
University College London

Department of Economics

G023: Econometric Theory and Methods

Answers to Exercise 5

1. Models for binary data.

(a) Writing the index as β0 +β1lfincpc, the logit model estimates are as
follows.
Coefficient Estimate Est. std. err.
β0 -2.188 0.327
β1 0.333 0.067

The Wald test statistic for H0 : β1 = 0 is 25.05 and P [χ2
(1) > 6.63] =

0.01, so we reject H0 using a test with approximate size 0.01. An
approximate 95% confidence interval for the coefficient is [0.20, 0.46].
The coefficient is moderately well determined. The probability that
a household with mean log family income per head (4.89) buys fruit
juice is estimated to be 0.36. For households with 20% (100%) higher
family income per head the estimated probability of fruit juice pur-
chase is 0.38 (0.42).

(b) The estimates for the probit model are as follows.

Coefficient Estimate Est. std. err.
β0 -1.348 0.199
β1 0.204 0.041

The coefficient in the probit model is smaller - the ratio (logit:probit)
is 1.63. The ratio of the two intercept estimates is 1.62. The proba-
bility that a household with mean log family income per head (4.89)
buys fruit juice is estimated to be 0.36. For households with 20%
(100%) higher family income per head the estimated probability of
fruit juice purchase is 0.38 (0.42). These are, to the accuracy re-
ported, exactly as in the logit estimation.
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i. The Wald test statistic for the squared term when only it is
included is 0.0004. We would not reject the null hypothesis that
the coefficient on squared log income per head is zero at any
reasonable test size (e.g. comparing with 2.71 for a size 0.10 test).
The likelihood ratio test statistic for the joint hypothesis under
which both the squared and cubed terms have zero coefficients
is 0.437 and again we would not reject the hypothesis.

ii. With the index written as β0 + β1lfinc + β2 log(memhh) the re-
sults are as follows.

Logit Probit
Coefficient Estimate Est. std. err. Estimate Est. std. err.
β0 -3.899 0.381 -2.372 0.228
β1 0.542 0.071 0.329 0.043
β2 0.315 0.093 0.191 0.057

For the logit model the likelihood ratio test statistic for the hy-
pothesis H0 : β2 = −β1 is 25.48 and we reject the hypothesis
using any reasonably sized test The ratios of the coefficients
across model forms are 1.72 in both cases.

iii. Including region indicators we find that purchase probability is
perhaps a little higher in London and the South East, but not
especially low in Scotland and the North of England relative to
other regions.

2. Likelihood.

(a) The log likelihood function is

l(θ; t) = −n log θ − nt̄/θ

where t̄ = n−1
∑n

i=1 ti. The gradient is

lθ(θ; t) = −n

θ
+

nt̄

θ2

and the first order condition for θ̂, the MLE, is the solution to

lθ(θ̂; t) = −n

θ̂
+

nt̄

θ̂2
= 0

which gives θ̂ = t̄.

(b) The second derivative of the log likelihood function is

lθθ(θ; t) =
n

θ2
− 2

nt̄

θ3
.

Written as a random variable, a function of random variables rather
than realisations, we have

lθθ(θ; T ) =
n

θ2
− 2

nT̄

θ3
.
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The expected value of T is θ, so the expected second derivative is

ET1...Tn
[lθθ(θ;T )] = ET1...Tn

[
n

θ2
− 2

nT̄

θ3
]

=
n

θ2
− 2

n

θ2

= − n

θ2
.

The information “matrix” (here a scalar) is therefore

I(θ) =
n

θ2
.

The limiting distribution of the MLE, with θ0 denoting the true pa-
rameter value, is therefore as follows.

n1/2(θ̂ − θ0)
d→ N(0, θ2

0)

(c) With λ = θ−1 the log likelihood function is

l(θ; t) = n log λ− nλt̄

where t̄ = n−1
∑n

i=1 ti. The gradient is

lθ(θ; t) =
n

λ
− nt̄

and the first order condition for λ̂, the MLE, is the solution to

lθ(θ̂; t) =
n

λ̂
− nt̄ = 0

which gives θ̂ = 1/t̄. Note the MLE of the transformed parameter is
what one obtains when the transformation is applied to the MLE of
the original parameter. The second derivative of the log likelihood
function is

lθθ(θ; t) = − n

λ2

so the information “matrix” (here again a scalar) is

I(θ) =
n

λ2

and the limiting distribution of the MLE, with λ0 denoting the true
parameter value (note that is θ−1

0 ), is therefore as follows.

n1/2(λ̂− λ0)
d→ N(0, λ2

0).

3. Likelihood for count data.

(a) The log likelihood function is

l =
n∑

i=1

(yi (x′iθ)− exp(x′iθ)− log(yi!))
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(b) The partial derivatives with respect to θ are as follows.

lθ =
n∑

i=1

(−yi − exp(x′iθ))xi

Here xi is a column vector of values of covariates and lθ is a column
vector of derivatives. Here are the first order conditions satisfied by
the MLE θ̂.

n∑

i=1

(
−yi − exp(x′iθ̂)

)
xi = 0

Here “0” denotes a column vector of zeros.

(c) The matrix of second derivatives of the log likelihood function is

lθθ′ = −
n∑

i=1

exp(x′iθ)xix
′
i

which note does not depend on the values of the outcomes y1, . . . , yn.
When θ = θ0 the information matrix is

I(θ0) = E

(
n∑

i=1

exp(x′iθ)xix
′
i

)
.

and

n1/2(θ̂ − θ0)
d→ N(0,

(
plimn→∞n−1

n∑

i=1

exp(x′iθ0)xix
′
i

)−1

).

(d) Conduct a likelihood ratio test. Compute the value of the unre-
stricted maximised log likelihood function (lU ), that is with all 5 years
of R&D expenditure included in x, and the value of the restricted
maximised log likelihood function, that is with only one lagged value
of R&D expenditure included. Then compute 2(lU − lR) which is a
realisation (approximately) of a χ2

(4) random variable when the null
hypothesis is true. The 0.95 quantile of a χ2

(4) random variable is 9.48,
that is P [χ2

(4) > 9.48] = 0.05. So if the value obtained is greater than
9.48 the null hypothesis is rejected using a test with approximate size
0.05. A Wald or score test could be used instead.

(e) If Z has a Poisson distribution with parameter λ so that

P [Z = z] =
λz exp(−λ)

z!

then E[Z] = V ar[Z] = λ. This is most easily shown by first deriving
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the moment generating function:

E[exp(tZ)] =
∞∑

z=0

etzλz exp(−λ)
z!

=
∞∑

z=0

(λet)z exp(−λ)
z!

= exp(−λ) exp(λet)
∞∑

z=0

(λet)z exp(−λet)
z!

= exp(λ
(
et − 1

)
)

and then differentiating once and then twice and setting t = 0 to
give E[Z] and then E[Z2], finally using V ar[Z] = E[Z2]−E[Z]2. At
the last line above I have used ea = (1 + a + a2/2! + . . . ). When
λ(x) = x′θ

Y = E[Y |x] + ε = x′θ + ε

where E[ε|x] = 0 and V ar[ε|x] = x′θ. So OLS of y on x produces an
estimate of θ, but the ε’s are heteroskedastic so GLS would produce
a more accurate estimator if θ were known. Of course θ is not known
but we can obtain a “first round” estimate using OLS and the apply
the GLS formula with θ̂ used in place of θ. The linear model could
lead to estimates of E[Y |x] which are negative but Y is by definition
positive.

4. Likelihood ratio Wald and score tests. As in Question 2, suppose unem-
ployment durations, T , have an exponential distribution with probability
density function

fT (t; θ) = θ−1 exp(t/θ), t, θ > 0.

You have independent realisations (perhaps from a survey of those leaving
unemployment) of completed unemployment durations, t1, . . . , tn.

(a) The MLE is θ̂ = t̄ and the log likelihood function is

l(θ, t) = −n log θ − nt̄/θ.

Substituting the MLE, t̄ for θ gives the result. The restricted log
likelihood is just

l(θ∗, t) = −n log θ∗ − nt̄/θ∗

and so the likelihood ratio statistic is

2
(
l(θ̂, t)− l(θ∗, t)

)
= 2n (− log (t̄/θ∗) + t̄/θ∗ − 1)

that is, twice the difference between the maximised unrestricted and
restricted log likelihood functions, which gives the desired answer on
substituting q = t̄/θ∗.
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(b) The information “matrix” for this problem is I(θ) = n/θ2, so we
have, with θ0 denoting the data generating parameter value,

n1/2(θ̂ − θ0)
d→ N(0, θ2

0).

The Wald statistic is therefore

SW =
n(θ̂ − θ∗)2

θ̂2
= n(1− q−1)2

where we have used θ̂ = t̄ and q = t̄/θ∗. Note that we have estimated
the variance of the limiting distribution (θ2

0) using the MLE of θ. The
gradient of the log likelihood function evaluated at θ∗ (the restricted
“estimate”) is

lθ(θ∗, y) = − n

θ∗
+

nt̄

(θ∗)2
.

We have I(θ) = θ−2. Therefore the score statistic is

SS = n−1

(
− n

θ∗ + nt̄
(θ∗)2

)2

(θ∗)−2

= n

(
−1 +

t̄

θ∗

)2

= n (1− q)2

where as before, q = t̄/θ∗.

5. (a) The results of the five OLS estimates are as follows:

. reg w1 lrp1-lrp5 lrfepc

Source | SS df MS Number of obs = 312
---------+------------------------------ F( 6, 305) = 142.99

Model | .10407053 6 .017345088 Prob > F = 0.0000
Residual | .036996232 305 .000121299 R-squared = 0.7377
---------+------------------------------ Adj R-squared = 0.7326

Total | .141066763 311 .000453591 Root MSE = .01101

------------------------------------------------------------------------------
w1 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
lrp1 | .1076639 .0090212 11.935 0.000 .0899123 .1254155
lrp2 | -.0070751 .0086653 -0.816 0.415 -.0241264 .0099762
lrp3 | .0490431 .0073664 6.658 0.000 .0345478 .0635385
lrp4 | -.0406829 .0146007 -2.786 0.006 -.0694139 -.011952
lrp5 | .0259303 .0100763 2.573 0.011 .0061026 .0457581

lrfepc | -.0317888 .013986 -2.273 0.024 -.05931 -.0042675
_cons | .9168859 .0789228 11.618 0.000 .7615839 1.072188

------------------------------------------------------------------------------
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. reg w2 lrp1-lrp5 lrfepc

Source | SS df MS Number of obs = 312
---------+------------------------------ F( 6, 305) = 143.79

Model | .016345932 6 .002724322 Prob > F = 0.0000
Residual | .005778866 305 .000018947 R-squared = 0.7388
---------+------------------------------ Adj R-squared = 0.7337

Total | .022124798 311 .000071141 Root MSE = .00435

------------------------------------------------------------------------------
w2 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
lrp1 | .0444591 .0035654 12.470 0.000 .0374432 .0514749
lrp2 | -.0153481 .0034247 -4.482 0.000 -.0220872 -.008609
lrp3 | .0135582 .0029114 4.657 0.000 .0078293 .0192871
lrp4 | .0270844 .0057706 4.694 0.000 .0157293 .0384395
lrp5 | -.0149917 .0039824 -3.765 0.000 -.0228281 -.0071553

lrfepc | -.0057722 .0055276 -1.044 0.297 -.0166492 .0051049
_cons | .3978725 .0311921 12.756 0.000 .3364935 .4592515

------------------------------------------------------------------------------

. reg w3 lrp1-lrp5 lrfepc

Source | SS df MS Number of obs = 312
---------+------------------------------ F( 6, 305) = 73.06

Model | .007156408 6 .001192735 Prob > F = 0.0000
Residual | .004979314 305 .000016326 R-squared = 0.5897
---------+------------------------------ Adj R-squared = 0.5816

Total | .012135722 311 .000039022 Root MSE = .00404

------------------------------------------------------------------------------
w3 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
lrp1 | .039102 .0033096 11.815 0.000 .0325895 .0456144
lrp2 | .0001432 .003179 0.045 0.964 -.0061123 .0063987
lrp3 | .0065459 .0027025 2.422 0.016 .0012281 .0118638
lrp4 | -.01486 .0053565 -2.774 0.006 -.0254003 -.0043196
lrp5 | -.0054198 .0036966 -1.466 0.144 -.0126939 .0018543

lrfepc | -.0142447 .005131 -2.776 0.006 -.0243412 -.0041481
_cons | .1638071 .028954 5.657 0.000 .1068323 .220782

------------------------------------------------------------------------------

. reg w4 lrp1-lrp5 lrfepc

Source | SS df MS Number of obs = 312
---------+------------------------------ F( 6, 305) = 7.94

Model | .002100569 6 .000350095 Prob > F = 0.0000
Residual | .013453346 305 .000044109 R-squared = 0.1351
---------+------------------------------ Adj R-squared = 0.1180

Total | .015553915 311 .000050013 Root MSE = .00664
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------------------------------------------------------------------------------
w4 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
lrp1 | .0131749 .00544 2.422 0.016 .0024702 .0238796
lrp2 | -.0047368 .0052254 -0.906 0.365 -.0150192 .0055456
lrp3 | .0022634 .0044421 0.510 0.611 -.0064777 .0110045
lrp4 | .0182984 .0088046 2.078 0.039 .0009729 .0356239
lrp5 | -.0057454 .0060762 -0.946 0.345 -.0177021 .0062113

lrfepc | -.0388643 .0084339 -4.608 0.000 -.0554603 -.0222682
_cons | .2458552 .0475925 5.166 0.000 .1522039 .3395064

------------------------------------------------------------------------------

. reg w5 lrp1-lrp5 lrfepc

Source | SS df MS Number of obs = 312
---------+------------------------------ F( 6, 305) = 42.82

Model | .003616578 6 .000602763 Prob > F = 0.0000
Residual | .004293029 305 .000014076 R-squared = 0.4572
---------+------------------------------ Adj R-squared = 0.4466

Total | .007909608 311 .000025433 Root MSE = .00375

------------------------------------------------------------------------------
w5 | Coef. Std. Err. t P>|t| [95% Conf. Interval]

---------+--------------------------------------------------------------------
lrp1 | .0016169 .003073 0.526 0.599 -.0044301 .0076639
lrp2 | -.0027713 .0029518 -0.939 0.349 -.0085797 .0030372
lrp3 | -.0077061 .0025093 -3.071 0.002 -.0126439 -.0027683
lrp4 | -.0185639 .0049737 -3.732 0.000 -.0283509 -.0087768
lrp5 | .0329317 .0034324 9.594 0.000 .0261775 .039686

lrfepc | -.0314725 .0047643 -6.606 0.000 -.0408475 -.0220975
_cons | .0060247 .0268847 0.224 0.823 -.0468783 .0589277

------------------------------------------------------------------------------

(b) The estimated standard error is 0.0032 using the conventional OLS for-
mula and 0.0034 using the Eicker-White formula. The own price coefficinet for
fish is 0.0016. Approximate 95% confidence intervals are: standard - [−0.0047, 0.0079],
robust - [−0.0050, 0.0083]. The results are very similar. If the errors in the equa-
tion were heteroskedastic then large differences could arise.

(c) Note that
wi =

pi · qi

x

and so
log qi = log wi − log pi + log x.
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Taking the partial derivative with respect to log pj there is

∂ log qi

∂ log pj
=

∂ log wi

∂ log pj
− δij

=
1
wi

∂wi

∂ log pj
− δij

=
γij

wi
− δij .

The estimated cross elasticity has the form

γ̂ij

wi

so the approximate standard error is the approximate standard error of γ̂ij

devided by wi. The estimated own elasticity has the form

γ̂ii

wi
− 1

so the approximate standard error is the approximate standard error of γ̂ii

divided by wi. The choice of food share can have a substantial effect on an
estimated elasticity, unless of course the price coefficient is close to zreo. Note
that this is a consequence of the choice of functional form.

(d) This is the endogeneity issue discussed in the lectures and course notes.
An instrumental variable correlated with price and uncorrelated with demand
would be useful. A variable measuring some aspect of producer’s costs might
be suitable.

(e) Again, note that

log qi = log wi − log pi + log x.

The partial derivative with respect to log x is:

∂ log qi

∂ log x
=

∂ log wi

∂ log x
+ 1

=
1
wi

∂wi

∂ log x
+ 1

=
βi

wi
+ 1.

The estimated total expenditure elasticity is

β̂i

wi
+ 1

and hence the approximate standard error is the approximate standard error of
β̂i divided by wi.

(f)
(i) To examine seasonality, one can include monthly indicator variables. The

results indicate that the coefficients on the dummy variables are jointly signifi-
cant (there is higher consumption during the winter than during the spring and
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summer) but that the maginitudes of the differenecs across months are very
small..

(ii) Score tests for heteroskedasticity suggest there is heteroskedastic varia-
tion.

(iv) The “Chow test” gives a highly significant result - a test statistic of
around 60 compared with a χ2

(7) 0.95 quantile of 14.1.
(g) Standard errors are much larger with IV as is to be expected. IV and

OLS estimates are different.
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