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Answers to Exercise 4

1. Heteroskedasticity.

(a) The formula given is just (X ′X)−1X ′y for the case in which X and
y are vectors. The variance of the OLS estimator is given by the
formula (X ′X)−1X ′ΩX(X ′X)−1 where Ω is a diagonal matrix with
ith diagonal element equal to ω2λ(xi). For the case in which X is a
vector we have

V ar[β̂|x] = ω2

∑n
i=1 x2

i λ(xi)

(
∑n

i=1 x2
i )

2 .

(b) The formula given is just (X ′Ω−1X)−1X ′Ω−1y for the case in which
X and y are vectors and Ω is as above. This is called the weighted
least squares estimator because it can be obtained as

β̂GLS = arg min
β

(y −Xβ)′Ω−1(y −Xβ)

which in this special case is

β̂GLS = arg min ω−2

β

n∑

i=1

(yi − βxi)
2

λ(xi)
.

In a model with heteroskedasticity the GLS estimator minimises a
weighted sum of the squared residuals where the weights are inversely
proportional to the conditional variance of Y given x.

(c) Both estimators are unbiased - they are both special cases of the
estimator β̂H = (H ′X)−1H ′y introduced earlier in the course. You
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can show unbiasedness for each case directly. For example, for β̂A,

E[β̂A|x] =
1

1
n

∑n
i=1 xi

E[
1
n

n∑

i=1

yi|x]

=
1

1
n

∑n
i=1 xi

E[
1
n

n∑

i=1

(βxi + εi) |x]

= β +
1

1
n

∑n
i=1 xi

E[
1
n

n∑

i=1

εi|x]

= β.

To answer the second part of the question we must find specifications
for λ(xi) which make the GLS estimator take the given forms. The
answer is, for β̂A, λ(xi) = xi, and for β̂B , λ(xi) = x2

i . The OLS
estimator is BLU when λ(xi) = 1 for all xi.

(d) The variance of the three estimators are as follows. Plug in the
appropriate forms for λ(xi) to get the nine requested answers.

V ar[β̂OLS |x] = ω2

∑n
i=1 x2

i λ(xi)

(
∑n

i=1 x2
i )

2

V ar[β̂A|x] = ω2

∑n
i=1 λ(xi)

(
∑n

i=1 xi)
2

V ar[β̂B |x] =
ω2

n2

n∑

i=1

λ(xi)
x2

i

Check that when each estimator is BLU, the result is what the GLS
variance formula suggests. To get the result for, e.g., β̂B , we work as
follows.

β̂B = β +
1
n

n∑

i=1

εi

xi

so,

V ar[β̂B |x] = V ar

[
1
n

n∑

i=1

εi

xi

]

=
1
n2

E




(
n∑

i=1

εi

xi

)2



=
1
n2

n∑

i=1

E

[(
εi

xi

)2
]

+
1
n2

n∑

i=1

n∑

j=1

i 6=j

εiεj

xixj

=
ω2

n2

n∑

i=1

λ(xi)
x2

i

the second line following because E[εi|x] = 0 and the last line because
of the assumptions concerning lack of serial correlation.
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2. MAFF used estimators of the type β̂A in Question 2, with yi interpreted as
food expenditure in household i and xi interpreted as number of household
members in household i. This would be good ( in a BLU sense) if the
variance of household food expenditures increases linearly with the number
of household members. Does it?

3. Limiting distributions. Issues of the sort introduced in this question dom-
inate the literature on non-stationary time series.

(a) This is just the formula (X ′X)−1X ′y for the special case in which

X = [1
...2

... . . .
...n]′. We have

β̂n = β +
∑n

t=1 tεt∑n
i=1 t2

Therefore β̂n is a linear function of normal random variables, so it
has a normal distribution. The expected value is

E[β̂n] = β +
∑n

t=1 tE[εt]∑n
i=1 t2

= β.

The variance is, using the σ2(X ′X)−1 formula

V ar[β̂n] =
σ2

∑n
i=1 t2

which gives the required result on using
∑n

i=1 t2 = n(n+1)(2n+1)/6.

(b) We have E[Qn] = 0 and therefore, trivially, limn→∞E[Qn] = 0.
Also, V ar[Qn] = 6σ2/ ((n + 1)(2n + 1)) and limn→∞ V ar[Qn] = 0.
Therefore Qn

qm→ 0 which implies that plimn→∞Qn = 0.

(c) Here E[Rn] = 0 and therefore, trivially, limn→∞E[Rn] = 0. But

V ar[Rn] =
6n3σ2

n(n + 1)(2n + 1)

=
σ2

1
3 + 1

2n + 1
6n2

and limn→∞ V ar[Rn] = 3σ2.

(d) The answer is h(n) = n. Why? Try finding h(n) for the models

yt = βt3/2 + εt

yt = βt2 + εt.

Can you see a general result here?

4. Likelihood, continuous outcomes.

(a) The log likelihood function is

l(θ; t) = −n log θ − nt̄/θ
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where t̄ = n−1
∑n

i=1 ti. The gradient is

lθ(θ; t) = −n

θ
+

nt̄

θ2

and the first order condition for θ̂, the MLE, is the solution to

lθ(θ̂; t) = −n

θ̂
+

nt̄

θ̂2
= 0

which gives θ̂ = t̄.

(b) The second derivative of the log likelihood function is

lθθ(θ; t) =
n

θ2
− 2

nt̄

θ3
.

Written as a random variable, a function of random variables rather
than realisations, we have

lθθ(θ; T ) =
n

θ2
− 2

nT̄

θ3
.

The expected value of T is θ, so the expected second derivative is

ET1...Tn [lθθ(θ;T )] = ET1...Tn [
n

θ2
− 2

nT̄

θ3
]

=
n

θ2
− 2

n

θ2

= − n

θ2
.

The information “matrix” (here a scalar) is therefore

I(θ) =
n

θ2
.

The limiting distribution of the MLE, with θ0 denoting the true pa-
rameter value, is therefore as follows.

n1/2(θ̂ − θ0)
d→ N(0, θ2

0)

(c) Let D = 1 for uncensored realisations, D = 0 otherwise and let
tri denote the uncensored realisations. Let nob be the number of
uncensored realisations. The log likelihood function is then as follows.

l(θ; t) = −nob log θ − 1
θ

n∑

i=1

dit
r
i −

1
θ
(n− nob)c

The gradient of the log likelihood function is

lθ(θ; t) = −nob

θ
+

1
θ2

n∑

i=1

dit
r
i +

1
θ2

(n− nob)c
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which leads to the following expression for the MLE.

θ̂ =
1

nob

(
n∑

i=1

dit
r
i + (n− nob)c

)

Let zi = min(ti, c) then the MLE can be written as

θ̂ =
1

nob

n∑

i=1

zi =
n

nob
z̄.

The second derivative of the log likelihood function, written as a
function of random variables rather than realisations is

lθθ(θ; t) =
Nob

θ2
− 2

1
θ3

n∑

i=1

DiT
r
i − 2

1
θ3

(n−Nob)c.

The expected value of the second derivative of the log likelihood
function is1

ET1...Tn [lθθ(θ; T )] = − n

θ2
(1− exp(−c/θ))

and so the information “matrix” is

I(θ) =
n

θ2
(1− exp(−c/θ)) .

The limiting distribution of the MLE , with θ0 denoting the true
parameter value, is

n1/2(θ̂ − θ0)
d→ N(0,

θ2
0

1− exp(−c/θ0)
).

Note that as c becomes small the variance of the limiting distribution
increases without limit.

(d) Using the parameterisation invariance result discussed in the course
notes, since λ = θ−1, the MLE λ̂ = θ̂−1. λ is a continuous function
of θ around any value θ0 6= 0 and so by Slutsky’s Theorem if θ0 6= 0
then λ̂ converges in distribution to a normal random variable. The
variance can be found using the delta method. Let λ0 = θ−1

0 . There
is:

λ̂− λ0 '
(
θ̂ − θ0

)(
− 1

θ2
0

)

and so, arguing informally,

V ar
(
n1/2

(
λ̂− λ0

))
' V ar

(
n1/2

(
θ̂ − θ0

)) (
1
θ4
0

)
' θ2

0

θ4
0

=
1
θ2
0

= λ2
0

and finally
n1/2(λ̂− λ0)

d→ N(0, λ2
0).

1Take expectation first with respect to T r
i ’s given the Di’s (using the truncated distribu-

tion) and then with respect to Di’s.
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5. Likelihood, normal distribution. Let θ = {µ, η}. The log likelihood func-
tion is

l(θ) = −m

2
log(2π)− m

2
log(η)− 1

2η

m∑

i=1

(Yi − µ)2

with first derivatives:

lθ(θ) =

[
1
η

∑m
i=1 (Yi − µ)

−m
2η + 1

2η2

∑m
i=1 (Yi − µ)2

]
.

The solution to lθ(θ̂) = 0 gives the required answer. This is the approxi-
mate distribution.

n1/2

[
µ̂− µ0

η̂ − η0

]
d→ N

([
0
0

]
,

[
η0 0
0 2η2

0

])

6


