been �omitted�. Then

E[�̂jX;Z] = E[�̂jZ]
= (X 0X)

�1
X 0Z

= (X 0X)
�1
h
X 0X

... X 0Q

i


=
h
I

... (X 0X)
�1
X 0Q

i


= X + (X
0X)

�1
X 0QQ:

If X 0Q = 0 or Q = 0 then E[�̂jX;Z] = X , that is, when one or both of these conditions
hold, the OLS estimator in the �tted model is an unbiased estimator of the coe¢ cient on X
in the extended model that includes the additional variables, Q. If values in the columns of X
and/or Q are measured as deviations about column means then, if X 0Q = 0 the values in X
are uncorrelated12 with the values in Q. So, omitting Q can lead to no bias in estimating the
coe¢ cient on X in the regression of y on X and Q if X and Q are uncorrelated.

2.6. Estimation of linear functions of �

Suppose we are interested in a particular linear combination of the elements of �, say c0�. For
example the �rst element of � is obtained by setting

c0 = [ 1 0 0 : : : 0 ];

the sum of the �rst two elements of � is got by setting

c0 = [ 1 1 0 : : : 0 ]:

12Let �X be a matrix with the same number of rows and columns as X containing the column means of X
repeated in each row and let

Z =

�
X � �X

... Q

�
which changes the value of any intercept in the equation for y. Since

�
X � �X

�0
Q =

�
X � �X

�0 �
Q� �Q

�
where

�Q contains the column means of Q (check that
�
X � �X

�0 �Q = 0), the condition
�
X � �X

�0
Q = 0 implies that

Cov(X;Q) = 0, since Cov(X;Q) � n�1
�
X � �X

�0 �
Q� �Q

�
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The expected value of Y when x = [ x�1 x�2 x�3 : : : x�k ], which we might use in predicting
the value of Y at X = x�, is got by setting

c0 = [ x�1 x�2 x�3 : : : x�k ]:

An obvious estimator of c0� is c0�̂ whose variance is

V ar(c0�̂jX) = �2c0 (X 0X)
�1
c:

2.7. The minimum variance property of OLS

The OLS estimator possesses an optimality property when V ar["jX] = �2In, namely that among
the class of linear functions of y that are unbiased estimators of � the OLS estimator has the
smallest variance, in the sense that, considering any other estimator, ~� = Q(X)y (note, a linear
function of y, with Q(X) chosen so that ~� is unbiased), V ar(c0~�) � V ar(c0�̂) for all c.
To show this result (embodied in what is known as the Gauss-Markov theorem), let Q(X) =

(X 0X)
�1
X 0 +R0, where R may be a function of X, and note that

E[~�jX] = � +R0X�:

This is equal to � for all � only when R0X = 0. This condition is required if ~� is to be a linear
unbiased estimator. Imposing that condition,

V ar[~�jX]� V ar[�̂jX] = �2R0R;

and

V ar(c0~�)� V ar(c0�̂) = �2d0d = �2
kX
i=1

d2i � 0

where d = Rc.

2.8. (*) More data good, less data bad

The matrix (X 0X)
�1, which along with �2 determines the variance of the OLS estimator, can

be made smaller in a well de�ned sense by increasing the sample size. To see this, we use the
following useful result13 for nonsingular A and column vectors U and V .

(A+ UV 0)
�1
= A�1 � A

�1UV 0A�1

1 + U 0A�1V

Let A = X 0X and let U = V = Xa be a value of x at which an additional realisation of Y is
obtained. Then the variance of �̂ with the additional data is

V ar(�̂jX;Xa) = �2 (X 0X +XaX
0
a)
�1

= �2 (X 0X)
�1 � (X

0X)
�1
XaX

0
a (X

0X)
�1

1 +X 0
a (X

0X)
�1
Xa

; (2.3)

13Many of the econometric text books have a collections of matrix algebra results useful in developing estima-
toirs and their properties. The following books contain many results not found in the standard texts. Linear
Statistical Inference and its Applications, C. Radhakrshna Rao, John Wiley, New York: 1973, The Algebra of
Econometrics, D.S.G. Pollock, John Wiley, New York: 1979, Matrix Di¤ erential Calculus with Applications in
Statistics and Econometrics, J.R. Magnus and H. Neudecker, John Wiley, New York: 1988.
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and the variance of a linear combination of �̂, c0�̂ is

V ar(c0�̂jX;Xa) = �2c0 (X 0X +XaX
0
a)
�1
c

= �2c0 (X 0X)
�1
c� c

0 (X 0X)
�1
XaX

0
a (X

0X)
�1
c

1 +X 0
a (X

0X)
�1
Xa

= �2c0 (X 0X)
�1
c�

�
c0 (X 0X)

�1
Xa

�2
1 +X 0

a (X
0X)

�1
Xa

� �2c0 (X 0X)
�1
c = V ar(c0�̂jX):

So, more data never hurts and can reduce the variance of the estimator. In situations where
data collection is costly (drug trials, oil exploration, industrial testing) one may want to know
at what value of x to collect an additional realisation of Y in order to give a maximal reduction
in the variance of an estimator of c0�. The result (2.3) is useful in this context. In survey design
one might use the result to determine what sorts of e.g., households to oversample to get a better
estimate of some important policy relevant magnitude.

2.9. M estimation

A completely di¤erent strategy for developing an estimator of � is to seek a statistic which
results in an estimated regression function which ��ts the data� as well as possible in some
sense. At �rst sight this might seem an obvious strategy to adopt, but deeper thought raises
some doubts.
There are some situations in which variation around the regression function is an essential

part of the problem we are modelling, perhaps because luck, chance, or measurement error, are
essential features of the process whereby data are generated.
In these situations, seeking the �best �tting�model can result in �over�tting�and misleading

estimates of the true regression function. This is a particular problem in time series data analysis
where searching for a good �tting model for the data available at one point in time can lead
to disappointing predictions of future values of the response, Y . The so-called (and perhaps
misnamed) �technical��nancial trading literature abounds with examples of trading rules (sell
after a �head and shoulders� pro�le in a share price) which seem to work when applied to
historical data but fail to make money when applied in practice. Put simply you can always
�nd a pattern in enough data - whether it will be repeated is another matter. In the old
macroeconometric literature which was notable for the continual reanalysis of the same data set
by di¤erent researchers, we saw searches for the best �tting model leading to some results in
which quite strange patterns of dependence of a response on its historical values appear in �tted
models.
Despite these caveats, let us consider what a �search for the best �t�strategy produces. The

�rst problem to deal with is what is meant by the �best �t�. Actually the earliest approach to
this problem sought a statistic, say ��,

�� = argmin
b

nX
i=1

jYi � b0xij :
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Estimators obtained as the solution to an optimisation problem are given the generic name
M-estimators.
This particular M-estimator, known as the least absolute deviation (LAD) estimator, was

�rst used by the French mathematician, Laplace. He was attempting to measure the curvature
of the Earth�s surface, in particular the departure from sphericity of the Earth, using data in
which there were many apparently aberrant observations, caused by the poor quality of early
astronomical measuring devices14 . The estimator has some remarkable robustness properties. It
turns out that it can be completely insensitive to quite substantial changes in values of particular
realisations of Y . As a result it is sometimes used when there is the possibility that response
data are seriously contaminated by wild measurement errors. The estimator is a little awkward
to compute (one method involves solution of a large linear programming problem) and it fell
into disuse until recent advances in computing technology, since when it has made something of
a comeback.
Another, and mathematically simpler, approach to the �best �t�problem involves using an

estimator which minimises a smooth quadratic criterion, namely the estimator

�̂ = argmin
b

nX
i=1

(Yi � b0xi)2:

This �method of least squares� was discovered by the French mathematician, Legendre, who
was using error contaminated data to calculate a measure of the length of a meridian quadrant,
the distance from the equator to the north pole15 .
Di¤erentiating with respect to b gives

�2
nX
i=1

(Yi � b0xi)x0i = �2 (y0X � b0X 0X)

The unique solution obtained for b when this is set equal to zero is (recall rank(X) = k)

�̂ = (X 0X)
�1
X 0y;

the OLS estimator, just obtained by the analogue principle. The second derivative of the objec-
tive function is

@2

@b@b0
= 2

nX
i=1

xix
0
i = 2X

0X:

This is positive de�nite (recall X has full rank) so the solution, �̂, does locate the minimum of
the objective function.

14Mécanique Céleste Volumes 1 - 4, Pierre Simon Laplace, trans N. Bowditch, 1829-1839, Hilliard, Gray, Little
and Wilkins: Boston. See The History of Statistics, Stephen M Stigler, Harvard University Press: Harvard, 1986,
for an excellent account of the development of the method of least squares.
15Nouvelles Méthodes pour la Détermination des Orbites des Comètes, Adrien Marie Legendre, Coursier: Paris,

1805.
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2.10. The Frisch-Waugh-Lovell Theorem

Suppose X is partitioned into two blocks, thus:

X =
�
X1 X2

�
so that

y = X1�1 +X2�2 + "

where �1 and �2 are elements of the conformable partition of �. Let

M1 = I �X1(X 0
1X1)

�1X 0
1:

Then the Frisch-Waugh-Lovell Theorem tells us that, �̂2, the OLS estimator of �2, that is the
relevant part of

�̂ = (X 0X)�1X 0y

can be written as

�̂2 = ((M1X2)
0(M1X2))

�1
(M1X2)

0M1y

= (X 0
2M1X2)

�1
X 0
2M1y

the second line following because M1 is idempotent16 . The following argument shows that the
result is true.
Writing X 0y = (X 0X)�̂ in partitioned form:�

X 0
1y

X 0
2y

�
=

�
X 0
1X1 X 0

1X2
X 0
2X1 X 0

2X2

� �
�̂1
�̂2

�
gives the following two matrix equations.

X 0
1y = X 0

1X1�̂1 +X
0
1X2�̂2 (2.4)

X 0
2y = X 0

2X1�̂1 +X
0
2X2�̂2 (2.5)

From (2.4)
�̂1 = (X

0
1X1)

�1
X 0
1y � (X 0

1X1)
�1
X 0
1X2�̂2

substituting in (2.5)

X 0
2y �X 0

2X1 (X
0
1X1)

�1
X 0
1y = X

0
2X2�̂2 �X 0

2X1 (X
0
1X1)

�1
X 0
1X2�̂2

which after some rearrangement is

X 0
2M1y = (X

0
2M1X2) �̂2

from which the result follows directly.

16An idempotent matrix A has the property AA = A. Check this is true for M1.
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The result has a nice interpretation and is useful in practice. The term M1X2 is just the
matrix of residuals from OLS estimation of

X2 = X1	+ �

where 	 is a matrix of coe¢ cients and � is a matrix of �errors�. The term M1y is just the
residuals from OLS estimation of

y = X1 + �:

So to get the OLS estimate of �2 in the full model we can perform OLS estimation using residuals
as left and right hand side variables. This also motivates the study of residual-residual plots
when studying model speci�cation.

3. Generalised least squares estimation

The simple result V ar(�̂) = �2(X 0X)�1 is true when V ar("jX) = �2In which is independent of
X. There are many situations in which we would expect to �nd some dependence on X so that
V ar["jX] 6= �2In.
For example in a household expenditure survey we might expect to �nd people with high

values of time purchasing large amounts infrequently (e.g. of food, storing purchases in a
freezer) and poor people purchasing small amounts frequently. If we just observed households�
expenditures for a week (as in the British National Food Survey17 conducted by the Department
for Environment, Food and Rural A¤airs ) then we would expect to see that, conditional on
variables X that are correlated with the value of time, the variance of expenditure depends on
X. When this happens we talk of the disturbances, ", as being heteroskedastic.
In other contexts we might expect to �nd correlation among the disturbances, in which case

we talk of the disturbances as being serially correlated. An example, again in the context of a
household survey, was given at the start of Section 2. Serial correlation of a variety of forms
frequently arises in time series analysis, to be considered later in the course.
The BLU property of the OLS estimator does not usually apply when V ar["jX] 6= �2In. To

get some insight into why this is the case, suppose that Y has a much larger conditional variance
at one value of x, x�, than at other values. Realisations produced at x� will less informative
about the location of the regression function than realisations obtained at other values of x.
It seems natural to give realisations obtained at x� less weight when estimating the regression
function.
We know how to produce a BLU estimator when V ar["jX] = �2In. Our strategy for produc-

ing a BLU estimator when this condition does not hold is to transform the original regression
model so that the conditional variance of the transformed Y is proportional to an identity matrix
and apply the OLS estimator in the context of that transformed model.
Suppose V ar["jX] = � is positive de�nite. Of course it is always symmetric. Then we

can �nd18 a matrix P such that P�P 0 = I. Consider the random vector z = Py which

17Since April 2001 merged with the Family Expenditure Survey to produce the Expenditure and Food Survey.
Annual reports are available at http://www.defra.gov.uk/esg/m_publications.htm.
18Let � be a diagonal matrix with the (positive valued) eigenvalues of � on its diagonal, and let C be the

matrix of associated orthonormal eigenvectors. Then C�C0 = � and so ��1=2C�C0��1=2 = I. The required
matrix P is ��1=2C.
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has conditional expected value given X equal to PX� and conditional variance, P�P 0 = I.
Therefore we can write

z = Py = PX� + u

where u = P" and V ar[ujX] = I, and in the context of this model the OLS estimator,
�� = (X 0P 0PX)�1X 0P 0Py;

does possess the BLU property. Further, its conditional variance given X is (X 0P 0PX)
�1. Since

P�P 0 = I, it follows that � = P�1P 0�1 = (P 0P )�1, so that P 0P = ��1. The estimator ��, and
its conditional mean and variance can therefore be written as19

�� = (X 0��1X)�1X 0��1y

E[��jX] = �

V ar[��jX] = (X 0��1X)�1

The estimator is known as the generalised least squares (GLS) estimator. Obviously the
estimator cannot be calculated unless � is known which is rarely the case. However sometimes
it is possible to produce a well behaved estimator �̂ in which case the feasible GLS estimator

�� = (X 0�̂�1X)�1X 0�̂�1y

could be used. To study the properties of this estimator requires the use of asymptotic approx-
imations and we return to this later.

3.1. Feasible GLS estimation and robust standard errors

To produce the feasible GLS estimator we must impose some structure on the variance matrix of
the unobservables, �. If we did not then we would have to estimate n(n+1)=2 parameters (the
number of distinct elements of �) using data containing just n observations which is infeasible.
One way to proceed is to impose the restriction that the diagonal elements of � are constant

and allow nonzero o¤ diagonal elements but only close to the main diagonal of �. This requires
" to have homoskedastic variation with X but allows a degree of correlation between values of "
for observations that are close together (e.g. in time if the data are in time order in the vector
y). One could impose a parametric model on the variation of elements of �. You will learn more
about this in the part of the course dealing with time series.
Where heteroskedasticity is likely to arise, a parametric approach is occasionally employed,

using a model that requires �ii (the ith main diagonal element of �) to be a parametric function
of xi (the ith row of the X matrix). For example if the model �ii = 0xi is thought to be
appropriate then one could estimate , for example by calculating an OLS estimator of  in the
model with equation

"̂2i = 
0xi + ui

where "̂2i is the squared ith residual from an OLS estimation20 . Then an estimate of � could be
produced using ̂0xi as the ith main diagonal element.
19Note that this is an �analogue estimator� as in Section 2.3 with H = ��1X.
20Of course �ii must be non-negative, so an alternative functional form might be appropriate. Also, if we use

OLS residuals E["̂2i jX] = �2 + r(n) where r(n) is not in general zero but tends to zero as n increases. Feasible
GLS using a parametric model of this sort for the elements of � may not work well when samples are small.
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Economics rarely suggests suitable parametric models for variances of unobservables, though
graphical analysis of residuals may provide some guidance. One may therefore not which to
pursue the gains in e¢ ciency that GLS in principle o¤ers. But, if the OLS estimator is used
and � 6= �2In one must still be aware that the formula yielding standard errors, V ar(�̂) =
�2(X 0X)�1, correct if � = �2In, is generally incorrect if � 6= �2In, in which case

V ar(�̂) = (X 0X)�1X 0�X(X 0X)�1:

One popular strategy is to proceed with the OLS estimator but to use an estimate of the ma-
trix (X 0X)�1X 0�X(X 0X)�1 to construct standard errors. In models in which the o¤-diagonal
elements of � are zero but heteroskedasticity is potentially present this can be done by using

V ar(�̂) = (X 0X)�1X 0�̂X(X 0X)�1:

where �̂ is a diagonal matrix with squared OLS residuals, "̂2i , on its main diagonal. The (het-
eroskedasticity) robust standard errors that result, in large samples in which there are is no
extreme variation in the elements of X, generally give a good indication of the accuracy of OLS
estimation.21

4. Inference

4.1. Sampling distributions

For now suppose that y given X (equivalently " given X) is normally distributed.
The OLS estimator is a linear function of y and is therefore, conditional on X, normally

distributed. The same argument applies to the GLS estimator (employing �, rather than �̂), so
we have, when V ar["jX] = �2I, for the OLS estimator

�̂jX � Nk[�; �2(X 0X)�1]

and when V ar["jX] = �, for the GLS estimator,

��jX � Nk[�; (X 0��1X)�1]:

Consider a linear combination of �, c0�. From now on unless noted we suppose that
V ar["jX] = �2I.
We have, for the OLS estimator

c0�̂jX � N [c0�; �2c0(X 0X)�1c]:

Let Z � N [0; 1] and let zL(�) and zU (�) be the closest pair of values such that P [zL(�) � Z �
zU (�)] = �. Since the standard normal density function is symmetric around zero, zL(�) =
�zU (�) and zL(�) is the (1 � �)=2 quantile of the standard normal distribution. Choosing
� = 0:95 gives zU (�) = 1:96, zL(�) = �1:96.
21References on this topic can be found in Davidson and McKinnon�s text book. There are similar procedures

available when o¤ diagonal elements of � are potentially non-zero.
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The result above concerning the distribution of c0�̂ implies that

P [zL(�) �
c0�̂ � c0�

� (c0(X 0X)�1c)
1=2

� zU (�)] = � (4.1)

which in turn implies that

P [c0�̂ � zU (�)�
�
c0(X 0X)�1c

�1=2 � c0� � c0�̂ � zL(�)� �c0(X 0X)�1c
�1=2

] = �:

Consider the interval

[c0�̂ � zU (�)�
�
c0(X 0X)�1c

�1=2
; c0�̂ � zL(�)�

�
c0(X 0X)�1c

�1=2
]:

This random interval covers the value c0� with probability �. This is known as a 100�%
con�dence interval for c0�. Note that this interval cannot be calculated without knowledge of �.
In practice here and in the tests and interval estimators that follow one will use an estimator of
�2. In many of problems considered in econometrics the e¤ect of using an estimator is negligible.

4.2. Estimation of �

Note that
�2 = n�1E[(y �X�)0 (y �X�) jX]

which suggests the analogue estimator

�̂2 = n�1
�
y �X�̂

�0 �
y �X�̂

�
= n�1"̂0"̂

= n�1y0My

where "̂ = y �X�̂ =My and M = I �X(X 0X)�1X 0 where note MX = 0.
The elements of "̂ are called residuals. They measure how far each element of y is from the

associated value on the estimated regression function, X�̂. The OLS estimator minimises the
sum of squared residuals.
It is in some sense because the OLS has thisminimising property that �̂2 is a biased estimator

and that the bias is in the downward direction. In fact

E[�̂2] =
n� k
n

�2 < �2

but note that the bias is negligible unless k the number of covariates is large relative to n the
sample size. It is obviously possible to correct the bias using the estimator (n� k)�1 "̂0"̂ but the
e¤ect is small in most economic data sets.
The expected value of �̂2 is obtained as follows. First note thatMy =M" becauseMX = 0.

So �̂2 = n�1y0My = n�1"0M". Then there is the following

E[�̂2jX] = n�1E["0M"jX]
= n�1E[trace("0M")jX]
= n�1E[trace(M""0)jX]
= n�1 trace(ME[""0jX])
= n�1 trace(M�)
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and when � = �2In,

n�1 trace(M�) = n�1�2 trace(M)

= n�1�2 trace(In �X(X 0X)�1X 0)

= �2
n� k
n

:

Under certain conditions to be discussed shortly the estimator �̂2 is consistent. This means
that in large samples the inaccuracy of the estimator is small and that if in the tests described
below the unknown �2 is replaced by �̂2 the tests are still approximately correct. This will be
elucidated in the notes on asymptotic approximations.

4.3. Con�dence regions

Sometimes we need to make probability statements about the values of more than one linear
combination of �. We can do this by developing con�dence regions. For j linear combinations
a 100�% con�dence region is a subset of <j which covers the unknown (vector) value of the j
linear combinations with probability �.
Continue to work under the assumption that y given X (equivalently " given X) is normally

distributed.
Let the j linear combinations of interest be R� = r, say, where R is j � k with rank j. The

OLS estimator of r is R�̂ and

R�̂ � N [r; �2R(X 0X)�1R0]

which implies that �
R�̂ � r

�0 �
R(X 0X)�1R0

��1 �
R�̂ � r

�
=�2 � �2(j) (4.2)

where �2(j) denotes a Chi-square random variable with parameter (degrees of freedom) j.

4.4. The Chi-square distribution

Let the � element vector Z � N(0; I�). Then � = Z 0Z =
P�

i=1 Z
2
i (positive valued) has a

distribution known as a Chi-square distribution, written Z � �2(�). The probability density
function associated with the �2(�) distribution is positively skewed. For small � its mode is at
zero. The expected value22 and variance of a Chi-square random variable are

E[�2(�)] = �

V ar[�2(�)] = 2�:

For large �, the distribution is approximately normal.

22 If Zi � N(0; 1) then V [Zi] = E[Z2i ] = 1. Therefore E[�vi=1Z
2
i ] = v. The variance result is more di¢ cult to

get. But you could try.
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The following result will be used below. Let A � N� [�;�] and let P be such that P�P 0 = I,
which implies that P 0P = ��1. Then Z = P (A� �) � N� [0; I] so that

� = Z 0Z = (A� �)0��1(A� �) � �2(�):

To obtain the result (4.2) this is applied with � = r and � = �2R(X 0X)�1R0.

4.5. Con�dence regions continued

Let q�2(j)(�) denote the ��quantile of the �2(j) distribution. Then

P [�2(j) � q�2(j)(�)] = �

implies that

P [
�
R�̂ � r

�0 �
R(X 0X)�1R0

��1 �
R�̂ � r

�
=�2 � q�2(j)(�)] = �:

The region in <j de�ned by

fr :
�
R�̂ � r

�0 �
R(X 0X)�1R0

��1 �
R�̂ � r

�
=�2 � q�2(j)(�)g

is a 100�% con�dence region for r, covering r with probability �. The boundary of the region
is an ellipsoid centred on the point R�̂.
Setting R equal to a vector c0 (note then j = 1) and letting c� = c0�, produces

� = P [
�
c0�̂ � c�

�0 �
c0(X 0X)�1c

��1 �
c0�̂ � c�

�
=�2 � q�2(1)(�)]

= P [

�
c0�̂ � c�

�2
�2c0(X 0X)�1c

� q�2(1)(�)]

= P [�
�
q�2(1)(�)

�1=2 �
�
c0�̂ � c�

�
� (c0(X 0X)�1c)

1=2
�
�
q�2(1)(�)

�1=2
]

= P [zL(�) �

�
c0�̂ � c�

�
� (c0(X 0X)�1c)

1=2
� zU (�)]

where we have used the relationship �2(1) = N(0; 1)2. The last line here agrees with (4.1),
so when j = 1, the con�dence region just derived agrees with the con�dence interval derived
earlier.

4.6. Tests of hypotheses

The statistics developed to construct con�dence intervals can also be used to conduct tests of
hypotheses. For example, suppose we wish to conduct a test of the null hypothesis H0 : R��r =
0 against the alternative H1 : R� � r 6= 0. The statistic

S =
�
R�̂ � r

�0 �
R(X 0X)�1R0

��1 �
R�̂ � r

�
=�2: (4.3)
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has a �2(j) distribution under the null hypothesis. Under the alternative, let

R� � r = � 6= 0:

Then
R�̂ � r � N [�; �2R(X 0X)�1R0]

and the statistic S will tend to be larger than we would expect to obtain from a �2(j) distribution.
So we reject the null hypothesis for large values of S. The following test procedure has size23 �.

Decision rule: Reject H0 if S > q�2(j)(1� �), otherwise do not reject H0.

Here q�2(j)(1� �) is the (1� �) quantile of the �2(j) distribution. Note that we do not talk
in terms of accepting H0 as an alternative to rejection. The reason is that a value of S that
does not fall in the rejection region of the test is consonant with many values of R�� r that are
close to but not equal to 0.
To obtain a test concerning a single linear combination of �, H0 : c0� = c�, we can use the

procedure above with j = 1, giving

S =

�
c0�̂ � c�

�2
�2c0(X 0X)�1c

and the following size � test procedure.

Decision rule: Reject H0 if S > q�2(1)(1� �), otherwise do not reject H0.

Alternatively we can proceed directly from the sampling distribution of c0�̂. Since, when H0
is true, �

c0�̂ � c�
�

� (c0(X 0X)�1c)
1=2

� N(0; 1);

we can obtain zL(�), zU (�), such that

P [zL(�) < N(0; 1) < zU (�)] = � = 1� �:

The following test procedure has size (probability of rejecting a true null hypothesis) equal to
�.
Decision rule: Reject H0 if S > zU (�) or S < zL(�) , otherwise do not reject H0.
Because of the relationship between the standard normal N(0; 1) distribution and the �2(1)

distribution the tests are identical.
23The size of a test of H0 is the probability of rejecting H0 when H0 is true. The power of a test against a

speci�c alternative H1 is the probability of rejecting H0 when H1 is true.
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4.7. Restricted least squares

Another way of testing the hypothesis H0 : R� � r = 0 is to force the estimate �̂R to obey the
restriction R�̂R � r and then to estimate � unrestrictedly and to compare the quality of the
�t of the two estimated models, as captured by the mean squared residuals. Let the residuals
from the restricted and unrestricted estimation be respectively "̂R and "̂U . Then, under the null
hypothesis, the di¤erence in the sum of squared residuals divided by �2 has a �2(j) distribution.

24�
"̂0R"̂R � "̂0U "̂U

�
�2

� �2(j):

We now show that this statistic is identical to (4.3).
Restricted estimation can be done by de�ning �̂R as follows.

�̂R = argmin
b

(y �Xb)0(y �Xb), subject to: Rb = r

De�ne the Lagrangian

L = (y �Xb)0(y �Xb)� 2�0(Rb� r)

leading to the following �rst order conditions.

�2X 0y + 2X 0X�̂R � 2R0�̂ = 0 (4.4)

R�̂R � r = 0 (4.5)

The �rst equation gives25

�̂R = �̂U + (X
0X)�1R0�̂

where �̂U = (X 0X)�1X 0y is the unrestricted OLS estimator, and multiplying by R and using
the �rst order condition (4.5) gives

R�̂R = r = R�̂U +R(X
0X)�1R0�̂ (4.6)

which can be solved for �̂, giving

�̂ = �
�
R(X 0X)�1R0

��1 �
R�̂U � r

�
:

Substituting for �̂ in (4.6) gives the restricted least squares (RLS) estimator.

�̂R = �̂U � (X 0X)�1R0
�
R(X 0X)�1R0

��1 �
R�̂U � r

�
:

The RLS residual vector is

"̂R = y �X�̂R
= y �X�̂U +X(X 0X)�1R0

�
R(X 0X)�1R0

��1 �
R�̂U � r

�
= "̂U +X(X

0X)�1R0
�
R(X 0X)�1R0

��1 �
R�̂U � r

�
:

24 In practice we replace �2 by the consistent estimator �̂2.
25Multiply both sides by (X0X)�1.
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Therefore, after some simpli�cation

"̂0R"̂R = "̂
0
U "̂U +

�
R�̂U � r

�0 �
R(X 0X)�1R0

��1 �
R�̂U � r

�
- compare with (4.3).

4.8. Detecting structural change

A common application of this testing procedure in econometrics arises when attempting to detect
�structural change�. In a time series application one might imagine that up to some time Ts the
vector � = �b and after Ts, � = �a, that is that there are two regimes with switching occurring
at time Ts. This situation can be captured by specifying the model

y =

�
yb
ya

�
=

�
Xb 0
0 Xa

� �
�b
�a

�
+

�
"b
"a

�
= X� + "

where Xb contains data for the period before Ts and Xa contains data for the period after Ts.
The null hypothesis of no structural change is expressed by H0 : �b = �a. If all the coe¢ cients
are allowed to alter across the structural break then

"̂0U "̂U = "̂
0
b"̂b + "̂

0
a"̂a

where, e.g., "̂0b"̂b is the sum of squared residuals from estimating

yb = Xb�b + "b:

The test statistic developed above, specialised to this problem can then be written

S =

�
"̂0"̂�

�
"̂0b"̂b + "̂

0
a"̂a
��

�2

where "̂0"̂ is the sum of squared residuals from estimating with the constraint �̂a = �̂b imposed
and �2 is the common variance of the errors. When the errors are identically and independently
normally distributed S has a �2(k) distribution under H0. In practice an estimate of �

2 is used
- for example there is the statistic

S� =

�
"̂0"̂�

�
"̂0b"̂b + "̂

0
a"̂a
���

"̂0b"̂b + "̂
0
a"̂a
�
=n

where n is the total number of observations in the two periods combined. S has approximately
a �2(k) distribution under H0. This application of the theory of tests of linear hypotheses is
given the name, �Chow test�, after Gregory Chow who popularised the procedure some 30 years
ago. The version of the test popularised by Chow employs degree of freedom corrections which
lead to a test statistic with exactly an F distribution under H0 when the errors are normally
distributed. In practice the normal assumption is unlikely to hold so we do not give details here.
Of course the test can be modi�ed in various ways. For example we might wish to keep

some of the elements of � constant across regimes. The procedure can be modi�ed to produce
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a statistic with which to measure the quality of forecasts from a model. In macroeconometrics
there is considerable interest in detecting the number and location of regime shifts as well as the
changes in coe¢ cients across regimes. This is an active area of research which we will not have
time to cover. In microeconometrics the same procedure can be employed to test for di¤erences
across groups of households, �rms etc.
We saw how pivotal statistics played a central role in developing con�dence intervals. They

play a similarly central role in the development of tests of hypotheses. In the classical, Fisherian,
inference that we are studying, to conduct a hypothesis test we develop a statistic that is
pivotal when the null hypothesis is true but which has a distribution dependent on the extent of
departure from the null hypothesis when that hypothesis is false. Probability statements about
the pivotal statistic are transformed into a �Reject - Do not reject�decision rule. A powerful
test is one whose distribution under the alternative hypothesis shows large departures from the
distribution of the pivotal statistic that obtains under the null hypothesis.

5. Estimation in non-linear regression models

An obvious extension to the linear regression model studied so far is the non-linear regression
model26 :

E[Y jX = x] = g(x; �)

equivalently, in regression function plus error form:

Y = g(x; �) + "

E["jX = x] = 0:

Consider M-estimation and in particular the non-linear least squares estimator obtained as
follows.

�̂ = argmin
��

n�1
nX
i=1

(Yi � g(xi; ��))2

For now we just consider how a minimising value �̂ can be found. Many of the statistical
software packages have a routine to conduct non-linear optimisation and some have a non-linear
least squares routine. Many of these routines employ a variant of Newton�s method, which
proceeds as follows.

5.1. (*) Numerical optimisation: Newton�s method and variants

Write the minimisation problem as:

�̂ = argmin
��

Q(��):

26This is not the most general form that can arise. For example models of the form

E[g(Y; x; �)jX = x] = 0

equivalently

g(Y; x; �) = "

E["jX = x] = 0

do occur, but we will not study these sorts of models in his course.
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Newton�s method involves taking a sequence of steps, �0; �1; : : : ; �m; : : : �M from a starting value,
�0 to an approximate minimising value �M which we will use as our estimator �̂. The starting
value is provided by the user. One of the tricks is to use a good starting value near to the �nal
solution. This sometimes requires some thought.
Suppose we are at �m. Newton�s method considers a quadratic approximation to Q(�) which

is constructed to be an accurate approximation in a neighbourhood of �m, and moves to the value
�m+1 which minimises this quadratic approximation. At �m+1 a new quadratic approximation,
accurate in a neighbourhood of �m+1 is constructed and the next value in the sequence, �m+2, is
chosen as the value of � minimising this new approximation. Steps are taken until a convergence
criterion is satis�ed. Usually this involves a number of elements. For example one might continue
until the following conditions is satis�ed:

Q�(�m)
0Q�(�m) � �1; jQ(�m)�Q(�m�1)j < �2:

Convergence criteria vary form package to package. Some care is required in choosing these
criteria. Clearly �1 and �2 above should be chosen bearing in mind the orders of magnitude of
the objective function and its derivative.
The quadratic approximation used at each stage is a quadratic Taylor series approximation.

At � = �m,

Q(�) ' Q(�m) + (� � �m)0Q�(�m) +
1

2
(� � �m)0Q��0(�m) (� � �m) = Qa(�; �m):

The derivative of Qa(�; �m) with respect to � is

Qa�(�; �m) = Q�(�m) +Q��0(�m) (� � �m)

and �m+1 is chosen as the value of � that solves Qa�(�; �m) = 0, namely

�m+1 = �m �Q��0(�m)�1Q�(�m):

There are a number of points to consider here.

1. Obviously the procedure can only work when the objective function is twice di¤erentiable
with respect to �. For example it doesn�t work for the non-linear least absolute deviation
estimator where

Q(�) = n�1
nX
i=1

jYi � g(xi; �)j2 :

2. The procedure as described above, will stop whenever Q�(�m) = 0, which can occur at a
maximum and saddlepoint as well as at a minimum. The Hessian, Q��0(�m), should be
positive de�nite at a minimum of the function, and this should be checked at any claimed
minimising value.

3. When a minimum is found there is no guarantee that it is a global minimum. In problems
where this possibility arises it is normal to run the optimisation from a variety of start
points to guard against using an estimator that corresponds to a local minimum.
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4. If, at a point in the sequence, Q��0(�m) is not positive de�nite then the algorithm may
move away from the minimum and there may be no convergence. Many minimisation
(maximisation) problems we deal with involve globally convex (concave) objective func-
tions and for these there is no problem. For other cases, Newton�s method is usually
modi�ed, e.g. by taking steps

�m+1 = �m �A(�m)�1Q�(�m)

where A(�m) is constructed to be positive de�nite and in cases in which Q��0(�m) is in
fact positive de�nite, to be a good approximation to Q��0(�m).

5. The algorithm may �overstep�the minimum to the extent that it takes an �uphill�step,
i.e. so that Q(�m+1) > Q(�m). This is guarded against in many implementations of
Newton�s method by taking steps

�m+1 = �m � �(�m)A(�m)�1Q�(�m)

where �(�m) is a scalar step scaling factor, chosen to ensure that Q(�m+1) < Q(�m).
Some implementations attempt to make an optimal choice of �(�m) at each step. For
example candidate values of �(�m) can be employed, �i(�m), i = 1; 2; 3, and a quadratic
approximation �tted to the resulting values of the objective function. Then �(�m) is
chosen as the value of the step scale factor which minimises this quadratic approximation.

6. In practice it may be di¢ cult to calculate exact expressions for the derivatives that appear
in Newton�s method. In some cases symbolic computational methods can help. In others
we can use a numerical approximation, e.g.

Q�i(�m) '
Q�(�m + �iei)�Q�(�m)

�i

where ei is a vector with a one in position i and zeros elsewhere, and �i is a small perturbing
value, possibly varying across the elements of �.

5.2. Inference using the NLS estimator and in non-normal models

The NLS estimator is a nonlinear function of y and this turns out to present very di¢ cult
problems when we come to develop methods for making exact inferences about the unknown
parameter vector �.
In our work on inference so far we have only considered cases in which y given X is normally

distributed and only estimators that are simple functions of y - the OLS and GLS estimators,
which are linear functions of y, and s2 which is a quadratic function of y. In these cases it is fairly
easy to develop the distributions of the estimators. Once we consider more complicated functions
of y the development of an exact distribution theory is usually technically very demanding and
often computationally infeasible. Further it is often the case that the resulting exact distribution
depends upon the unknown parameters in a complicated way so that it is not possible to develop
pivotal statistics to use in the production of exact con�dence intervals and tests of hypotheses.
The same problem arises when we consider the OLS and GLS estimator, and s2, and y given

X is non-normally distributed. A further di¢ culty is that we usually do not know what the
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distribution of y given X actually is, so even if we were able to develop exact inferential methods
we would not know which distribution for y to base them on.
There are a number of ways of at least partially getting round this problem. We will look

at one of these next, namely the use of approximation methods, speci�cally what are known as
large sample approximations. They are universally applied in econometrics.


