University College London Department of Economics

G023: Econometric Theory and Methods Answers to Exercise 5

1. Models for binary data.

(a) Writing the index as $\beta_{0}+\beta_{1}$ lfincpc, the logit model estimates are as follows.

Coefficient	Estimate	Est. std. err.
β_{0}	-2.188	0.327
β_{1}	0.333	0.067

The Wald test statistic for $H_{0}: \beta_{1}=0$ is 25.05 and $P\left[\chi_{(1)}^{2}>6.63\right]=$ 0.01 , so we reject H_{0} using a test with approximate size 0.01 . An approximate 95% confidence interval for the coefficient is $[0.20,0.46]$. The coefficient is moderately well determined. The probability that a household with mean log family income per head (4.89) buys fruit juice is estimated to be 0.36 . For households with 20% (100%) higher family income per head the estimated probability of fruit juice purchase is $0.38(0.42)$.
(b) The estimates for the probit model are as follows.

Coefficient	Estimate	Est. std. err.
β_{0}	-1.348	0.199
β_{1}	0.204	0.041

The coefficient in the probit model is smaller - the ratio (logit:probit) is 1.63. The ratio of the two intercept estimates is 1.62 . The probability that a household with mean log family income per head (4.89) buys fruit juice is estimated to be 0.36 . For households with 20% (100%) higher family income per head the estimated probability of fruit juice purchase is 0.38 (0.42). These are, to the accuracy reported, exactly as in the logit estimation.
i. The Wald test statistic for the squared term when only it is included is 0.0004 . We would not reject the null hypothesis that the coefficient on squared log income per head is zero at any reasonable test size (e.g. comparing with 2.71 for a size 0.10 test). The likelihood ratio test statistic for the joint hypothesis under which both the squared and cubed terms have zero coefficients is 0.437 and again we would not reject the hypothesis.
ii. With the index written as $\beta_{0}+\beta_{1}$ lfinc $+\beta_{2} \log ($ memhh $)$ the results are as follows.

	Logit		Probit	
Coefficient	Estimate	Est. std. err.	Estimate	Est. std. err.
β_{0}	-3.899	0.381	-2.372	0.228
β_{1}	0.542	0.071	0.329	0.043
β_{2}	0.315	0.093	0.191	0.057

For the logit model the likelihood ratio test statistic for the hypothesis $H_{0}: \beta_{2}=-\beta_{1}$ is 25.48 and we reject the hypothesis using any reasonably sized test The ratios of the coefficients across model forms are 1.72 in both cases.
iii. Including region indicators we find that purchase probability is perhaps a little higher in London and the South East, but not especially low in Scotland and the North of England relative to other regions.
2. Likelihood.
(a) The log likelihood function is

$$
l(\theta ; t)=-n \log \theta-n \bar{t} / \theta
$$

where $\bar{t}=n^{-1} \sum_{i=1}^{n} t_{i}$. The gradient is

$$
l_{\theta}(\theta ; t)=-\frac{n}{\theta}+\frac{n \bar{t}}{\theta^{2}}
$$

and the first order condition for $\hat{\theta}$, the MLE, is the solution to

$$
l_{\theta}(\hat{\theta} ; t)=-\frac{n}{\hat{\theta}}+\frac{n \bar{t}}{\hat{\theta}^{2}}=0
$$

which gives $\hat{\theta}=\bar{t}$.
(b) The second derivative of the log likelihood function is

$$
l_{\theta \theta}(\theta ; t)=\frac{n}{\theta^{2}}-2 \frac{n \bar{t}}{\theta^{3}} .
$$

Written as a random variable, a function of random variables rather than realisations, we have

$$
l_{\theta \theta}(\theta ; T)=\frac{n}{\theta^{2}}-2 \frac{n \bar{T}}{\theta^{3}}
$$

The expected value of T is θ, so the expected second derivative is

$$
\begin{aligned}
E_{T_{1} \ldots T_{n}}\left[l_{\theta \theta}(\theta ; T)\right] & =E_{T_{1} \ldots T_{n}}\left[\frac{n}{\theta^{2}}-2 \frac{n \bar{T}}{\theta^{3}}\right] \\
& =\frac{n}{\theta^{2}}-2 \frac{n}{\theta^{2}} \\
& =-\frac{n}{\theta^{2}} .
\end{aligned}
$$

The information "matrix" (here a scalar) is therefore

$$
I(\theta)=\frac{n}{\theta^{2}}
$$

The limiting distribution of the MLE, with θ_{0} denoting the true parameter value, is therefore as follows.

$$
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, \theta_{0}^{2}\right)
$$

(c) With $\lambda=\theta^{-1}$ the log likelihood function is

$$
l(\theta ; t)=n \log \lambda-n \lambda \bar{t}
$$

where $\bar{t}=n^{-1} \sum_{i=1}^{n} t_{i}$. The gradient is

$$
l_{\theta}(\theta ; t)=\frac{n}{\lambda}-n \bar{t}
$$

and the first order condition for $\hat{\lambda}$, the MLE, is the solution to

$$
l_{\theta}(\hat{\theta} ; t)=\frac{n}{\hat{\lambda}}-n \bar{t}=0
$$

which gives $\hat{\theta}=1 / \bar{t}$. Note the MLE of the transformed parameter is what one obtains when the transformation is applied to the MLE of the original parameter. The second derivative of the log likelihood function is

$$
l_{\theta \theta}(\theta ; t)=-\frac{n}{\lambda^{2}}
$$

so the information "matrix" (here again a scalar) is

$$
I(\theta)=\frac{n}{\lambda^{2}}
$$

and the limiting distribution of the MLE, with λ_{0} denoting the true parameter value (note that is θ_{0}^{-1}), is therefore as follows.

$$
n^{1 / 2}\left(\hat{\lambda}-\lambda_{0}\right) \xrightarrow{d} N\left(0, \lambda_{0}^{2}\right)
$$

3. Likelihood for count data.
(a) The log likelihood function is

$$
l=\sum_{i=1}^{n}\left(y_{i}\left(x_{i}^{\prime} \theta\right)-\exp \left(x_{i}^{\prime} \theta\right)-\log \left(y_{i}!\right)\right)
$$

(b) The partial derivatives with respect to θ are as follows.

$$
l_{\theta}=\sum_{i=1}^{n}\left(-y_{i}-\exp \left(x_{i}^{\prime} \theta\right)\right) x_{i}
$$

Here x_{i} is a column vector of values of covariates and l_{θ} is a column vector of derivatives. Here are the first order conditions satisfied by the MLE $\hat{\theta}$.

$$
\sum_{i=1}^{n}\left(-y_{i}-\exp \left(x_{i}^{\prime} \hat{\theta}\right)\right) x_{i}=0
$$

Here " 0 " denotes a column vector of zeros.
(c) The matrix of second derivatives of the log likelihood function is

$$
l_{\theta \theta^{\prime}}=-\sum_{i=1}^{n} \exp \left(x_{i}^{\prime} \theta\right) x_{i} x_{i}^{\prime}
$$

which note does not depend on the values of the outcomes y_{1}, \ldots, y_{n}. When $\theta=\theta_{0}$ the information matrix is

$$
I\left(\theta_{0}\right)=E\left(\sum_{i=1}^{n} \exp \left(x_{i}^{\prime} \theta\right) x_{i} x_{i}^{\prime}\right)
$$

and

$$
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0,\left(\operatorname{plim}_{n \rightarrow \infty} n^{-1} \sum_{i=1}^{n} \exp \left(x_{i}^{\prime} \theta_{0}\right) x_{i} x_{i}^{\prime}\right)^{-1}\right) .
$$

(d) Conduct a likelihood ratio test. Compute the value of the unrestricted maximised log likelihood function $\left(l^{U}\right)$, that is with all 5 years of $\mathrm{R} \& \mathrm{D}$ expenditure included in x, and the value of the restricted maximised log likelihood function, that is with only one lagged value of $\mathrm{R} \& \mathrm{D}$ expenditure included. Then compute $2\left(l^{U}-l^{R}\right)$ which is a realisation (approximately) of a $\chi_{(4)}^{2}$ random variable when the null hypothesis is true. The 0.95 quantile of a $\chi_{(4)}^{2}$ random variable is 9.48 , that is $P\left[\chi_{(4)}^{2}>9.48\right]=0.05$. So if the value obtained is greater than 9.48 the null hypothesis is rejected using a test with approximate size 0.05 . A Wald or score test could be used instead.
(e) If Z has a Poisson distribution with parameter λ so that

$$
P[Z=z]=\frac{\lambda^{z} \exp (-\lambda)}{z!}
$$

then $E[Z]=\operatorname{Var}[Z]=\lambda$. This is most easily shown by first deriving
the moment generating function:

$$
\begin{aligned}
E[\exp (t Z)] & =\sum_{z=0}^{\infty} \frac{e^{t z} \lambda^{z} \exp (-\lambda)}{z!} \\
& =\sum_{z=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{z} \exp (-\lambda)}{z!} \\
& =\exp (-\lambda) \exp \left(\lambda e^{t}\right) \sum_{z=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{z} \exp \left(-\lambda e^{t}\right)}{z!} \\
& =\exp \left(\lambda\left(e^{t}-1\right)\right)
\end{aligned}
$$

and then differentiating once and then twice and setting $t=0$ to give $E[Z]$ and then $E\left[Z^{2}\right]$, finally using $\operatorname{Var}[Z]=E\left[Z^{2}\right]-E[Z]^{2}$. At the last line above I have used $e^{a}=\left(1+a+a^{2} / 2!+\ldots\right)$. When $\lambda(x)=x^{\prime} \theta$

$$
Y=E[Y \mid x]+\varepsilon=x^{\prime} \theta+\varepsilon
$$

where $E[\varepsilon \mid x]=0$ and $\operatorname{Var}[\varepsilon \mid x]=x^{\prime} \theta$. So OLS of y on x produces an estimate of θ, but the ε 's are heteroskedastic so GLS would produce a more accurate estimator if θ were known. Of course θ is not known but we can obtain a "first round" estimate using OLS and the apply the GLS formula with $\hat{\theta}$ used in place of θ. The linear model could lead to estimates of $E[Y \mid x]$ which are negative but Y is by definition positive.
4. Likelihood ratio Wald and score tests. As in Question 2, suppose unemployment durations, T, have an exponential distribution with probability density function

$$
f_{T}(t ; \theta)=\theta^{-1} \exp (t / \theta), \quad t, \theta>0
$$

You have independent realisations (perhaps from a survey of those leaving unemployment) of completed unemployment durations, t_{1}, \ldots, t_{n}.
(a) The MLE is $\hat{\theta}=\bar{t}$ and the log likelihood function is

$$
l(\theta, t)=-n \log \theta-n \bar{t} / \theta
$$

Substituting the MLE, \bar{t} for θ gives the result. The restricted \log likelihood is just

$$
l\left(\theta^{*}, t\right)=-n \log \theta^{*}-n \bar{t} / \theta^{*}
$$

and so the likelihood ratio statistic is

$$
2\left(l(\hat{\theta}, t)-l\left(\theta^{*}, t\right)\right)=2 n\left(-\log \left(\bar{t} / \theta^{*}\right)+\bar{t} / \theta^{*}-1\right)
$$

that is, twice the difference between the maximised unrestricted and restricted \log likelihood functions, which gives the desired answer on substituting $q=\bar{t} / \theta^{*}$.
(b) The information "matrix" for this problem is $I(\theta)=n / \theta^{2}$, so we have, with θ_{0} denoting the data generating parameter value,

$$
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, \theta_{0}^{2}\right) .
$$

The Wald statistic is therefore

$$
S_{W}=\frac{n\left(\hat{\theta}-\theta^{*}\right)^{2}}{\hat{\theta}^{2}}=n\left(1-q^{-1}\right)^{2}
$$

where we have used $\hat{\theta}=\bar{t}$ and $q=\bar{t} / \theta^{*}$. Note that we have estimated the variance of the limiting distribution $\left(\theta_{0}^{2}\right)$ using the MLE of θ. The gradient of the \log likelihood function evaluated at θ^{*} (the restricted "estimate") is

$$
l_{\theta}\left(\theta^{*}, y\right)=-\frac{n}{\theta^{*}}+\frac{n \bar{t}}{\left(\theta^{*}\right)^{2}}
$$

We have $\bar{I}(\theta)=\theta^{-2}$. Therefore the score statistic is

$$
\begin{aligned}
S_{S} & =n^{-1} \frac{\left(-\frac{n}{\theta^{*}}+\frac{n \bar{t}}{\left(\theta^{*}\right)^{2}}\right)^{2}}{\left(\theta^{*}\right)^{-2}} \\
& =n\left(-1+\frac{\bar{t}}{\theta^{*}}\right)^{2} \\
& =n(1-q)^{2}
\end{aligned}
$$

where as before, $q=\bar{t} / \theta^{*}$.
5. (a) The results of the five OLS estimates are as follows:

Source \|	SS	df MS			Number of obs	$=312$
					F (6, 305)	$=142.99$
Model \|	. 10407053	6.0	017345088		Prob > F	$=0.0000$
Residual \|	. 036996232	305.0	000121299		R -squared	$=0.7377$
			.000453591		Adj R-squared	$=0.7326$
Total \|	. 141066763	311.00			Root MSE	$=.01101$
w1 \|	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf.	Interval]
lrp1 \|	. 1076639	. 0090212	11.935	0.000	. 0899123	. 1254155
lrp2 \|	-. 0070751	. 0086653	-0.816	0.415	-. 0241264	. 0099762
lrp3 \|	. 0490431	. 0073664	6.658	0.000	. 0345478	. 0635385
lrp4 \|	-. 0406829	. 0146007	-2.786	0.006	-. 0694139	-. 011952
lrp5 \|	. 0259303	. 0100763	2.573	0.011	. 0061026	. 0457581
lrfepc \|	-. 0317888	. 013986	-2.273	0.024	-. 05931	-. 0042675
_cons \|	. 9168859	. 0789228	11.618	0.000	. 7615839	1.072188

. reg w2 lrp1-lrp5 lrfepc

Source \|	SS	df	MS
Model \|	. 016345932	6	. 002724322
Residual \|	. 005778866	305	. 000018947
Total \|	. 022124798	311	00007

Number of obs $=312$ F(6, 305) = 143.79
Prob > F $=0.0000$
R -squared $=0.7388$
Adj R -squared $=0.7337$
Root MSE $=.00435$

w2	Coef. Std. Err.		t	$P>\|t\|$	[95\% Conf	Interval]
lrp1	. 0444591	. 0035654	12.470	0.000	. 0374432	. 0514749
lrp2	-. 0153481	. 0034247	-4.482	0.000	-. 0220872	-. 008609
lrp3	. 0135582	. 0029114	4.657	0.000	. 0078293	. 0192871
lrp4	. 0270844	. 0057706	4.694	0.000	. 0157293	. 0384395
lrp5	-. 0149917	. 0039824	-3.765	0.000	-. 0228281	-. 0071553
lrfepc	-. 0057722	. 0055276	-1.044	0.297	-. 0166492	. 0051049
_cons	. 3978725	. 0311921	12.756	0.000	. 3364935	. 4592515

. reg w3 lrp1-lrp5 lrfepc

Source \|	SS	df MS			Number of obs $=$	
					F (6, 305)	$=73.06$
Model I	. 007156408	6.00	735		Prob > F	$=0.0000$
Residual \|	. 004979314	305.00	6326		R -squared	$=0.5897$
					Adj R-squared	$=0.5816$
Total \|	. 012135722	311.00	022		Root MSE	$=.00404$
w3 \|	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf.	Interval]
lrp1 \|	. 039102	. 0033096	11.815	0.000	. 0325895	. 0456144
lrp2 \|	. 0001432	. 003179	0.045	0.964	-. 0061123	. 0063987
lrp3 \|	. 0065459	. 0027025	2.422	0.016	. 0012281	. 0118638
lrp4 \|	-. 01486	. 0053565	-2.774	0.006	-. 0254003	-. 0043196
lrp5 \|	-. 0054198	. 0036966	-1.466	0.144	-. 0126939	. 0018543
lrfepc \|	-. 0142447	. 005131	-2.776	0.006	-. 0243412	-. 0041481
_cons \|	. 1638071	. 028954	5.657	0.000	. 1068323	. 220782

. reg w4 lrp1-lrp5 lrfepc

Number of obs $=312$
$F(6,305)=7.94$
Prob > F $=0.0000$
R-squared $=0.1351$
Adj R -squared $=0.1180$
Root MSE $=.00664$

w4	Coef.	Std. Err.	t	$P>\|t\|$	[95\% Conf. Interval]	
lrp1	. 0131749	. 00544	2.422	0.016	. 0024702	. 0238796
lrp2	-. 0047368	. 0052254	-0.906	0.365	-. 0150192	. 0055456
lrp3	. 0022634	. 0044421	0.510	0.611	-. 0064777	. 0110045
lrp4	. 0182984	. 0088046	2.078	0.039	. 0009729	. 0356239
lrp5	-. 0057454	. 0060762	-0.946	0.345	-. 0177021	. 0062113
lrfepc	-. 0388643	. 0084339	-4.608	0.000	-. 0554603	-. 0222682
_cons	. 2458552	. 0475925	5.166	0.000	. 1522039	. 3395064

. reg w5 lrp1-lrp5 lrfepc

Source \|	SS	df	MS	Number of obs =	312
				F(6, 305)	42.82
Model \|	. 003616578	6	. 000602763	Prob > F	0.0000
Residual \|	. 004293029	305	. 000014076	R -squared	0.4572
			--------	Adj R-squared	0.4466
Total \|	. 007909608	311	. 000025433	Root MSE	. 00375

w5	Coef.	Std. Err	t	$P>\|t\|$	[95\% Conf. Interval]	
lrp1	. 0016169	. 003073	0.526	0.599	-. 0044301	. 0076639
lrp2	-. 0027713	. 0029518	-0.939	0.349	-. 0085797	. 0030372
lrp3	-. 0077061	. 0025093	-3.071	0.002	-. 0126439	-. 0027683
lrp4	-. 0185639	. 0049737	-3.732	0.000	-. 0283509	-. 0087768
lrp5	. 0329317	. 0034324	9.594	0.000	. 0261775	. 039686
lrfepc	-. 0314725	. 0047643	-6.606	0.000	-. 0408475	-. 0220975
_cons	. 0060247	. 0268847	0.224	0.823	-. 0468783	. 0589277

(b) The estimated standard error is 0.0032 using the conventional OLS formula and 0.0034 using the Eicker-White formula. The own price coefficinet for fish is 0.0016 . Approximate 95% confidence intervals are: standard - [$-0.0047,0.0079]$, robust $-[-0.0050,0.0083]$. The results are very similar. If the errors in the equation were heteroskedastic then large differences could arise.
(c) Note that

$$
w_{i}=\frac{p_{i} \cdot q_{i}}{x}
$$

and so

$$
\log q_{i}=\log w_{i}-\log p_{i}+\log x .
$$

Taking the partial derivative with respect to $\log p_{j}$ there is

$$
\begin{aligned}
\frac{\partial \log q_{i}}{\partial \log p_{j}} & =\frac{\partial \log w_{i}}{\partial \log p_{j}}-\delta_{i j} \\
& =\frac{1}{w_{i}} \frac{\partial w_{i}}{\partial \log p_{j}}-\delta_{i j} \\
& =\frac{\gamma_{i j}}{w_{i}}-\delta_{i j}
\end{aligned}
$$

The estimated cross elasticity has the form

$$
\frac{\hat{\gamma}_{i j}}{w_{i}}
$$

so the approximate standard error is the approximate standard error of $\hat{\gamma}_{i j}$ devided by w_{i}. The estimated own elasticity has the form

$$
\frac{\hat{\gamma}_{i i}}{w_{i}}-1
$$

so the approximate standard error is the approximate standard error of $\hat{\gamma}_{i i}$ divided by w_{i}. The choice of food share can have a substantial effect on an estimated elasticity, unless of course the price coefficient is close to zreo. Note that this is a consequence of the choice of functional form.
(d) This is the endogeneity issue discussed in the lectures and course notes. An instrumental variable correlated with price and uncorrelated with demand would be useful. A variable measuring some aspect of producer's costs might be suitable.
(e) Again, note that

$$
\log q_{i}=\log w_{i}-\log p_{i}+\log x
$$

The partial derivative with respect to $\log x$ is:

$$
\begin{aligned}
\frac{\partial \log q_{i}}{\partial \log x} & =\frac{\partial \log w_{i}}{\partial \log x}+1 \\
& =\frac{1}{w_{i}} \frac{\partial w_{i}}{\partial \log x}+1 \\
& =\frac{\beta_{i}}{w_{i}}+1
\end{aligned}
$$

The estimated total expenditure elasticity is

$$
\frac{\hat{\beta}_{i}}{w_{i}}+1
$$

and hence the approximate standard error is the approximate standard error of $\hat{\beta}_{i}$ divided by w_{i}.
(f)
(i) To examine seasonality, one can include monthly indicator variables. The results indicate that the coefficients on the dummy variables are jointly significant (there is higher consumption during the winter than during the spring and
summer) but that the maginitudes of the differenecs across months are very small..
(ii) Score tests for heteroskedasticity suggest there is heteroskedastic variation.
(iv) The "Chow test" gives a highly significant result - a test statistic of around 60 compared with a $\chi_{(7)}^{2} 0.95$ quantile of 14.1 .
(g) Standard errors are much larger with IV as is to be expected. IV and OLS estimates are different.

