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Exercise 1: Sketch answers∗

1. This problem characterizes the expected value as the best predictor in the
sense of minimizing the mean squared error. Note that the values of a and
b are irrelevant so long as b > 0 because

EX [a + b(X − x∗)2] = a + bEX

[
(X − x∗)2

]
.

A direct attack gives on differentiating the objective function

∂

∂x∗
EX [(X − x∗)2] = −2bEX [(X − x∗)]

which is zero uniquely at x∗ = EX [X] when b > 0. Differentiating again
gives a value of 2b which is positive indicating that we have our loss min-
imising predictor. Part (a) of the question leads to

EX [a + b(X − x∗)2] = a + bV arX(X) + b (EX [X]− x∗)2

which is clearly minimised by setting x∗ = EX [X].

The observation generalizes to the case in which X has a distribution con-
ditional on the value of other variables, Z. The best conditional predictor
of X in the sense of minimizing the conditional mean squared error (con-
ditional on Z = z, say) is the conditional mean function E (X|Z = z).

If we change the criterion from the mean squared error to something else,
then the mean may no longer be the best predictor. For example, if we use
the absolute deviation criterion, a+bEX [|X − x∗|]then the best predictor
is the median of X. Of course for some distributions (e.g. symmetric
distributions) the mean and median may be equal.

∗Hidehiko Ichimura contributed to these answers.
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2. This problem reviews density and distribution functions, and moment gen-
erating functions and their conditional counter-parts. A scedastic function
describes how the variance of a conditional distribution changes with the
value of the conditioning variable. You need to be able to compute some
simple integrals in this question.

(a) Differentiating FY (y) with respect to y gives fY (y) = λ exp(−λy).

(b) MY (t) = EY [exp(tY )] =
∫∞
0

λ exp(−(λ − t)y)dy = λ/(λ − t). Note,
we require λ > t which is fine because to get moments we will only
examine the behaviour of MY (t) in a neighbourhood of t = 0 (In
this problem the tail of the density can go down fast enough (when
λ > t) so that the moment generating function exists. In general
the moment generating function may not exist but the characteris-
tic function always exists. In this sense better to use characteristic
functions if we want to use a method that always works. But that
requires understanding some elements of complex analysis. Differen-
tiating with respect to t and setting t = 0, gives EY [Y ] = 1/λ, differ-
entiating a second time and setting t = 0 gives EY [Y 2] = 2/λ2 and
using V ar[Y ] = EY [Y 2]−EY [Y ]2 gives V ar(Y ) = 1/λ2 = EY [Y ]2.

(c) Median unemployment duration, QY ( 1
2 ), is the solution to

1
2

= 1− exp(−λQY (
1
2
))

that is
QY (

1
2
) = − 1

λ
log(

1
2
)

so when λ = 2, QY ( 1
2 ) = 0.347 which is 127 days (recall Y is mea-

sured in years). The lower and upper quartiles are

QY (
1
4
) = − 1

λ
log(

3
4
)

QY (
3
4
) = − 1

λ
log(

1
4
)

and with λ = 2 we have

QY (
1
4
) = 0.144

QY (
3
4
) = 0.693

and so the interquartile range is

QY (
3
4
)−QY (

1
4
) = 0.549.

For larger (smaller) values of λ the median unemployment duration
and the interquartile range are smaller (larger). The expected value
of unemployment duration is λ−1 which is 0.5 when λ = 2, larger
than the median unemployment duration. Both sketch graphs should
show hyperbolas, that for the median lying higher than that for the
mean.
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(d) The distribution function of S = log(Y ) is

FS(s) = P [S ≤ s] = P [log(Y ) ≤ s] = P [Y ≤ exp(s)] = FY (exp(s)) = 1−exp(−λ exp(s)).

The probability density function of S is, on differentiating FS(s) with
respect to s,

fS(s) = λ exp(s− λ exp(s)).

Median log unemployment duration, QS(1
2 ) satisfies

1
2

= 1− exp(−λ exp(QS(
1
2
)))

that is
QS(

1
2
) = log(− 1

λ
log(

1
2
))

and we already have

QY (
1
2
) = − 1

λ
log(

1
2
)

and it is clear that

QS(
1
2
) = log(QY (

1
2
)).

(e) By reinterpreting the meaning of λ as the conditional mean and sub-
stituting λ = α exp (βx) in place of λ, we have EY [Y |X = x] =
α−1 exp(−βx), V ar[Y |X = x] = α−2 exp(−2βx). A scatter of points
around an exponential function falling as x becomes large with more
dispersion at small values of x (years of schooling) than at large val-
ues of x because α and β > 0. Of course all realisations would be
non-negative.

3. This problem is an exercise on deriving a distribution of a random variable
from the joint distribution of underlying random variables. The specific
problem here is a special case of the more general problem of calculating
a joint distribution of order statistics. Order statistics appear also in
studying auction models and also in estimation of an edge of the support
of a random variable.

This problem also examines your understanding about the quantile func-
tion. This is a useful concept that is increasingly used in the empirical
literature.

(a)

FZ [z] = P [Z ≤ z]
= P [(Y1 ≤ z) ∩ (Y2 ≤ z) ∩ · · · ∩ (Yn ≤ z)]
= P [Y ≤ z]n

= FY [z]n.

At the third line we have used the independence property.
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(b) Differentiating with respect to z gives

fZ(z) = nfY (z)FY (z)n−1.

(c) The p quantile of Z is the value z that satisfies FZ [z] = p. Since
FZ [z] = FY [z]n, the same solution that satisfies FZ [z] = p satisfies
FY [z]n = p and thus FY [z] = p1/n. But the z that satisfies the
last expression is the p1/n quantile of Y . We have shown that the p
quantile of Z is the same as the p1/n quantile of Y .

4. When we model choice variables, we can code them how we like.. We often
use the values 0 and 1 because they are convenient for reasons you will see
in this problem. If we denote the choices by Y = 0 and 1, then as we will
see, E [Y |X = x] = p (x) so that by defining U = Y − p (X), we have Y =
p (X) + U where E [U |X = x] = 0 and V ar [U |X = x] = p (x) (1− p (x)).

(a)
E[Y |X = x] = 1× p(x) + 0× (1− p(x)) = p(x).

(b)
E[Y 2|X = x] = 12 × p(x) + 02 × (1− p(x)) = p(x),

V ar[Y |X = x] = E[Y 2|X = x]− E[Y |X = x]2 = p(x)(1− p(x)).

(c) Here X needs to be interpreted as a vector of random variables X1,
X2, ..., XM and X = x means that all of these random variables are
fixed at the same particular value x. Let the random variable for the
mth household be Ym, m = 1, . . . ,M . Then Z = (Y1 + Y2 + · · · +
YM )/M .

i.

E[Z|X1 = x, ...,XM = x] = E[(Y1 + Y2 + · · ·+ YM )/M |X1 = x, ...,XM = x]

=
1
M
{E [Y1|X1 = x] + · · ·+ E [YM |XM = x]}

=
1
M

Mp(x)

= p(x).

At the second line the restriction E[Yi|Xi = x] = E[Yi|X1 =
x, ...,XM = x] has been imposed.1 To compute the variance,

V ar[Z|X1 = x, ..., XM = x]
= E[(Z − E[Z|X1 = x, ...,XM = x])2|X1 = x, ..., XM = x]

=
1

M2
E

{
[(Y1 − p(x)) + · · ·+ (YM − p(x))]2 |X1 = x, ..., XM = x

}

1That restriction should, strictly speaking, have been made explicit in the question - it
does not follow directly from the stated requirement that households’ choices be independent.
Independence of households’ choices is a feature of the distribution of the Y ’s conditional on
X’s whereas this restriction is a restriction on the dependence of each Yi on values of X’s.
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Expand the quadratic and note that when i 6= j exploiting inde-
pendence

E [(Yi − p(x)) (Yj − p(x)) |X1 = x, ...,XM = x]
= E [(Yi − p(x)) |X1 = x, ..., XM = x]E [(Yj − p(x)) |X1 = x, ..., XM = x]
= E [(Yi − p(x)) |Xi = x]E [(Yj − p(x)) |Xj = x] = 0

and

E
[
(Yi − p(x))2 |X1 = x, ..., XM = x

]

= E
[
(Yi − p(x))2 |Xi = x

]
= p (x) [1− p (x)]

leading to

V ar[Z|X1 = x, ...,XM = x] =
1

M2
Mp(x)(1− p(x))

=
1
M

p(x)(1− p(x)).

ii. The variance is small when p (x) is close to 0 or when it is close
to 1 so under the assumption that p (x) is increasing in income,
large and small values of income both lead to a small conditional
variance of Z.

iii. Dispersed scatter at medium levels of income, tight scatter at
high and low levels of income, all around some kind of increasing
line rising from zero to one. All points between zero and one.

5. Set identification.

(a) There is the Law of Total Probability:

E[Y1] = E[Y1|D = 1]P [D = 1] + E[Y1|D = 0]P [D = 0] (1)

and on the right hand side data are informative about E[Y1|D = 1],
P [D = 1] and P [D = 0], but not about E[Y1|D = 0]. One could
estimate the two probabilities using sample proportions of partici-
pants and non-participants. One could estimate E[Y1|D = 1] using
the sample average of realised values of Y1 for participants. We don’t
see realised values of Y1 for non-participants so there is no way of
estimating E[Y1|D = 0]. There is a similar argument for E[Y0].2

(b) See Question 4 part (a) and apply that argument conditioning through-
out on D = 0.

(c) In the equation (1) E[Y1] is an increasing function of the unknown
E[Y1|D = 0] and so is at least equal to the value obtained when
E[Y1|D = 0] is replaced by its smallest possible value (0) and can be
no larger than the value obtained when it is replaced by its largest
possible value (1). This gives the required result.

2This is a loose argument appealing to estimability rather than directly to identification.
A formal argument will note that we see realisations of Y = DY1 + (1−D)Y0 and that from
knowledge of the joint distribution of Y and D one cannnot obtain knowledge of e.g. E[Y1].
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(d) Suppose that P (D = 1) is neither zero nor one. Recall that E[Y1]
is a probability and so it must lie in [0, 1]. E[Y1|D = 1] is also a
probability and lies in [0, 1]. The left hand side of the inequality is
therefore a product of probabilities and as long as neither is zero the
left hand side is greater than zero. Using the shorthand notation
a = E[Y1|D = 1] and p = P [D = 1], the right hand side of the
inequality can be written

r = ap + 1− p = 1− (1− a)p

and if a < 1 this is smaller than 1. The inequality is informative
except in extreme cases because it defines a proper subset of [0, 1].

(e) Now 0 ≤ E[Y1|D = 0] ≤ E[Y1|D = 1] and so interval of set identifi-
cation becomes

E[Y1|D = 1]P [D = 1] ≤ E[Y1] ≤ E[Y1|D = 1]P [D = 1]+E[Y1|D = 1]P [D = 0]

which is clearly shorter, and simplifies to:

E[Y1|D = 1]P [D = 1] ≤ E[Y1] ≤ E[Y1|D = 1].
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