University College London Department of Economics

G023: Econometric Theory and Methods* Answers to Exercise 4

1. Heteroskedasticity.
(a) The formula given is just $\left(X^{\prime} X\right)^{-1} X^{\prime} y$ for the case in which X and y are vectors. The variance of the OLS estimator is given by the formula $\left(X^{\prime} X\right)^{-1} X^{\prime} \Omega X\left(X^{\prime} X\right)^{-1}$ where Ω is a diagonal matrix with i th diagonal element equal to $\omega^{2} \lambda\left(x_{i}\right)$. For the case in which X is a vector we have

$$
\operatorname{Var}[\hat{\beta} \mid x]=\omega^{2} \frac{\sum_{i=1}^{n} x_{i}^{2} \lambda\left(x_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}}
$$

(b) The formula given is just $\left(X^{\prime} \Omega^{-1} X\right)^{-1} X^{\prime} \Omega^{-1} y$ for the case in which X and y are vectors and Ω is as above. This is called the weighted least squares estimator because it can be obtained as

$$
\hat{\beta}_{G L S}=\underset{\beta}{\arg \min }(y-X \beta)^{\prime} \Omega^{-1}(y-X \beta)
$$

which in this special case is

$$
\hat{\beta}_{G L S}=\arg \min _{\beta} \omega^{-2} \sum_{i=1}^{n} \frac{\left(y_{i}-\beta x_{i}\right)^{2}}{\lambda\left(x_{i}\right)}
$$

In a model with heteroskedasticity the GLS estimator minimises a weighted sum of the squared residuals where the weights are inversely proportional to the conditional variance of Y given x.
(c) Both estimators are unbiased - they are both special cases of the estimator $\hat{\beta}_{H}=\left(H^{\prime} X\right)^{-1} H^{\prime} y$ introduced earlier in the course. You
can show unbiasedness for each case directly. For example, for $\hat{\beta}_{A}$,

$$
\begin{aligned}
E\left[\hat{\beta}_{A} \mid x\right] & =\frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_{i}} E\left[\left.\frac{1}{n} \sum_{i=1}^{n} y_{i} \right\rvert\, x\right] \\
& =\frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_{i}} E\left[\left.\frac{1}{n} \sum_{i=1}^{n}\left(\beta x_{i}+\varepsilon_{i}\right) \right\rvert\, x\right] \\
& =\beta+\frac{1}{\frac{1}{n} \sum_{i=1}^{n} x_{i}} E\left[\left.\frac{1}{n} \sum_{i=1}^{n} \varepsilon_{i} \right\rvert\, x\right] \\
& =\beta
\end{aligned}
$$

To answer the second part of the question we must find specifications for $\lambda\left(x_{i}\right)$ which make the GLS estimator take the given forms. The answer is, for $\hat{\beta}_{A}, \lambda\left(x_{i}\right)=x_{i}$, and for $\hat{\beta}_{B}, \lambda\left(x_{i}\right)=x_{i}^{2}$. The OLS estimator is BLU when $\lambda\left(x_{i}\right)=1$ for all x_{i}.
(d) The variance of the three estimators are as follows. Plug in the appropriate forms for $\lambda\left(x_{i}\right)$ to get the nine requested answers.

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\beta}_{O L S} \mid x\right] & =\omega^{2} \frac{\sum_{i=1}^{n} x_{i}^{2} \lambda\left(x_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{2}} \\
\operatorname{Var}\left[\hat{\beta}_{A} \mid x\right] & =\omega^{2} \frac{\sum_{i=1}^{n} \lambda\left(x_{i}\right)}{\left(\sum_{i=1}^{n} x_{i}\right)^{2}} \\
\operatorname{Var}\left[\hat{\beta}_{B} \mid x\right] & =\frac{\omega^{2}}{n^{2}} \sum_{i=1}^{n} \frac{\lambda\left(x_{i}\right)}{x_{i}^{2}}
\end{aligned}
$$

Check that when each estimator is BLU, the result is what the GLS variance formula suggests. To get the result for, e.g., $\hat{\beta}_{B}$, we work as follows.

$$
\hat{\beta}_{B}=\beta+\frac{1}{n} \sum_{i=1}^{n} \frac{\varepsilon_{i}}{x_{i}}
$$

so,

$$
\begin{aligned}
\operatorname{Var}\left[\hat{\beta}_{B} \mid x\right] & =\operatorname{Var}\left[\frac{1}{n} \sum_{i=1}^{n} \frac{\varepsilon_{i}}{x_{i}}\right] \\
& =\frac{1}{n^{2}} E\left[\left(\sum_{i=1}^{n} \frac{\varepsilon_{i}}{x_{i}}\right)^{2}\right] \\
& =\frac{1}{n^{2}} \sum_{i=1}^{n} E\left[\left(\frac{\varepsilon_{i}}{x_{i}}\right)^{2}\right]+\frac{1}{n^{2}} \sum_{\substack{i=1 \\
i \neq j}}^{n} \sum_{j=1}^{n} \frac{\varepsilon_{i} \varepsilon_{j}}{x_{i} x_{j}} \\
& =\frac{\omega^{2}}{n^{2}} \sum_{i=1}^{n} \frac{\lambda\left(x_{i}\right)}{x_{i}^{2}}
\end{aligned}
$$

the second line following because $E\left[\varepsilon_{i} \mid x\right]=0$ and the last line because of the assumptions concerning lack of serial correlation.
2. MAFF used estimators of the type $\hat{\beta}_{A}$ in Question 2, with y_{i} interpreted as food expenditure in household i and x_{i} interpreted as number of household members in household i. This would be good (in a BLU sense) if the variance of household food expenditures increases linearly with the number of household members. Does it?
3. Limiting distributions. Issues of the sort introduced in this question dominate the literature on non-stationary time series.
(a) This is just the formula $\left(X^{\prime} X\right)^{-1} X^{\prime} y$ for the special case in which $X=[1: 2 \vdots \ldots: n]^{\prime}$. We have

$$
\hat{\beta}_{n}=\beta+\frac{\sum_{t=1}^{n} t \varepsilon_{t}}{\sum_{i=1}^{n} t^{2}}
$$

Therefore $\hat{\beta}_{n}$ is a linear function of normal random variables, so it has a normal distribution. The expected value is

$$
E\left[\hat{\beta}_{n}\right]=\beta+\frac{\sum_{t=1}^{n} t E\left[\varepsilon_{t}\right]}{\sum_{i=1}^{n} t^{2}}=\beta
$$

The variance is, using the $\sigma^{2}\left(X^{\prime} X\right)^{-1}$ formula

$$
\operatorname{Var}\left[\hat{\beta}_{n}\right]=\frac{\sigma^{2}}{\sum_{i=1}^{n} t^{2}}
$$

which gives the required result on using $\sum_{i=1}^{n} t^{2}=n(n+1)(2 n+1) / 6$.
(b) We have $E\left[Q_{n}\right]=0$ and therefore, trivially, $\lim _{n \rightarrow \infty} E\left[Q_{n}\right]=0$. Also, $\operatorname{Var}\left[Q_{n}\right]=6 \sigma^{2} /((n+1)(2 n+1))$ and $\lim _{n \rightarrow \infty} \operatorname{Var}\left[Q_{n}\right]=0$. Therefore $Q_{n} \xrightarrow{q m} 0$ which implies that $\operatorname{plim}_{n \rightarrow \infty} Q_{n}=0$.
(c) Here $E\left[R_{n}\right]=0$ and therefore, trivially, $\lim _{n \rightarrow \infty} E\left[R_{n}\right]=0$. But

$$
\begin{aligned}
\operatorname{Var}\left[R_{n}\right] & =\frac{6 n^{3} \sigma^{2}}{n(n+1)(2 n+1)} \\
& =\frac{\sigma^{2}}{\frac{1}{3}+\frac{1}{2 n}+\frac{1}{6 n^{2}}}
\end{aligned}
$$

and $\lim _{n \rightarrow \infty} \operatorname{Var}\left[R_{n}\right]=3 \sigma^{2}$.
(d) The answer is $h(n)=n$. Why? Try finding $h(n)$ for the models

$$
\begin{aligned}
& y_{t}=\beta t^{3 / 2}+\varepsilon_{t} \\
& y_{t}=\beta t^{2}+\varepsilon_{t}
\end{aligned}
$$

Can you see a general result here?
4. Likelihood, continuous outcomes.
(a) The log likelihood function is

$$
l(\theta ; t)=-n \log \theta-n \bar{t} / \theta
$$

where $\bar{t}=n^{-1} \sum_{i=1}^{n} t_{i}$. The gradient is

$$
l_{\theta}(\theta ; t)=-\frac{n}{\theta}+\frac{n \bar{t}}{\theta^{2}}
$$

and the first order condition for $\hat{\theta}$, the MLE, is the solution to

$$
l_{\theta}(\hat{\theta} ; t)=-\frac{n}{\hat{\theta}}+\frac{n \bar{t}}{\hat{\theta}^{2}}=0
$$

which gives $\hat{\theta}=\bar{t}$.
(b) The second derivative of the log likelihood function is

$$
l_{\theta \theta}(\theta ; t)=\frac{n}{\theta^{2}}-2 \frac{n \bar{t}}{\theta^{3}} .
$$

Written as a random variable, a function of random variables rather than realisations, we have

$$
l_{\theta \theta}(\theta ; T)=\frac{n}{\theta^{2}}-2 \frac{n \bar{T}}{\theta^{3}}
$$

The expected value of T is θ, so the expected second derivative is

$$
\begin{aligned}
E_{T_{1} \ldots T_{n}}\left[l_{\theta \theta}(\theta ; T)\right] & =E_{T_{1} \ldots T_{n}}\left[\frac{n}{\theta^{2}}-2 \frac{n \bar{T}}{\theta^{3}}\right] \\
& =\frac{n}{\theta^{2}}-2 \frac{n}{\theta^{2}} \\
& =-\frac{n}{\theta^{2}} .
\end{aligned}
$$

The information "matrix" (here a scalar) is therefore

$$
I(\theta)=\frac{n}{\theta^{2}} .
$$

The limiting distribution of the MLE, with θ_{0} denoting the true parameter value, is therefore as follows.

$$
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, \theta_{0}^{2}\right)
$$

(c) Let $D=1$ for uncensored realisations, $D=0$ otherwise and let t_{i}^{r} denote the uncensored realisations. Let $n_{o b}$ be the number of uncensored realisations. The log likelihood function is then as follows.

$$
l(\theta ; t)=-n_{o b} \log \theta-\frac{1}{\theta} \sum_{i=1}^{n} d_{i} t_{i}^{r}-\frac{1}{\theta}\left(n-n_{o b}\right) c
$$

The gradient of the log likelihood function is

$$
l_{\theta}(\theta ; t)=-\frac{n_{o b}}{\theta}+\frac{1}{\theta^{2}} \sum_{i=1}^{n} d_{i} t_{i}^{r}+\frac{1}{\theta^{2}}\left(n-n_{o b}\right) c
$$

which leads to the following expression for the MLE.

$$
\hat{\theta}=\frac{1}{n_{o b}}\left(\sum_{i=1}^{n} d_{i} t_{i}^{r}+\left(n-n_{o b}\right) c\right)
$$

Let $z_{i}=\min \left(t_{i}, c\right)$ then the MLE can be written as

$$
\hat{\theta}=\frac{1}{n_{o b}} \sum_{i=1}^{n} z_{i}=\frac{n}{n_{o b}} \bar{z} .
$$

The second derivative of the \log likelihood function, written as a function of random variables rather than realisations is

$$
l_{\theta \theta}(\theta ; t)=\frac{N_{o b}}{\theta^{2}}-2 \frac{1}{\theta^{3}} \sum_{i=1}^{n} D_{i} T_{i}^{r}-2 \frac{1}{\theta^{3}}\left(n-N_{o b}\right) c
$$

The expected value of the second derivative of the log likelihood function is ${ }^{1}$

$$
E_{T_{1} \ldots T_{n}}\left[l_{\theta \theta}(\theta ; T)\right]=-\frac{n}{\theta^{2}}(1-\exp (-c / \theta))
$$

and so the information "matrix" is

$$
I(\theta)=\frac{n}{\theta^{2}}(1-\exp (-c / \theta))
$$

The limiting distribution of the MLE, with θ_{0} denoting the true parameter value, is

$$
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \xrightarrow{d} N\left(0, \frac{\theta_{0}^{2}}{1-\exp \left(-c / \theta_{0}\right)}\right) .
$$

Note that as c becomes small the variance of the limiting distribution increases without limit.
(d) Using the parameterisation invariance result discussed in the course notes, since $\lambda=\theta^{-1}$, the MLE $\hat{\lambda}=\hat{\theta}^{-1}$. λ is a continuous function of θ around any value $\theta_{0} \neq 0$ and so by Slutsky's Theorem if $\theta_{0} \neq 0$ then $\hat{\lambda}$ converges in distribution to a normal random variable. The variance can be found using the delta method. Let $\lambda_{0}=\theta_{0}^{-1}$. There is:

$$
\hat{\lambda}-\lambda_{0} \simeq\left(\hat{\theta}-\theta_{0}\right)\left(-\frac{1}{\theta_{0}^{2}}\right)
$$

and so, arguing informally,

$$
\operatorname{Var}\left(n^{1 / 2}\left(\hat{\lambda}-\lambda_{0}\right)\right) \simeq \operatorname{Var}\left(n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right)\right)\left(\frac{1}{\theta_{0}^{4}}\right) \simeq \frac{\theta_{0}^{2}}{\theta_{0}^{4}}=\frac{1}{\theta_{0}^{2}}=\lambda_{0}^{2}
$$

and finally

$$
n^{1 / 2}\left(\hat{\lambda}-\lambda_{0}\right) \xrightarrow{d} N\left(0, \lambda_{0}^{2}\right) .
$$

[^0]5. Likelihood, normal distribution. Let $\theta=\{\mu, \eta\}$. The log likelihood function is
$$
l(\theta)=-\frac{m}{2} \log (2 \pi)-\frac{m}{2} \log (\eta)-\frac{1}{2 \eta} \sum_{i=1}^{m}\left(Y_{i}-\mu\right)^{2}
$$
with first derivatives:
\[

l_{\theta}(\theta)=\left[$$
\begin{array}{c}
\frac{1}{\eta} \sum_{i=1}^{m}\left(Y_{i}-\mu\right) \\
-\frac{m}{2 \eta}+\frac{1}{2 \eta^{2}} \sum_{i=1}^{m}\left(Y_{i}-\mu\right)^{2}
\end{array}
$$\right] .
\]

The solution to $l_{\theta}(\hat{\theta})=0$ gives the required answer. This is the approximate distribution.

$$
n^{1 / 2}\left[\begin{array}{c}
\hat{\mu}-\mu_{0} \\
\hat{\eta}-\eta_{0}
\end{array}\right] \xrightarrow{d} N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\eta_{0} & 0 \\
0 & 2 \eta_{0}^{2}
\end{array}\right]\right)
$$

[^0]: ${ }^{1}$ Take expectation first with respect to T_{i}^{r} 's given the D_{i} 's (using the truncated distribution) and then with respect to D_{i} 's.

