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Abstract

In this paper, a social network is modelized as a communication
graph, which shows the possible direct communications between in-
dividuals. To reect the interests that motivate the interactions, a
cooperative game in characteristic function form is considered. From
the graph and the game, the graph-restricted game is obtained. Sha-
pley value in a game is considered as actor's power. The di�erence be-
tween actor's power in the new game and his/her power in the original
one is proposed as a centrality measure. Conditions are given to reach
desirable properties for this measure. Finally, a decomposition of this
measure is proposed.
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1 Introduction

In a sociological context, it is usually assumed that a social network is

given by a graph (N;�), where N = f1; 2; : : : ; ng is a �nite set of indivi-

duals (nodes) and � is a collection of (unordered) pairs fi; jg of elements of

N (edges), which shows the possible communications; i.e., individuals i and

j can communicate directly if and only if fi; jg 2 �. If i cannot communicate

directly with j, it may still be possible for them to communicate indirectly

if there is some k (an intermediary) with whom both can communicate, or

more generally, a sequence of intermediaries.
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Centrality is a sociological notion which is not, however, clearly de�ned;

it is frequently de�ned only in an indirect manner. For example, we are

told, an individual, i, has centrality in a graph if :

(i) i can communicate directly with many other nodes, or

(ii) i is close to many other nodes, or

(iii) there are many pairs of nodes which need i (or, can use i) as interme-

diary in their communications.

Several approaches have been made in the past. A review of the recent

literature about social networks (Hanneman, 1999 and Freeman, 1977, 2000)

allows us to distinguish several di�erent approaches to the centrality concept.

The most relevant are:

(a) Degree centrality (Shaw, 1954, and Nieminen, 1974). This approach

identi�es centrality with the degree of a node, i.e., the number of edges

incident on that node.
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Figure 1: Star (N;�S)

For instance, the hub of the star in the Figure 1 is less dependent on

a speci�c node as long as it has a higher degree than the other nodes.

(b) Closeness centrality (Beauchamp, 1965 and Sabidussi, 1966). Another

reason that makes the hub in the star more powerful is that it is closer

to many more nodes than the rest of the nodes.

This approach considers the sum of the geodesic distances between a

given node and the rest as a decentrality measure in the sense that,

the lower is this sum, the greater is the centrality.
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(c) Betweenness centrality (Bavelas, 1948 and Freeman, 1977). A third

reason to consider the hub of a star in advantage is that it lies between

all pair of nodes and no other node has this property.

In this approach all possible geodesic paths between pairs of points are

considered. The centrality measure of a given node is then obtained

by counting the number of such paths on which it lies.

Some critical analysis will show certain shortcomings for each of these

approaches.
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Figures 2(a) and 2(b)

Consider �rst the idea that centrality should be equivalent to the degree

of a node. In Figure 2(a), there are three 5-person cliques (1�5; 6�10; 11�
15), each with a herald (5; 10; and 15). Communications within cliques are

perfect. For messages between two cliques, however, the herald must send

the message to a switchboard (node 16) which relays it to another herald.

As may be seen, the switchboard has degree 3, each of the heralds has

degree 5, and the remaining 12 players have degree 4 each. Yet it would

be hard to suggest that node 16 is less central than, say, node 1. On the

other hand, the sum of the geodesic distances between a given node and all

the other nodes is less for node 16 (27) than for herald nodes 5; 10; 15 (29)

and even for each of the remaining nodes as for example node 1 (44). This

suggests a di�erent order for centralities. Node 1 is never in a position to

relay a message, whereas the switchboard is always necessary for communi-

cations between cliques. We conclude that, at least for this graph, degree is

not quite what we would want as a measure of centrality.

Consider now the idea that centrality should only take geodesic paths

between two given nodes into account. In Figure 2(b), there are two possible

paths between nodes 1 and 6. One path (1� 2� 3� 4� 5� 6) has length 5,
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the other (1�11�10�9�8�7�6) has length 6. Yet it would seem foolish

to discard the possibility of using a longer path, simply because a (slightly)

shorter one exists. However, we would tend to discard the long (10-edge)

path from node 1 to 2, in favor of the one-edge direct path.

All sociologists would agree that power is a fundamental property of

social structure but, again, there is much less agreement about what power

is. For many years, social networks analysts have relied heavily on one

fundamental concept to account for variation in actor's power: network

centrality. Despite the once wide acceptance of the link between centrality

and power, the extent to which both concepts are related is now an issue of

intense controversy (e.g., Mizruchi and Potts, 1998, or Hanneman, 1999)

Our treatment below will give rise to a new measure of centrality based

on power's variation due to the restrictions in the communications.

Moreover we analyze the extent to which our centrality measure satis�es

the following desiderata:

(a) Any measure of centrality should be symmetric; i.e. if � is a permu-

tation of N which preserves �, then a node i should have the same

centrality as node �(i).

(b) The centrality of a node in a disconnected graph should coincide with

the centrality of that node in the connected subgraph to which it

belongs.

(c) Isolated nodes should have minimal centrality.

(d) If � is a chain, centrality should increase from the end node to the

median node.

(e) Of all connected graphs with n nodes, the minimal centrality should

be attained by the end nodes in a chain.

(f) Of all graphs with n nodes, the maximal centrality should be attained

by the hub of a star.

(g) Removing an edge should decrease (or at least, not increase) the cen-

trality of both nodes incident on that edge.

The remainder of the paper is organized as follows: Section 2 is devoted

to a game-theoretic approach to the concept of centrality and to de�ne new

measures that satisfy, for a wide class of games, the previous desiderata as it

is proved in Section 3. In Section 4 some particular cases are analyzed and

the corresponding discussion will give rise to an interesting decomposition

of the introduced measures. Section 5 is devoted to this decomposition.

Finally, some comments are included in Section 6.
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2 A Game-theoretic Approach

We shall say that a social network (N;�) is connected if it is possible to join

any two nodes i and j of N by a sequence of edges from �. We shall say

that a subset S of N is connected in (N;�) if (S;�S) is connected, where �S
is the set of those pairs fh; kg 2 � where both h and k are elements of S.

Let (N; v) be a n-personal game in characteristic function form, where

N = f1; 2; : : : ; ng is the players set and v is a real valued function de�ned

on 2N , satisfying v(;) = 0. No particular relation is assumed between the

game (N; v) and the graph (N;�), other than the players of the game being

the nodes of the graph. When there is no ambiguity with respect to N we

will refer to the graph (N;�) and the game (N; v) as � and v respectively.

We can think of v as representing the economic possibilities of the seve-

ral coalitions (subsets of N), whereas � tells us whether they can eventual-

ly communicate (and thus take advantage of the possibilities). Following

Myerson (1977), we de�ne a new game w, the graph-restricted game, by

w(S) =
X

Tk2C�(S)

v(Tk); (1)

where C�(S) is the set of components of S in �. Note that, if S is connected

in �, then w(S) = v(S). The game w represents the economic possibilities

taking the available communications into account.

If we consider some \reasonable outcome" for these two games, the dif-

ferences between the corresponding outcomes can be considered as a result

of the di�erent positions which the players have in graph �. Clearly, the

result will depend on the particular \reasonable outcome" which we use.

From now on we will use the Shapley value, ', as an index of players'

power in a given game, though we could just as easily use the Banzhaf-

Coleman index of power (as in Grofman and Owen, 1982), or possibly the

nucleolus or some other one-point solution concept. Then we can think of

the di�erence between 'i(w) (the Shapley value to player i in the projected

game w) and 'i(v) as a measure of the centrality of player i in the graph �,

i.e.:

i(v;�) = 'i(w)� 'i(v): (2)

It represents the increase (or decrease) in i0s power due to its position

in the graph. Note, however, that this depends also on the game v.

From Myerson (1977) we raise the following propositions.

Proposition 2.1 If (N; v) is a super-additive game and (N;�) is a social

network, then desideratum (g) is satis�ed by i(v;�).
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Proposition 2.2 If (N; v) is a game and (N;�) is a social network then,

removing an edge of � will change the centrality of both incident nodes on

that edge by an equal amount.

This property is a direct consequence of choosing Shapley value as power

index. If it is considered not necessary that a centrality measure satis�es

Proposition 2.2, any other power index should be chosen.

In this paper we will analyze the case in which game v deals with all

players symmetrically, so that the centrality measure depends on the graph

� rather than on the particular role played by i in game v. Let us suppose,

then, that v is symmetric, i.e.

v(S) = f(s); S � N; (3)

where s is the cardinality of S, and the function f satis�es f(0) = 0.

Assuming v is symmetric in this way, then of course 'i(v) = v(N)=n for

all players. In this case, it is possible avoid the last term in (2). Since we are

interested in comparing centrality, rather than in obtaining some absolute

measure of centrality, we propose

�i[v;�] = 'i(w); (4)

as a measure for the centrality of i in �.

In order to calculate the centrality measure proposed, it will be useful to

analyze the mapping P� of GN (the vector space of all games with players

set N) into itself, de�ned by P�(v) = w, where w is given by equation (1).

This is a linear mapping and it is not di�cult to verify that it is a projection,

in the sense that P� � P� = P�.

To do this, let us express the space GN in terms of the unanimity basis.

This basis consists of the 2n � 1 unanimity games. For each (non-empty)

S � N , the unanimity game uS is de�ned by

uS(T ) =

�
1; if S � T;

0; if S �= T:
(5)

and it is not di�cult to prove that game v can be expressed as

v =
X
S�N

�(S)uS ; (6)

where �(S), the Harsanyi dividend (of S in v), is given by

�(S) =
X
T�S

(�1)s�tv(T ); (7)

(s and t being the cardinalities of S and T respectively). Since GN has

dimension 2n � 1, it is clear that the games uS form a basis.
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We note that, if S is connected in �, then P�(uS) = uS . If, on the other

hand, S is not connected in �, we �nd that P�(uS) = wS;�, where

wS;�(T ) =

�
1; if there is some connected K such that S � K � T;

0; otherwise:
(8)

Thus, this last game, wS;�, can be considered as the connect S in �

game. This game can be quite complicated (depending on �), though there

exists a special case easy to describe. If � is a tree (a connected graph with

no cycles) then there is only one smallest connected K which contains S.

We call it H(S): the connected hull of S. In this case, it satis�es

wS;� = uH(S): (9)

A general expression for wS;� is given in Lemma 2.1 which uses the next

de�nition:

De�nition 2.1 Given the social network (N;�) and S � N , we will say

that S0 � N is a minimal connection set of S in � if there is no S00 � N

(S00 6= S0) connected in � such that S � S00 � S0.

Let us observe that for a given S � N , it could exist several minimal

connection sets of S, one or none. M�(S) will denote the collection of these

sets.

From (8) M�(S) = ;, implies wS;� = 0 (the null vector of GN ). There-

fore in next lemma we will only deal with the case M�(S) 6= ;.

Lemma 2.1 Given the social network (N;�) and S � N , if M�(S) is non-

empty and M�(S) = fSig
r
i=1, then

P�(uS) = 1�

rY
i=1

(1� uSi) (10)

where 1 is the game de�ned by 1(S) = 1; for all S 6= ;, i.e., the unit element

of the standard inner product in GN .

Proof:

Let T � N , then

(1� uSi) (T ) =

�
0; if Si � T;

1; if Si �= T;
(11)

and thus  
1�

rY
i=1

(1� uSi)

!
(T ) =

�
1; if there is Si � T;

0; otherwise:
(12)
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Then, (12) coincides with (8).

Next proposition characterizes the image of the mapping P�. This result

appears in Owen (1986), but we include a di�erent proof, constructive and

useful to the calculation of the centrality.

Proposition 2.3 The image of the mapping P� is the subspace of GN

spanned by the games uT where T is connected in �.

Proof:

From (10), given S � N ifM�(S) 6= ; andM�(S) = fSig
r
i=1, we obtain:

P�(uS) =

rX
i=1

uSi�

rX
i<j

uSi �uSj+

rX
i<j<k

uSi �uSj �uSk+: : :+(�1)
r+1uS1 �uS2 � � � uSr :

Note that, if fi1; : : : ; ikg � f1; : : : ; rg,

uSi1 � uSi2 � � � uSik = u[kj=1Sij
;

and thus,

P�(uS) =

rX
i=1

uSi�
rX

i<j

uSi[Sj +

rX
i<j<k

uSi[Sj[Sk+ � � �+(�1)r+1u[ri=1Si : (13)

Since Si1 ; : : : ; Sik are connected and not disjoint sets for all fi1; : : : ; ikg �
f1; : : : ; rg, [kj=1Sij is connected. Therefore, P�(uS) is a linear combination

of unanimity games uT where T is connected.

Using (4) and (6) and the Shapley value linearity, we obtain

�i[v;�] =
X
S�N

�(S)'i(wS;�):

Therefore, we only need to know the Harsanyi dividends of v and the

Shapley value for wS;�, the projection of every unanimity game .

IfM�(S) = fŜg, then wS;� = u
Ŝ
and the calculation of the value '(wS;�)

is straightforward (essentially the dividend of S is evenly apportioned among

all nodes of Ŝ). In case of several options, calculations complexity increases.

This, implicitly, means that if � is a tree (or a forest, de�ned as a union

of disjoint trees) calculation of centrality will be easy. A method, based on

generating functions, is described in detail in Owen (1986).

When � has cycles and there is a S � N such that M�(S) = fSlg
r
l=1,

with r > 1, from Lemma 2.1, using (13) and linearity of Shapley value we

obtain

'i(wS;�) =

rX
l=1

'i(uSl)�
rX
l<j

'j(uSl[Sj ) +

rX
l<j<k

'i(uSl[Sj[Sk)�
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� � � �+ (�1)r+1'i(u[r
l=1

Sl); (14)

and thus,

'i(wS;�) =

rX
l=1

1

sl
�Sl(i) �

rX
l<j

1

sl;j
�Sl;j (i) +

rX
l<j<k

1

sl;j;k
�Sl;j;k(i)�

� � � �+ (�1)r+1 1

s1;:::;r
�S1;:::;r(i); (15)

where sj1;:::;jk is the cardinality of [kl=1Sjl and

�Sj1;:::;jk (i) =

�
1; if i 2 [kl=1Sjl ;

0; otherwise :

3 General results

In this section we will lay out general conditions for f under which �i[v;�]

satis�es the other desiderata.

To this end, we de�ne two classes of characteristic functions. If v is

symmetric,

(i) v is super-additive if f(m+ n) � f(m) + f(n), for all m;n 2 IN

v is strictly super-additive if the above inequality holds strictly.

(ii) v is convex if f is convex in IN, i.e., f(s+1)� f(s) � f(s)� f(s� 1),

for all s � 1.

v is strictly convex if the above inequality holds strictly.

From now on we will use

SN = fv 2 GN : v symmetric g

AN = fv 2 GN : v super-additive g

CN = fv 2 GN : v convex g
Moreover, GN , will denote the set of all graphs with nodes set N .

Hereafter, if v 2 SN , i.e.: v(S) = f(s), we will use v or f equivalently.

The following Proposition 3.1, shows that, if v is symmetric, desideratum

(a) is satis�ed. Let us introduce �rst a de�nition.

De�nition 3.1 We will say that a permutation � : N ! N preserves the

graph (N;�) when fi; jg 2 � if and only if f�(i); �(j)g 2 �.

If we note �� = ff�(i); �(j)g : fi; jg 2 �g, previous de�nition tells us

that � preserves the graph (N;�) when �� = �.

Proposition 3.1 Let v 2 SN and � 2 GN . If � is a permutation on N that

preserves �, �i[v;�] = ��(i)[v;�]; for all i 2 N .
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Proof:

As v 2 SN , �v = v.

It is straightforward to verify that:

T 2 C�(S) if an only if �(T ) 2 C��(�(S)): (16)

Let us show that �w = w, where w = P�(v). If S � N ,

�w(S) = w(�(S)) =
X

Hk2C�(�(S))

v(Hk): (17)

On the other hand, using (16)

w(S) =
X

Tk2C�(S)

v(Tk) =
X

�(Tk)2C�(�(S))

v(�(Tk)); (18)

and then, �w = w.

Finally, by the symmetry of the Shapley value:

'i(w) = '�(i)(�w) = '�(i)(w);

and thus,

�i[v;�] = ��(i)[v;�]:

Next proposition shows that the centrality of a node in a disconnected

graph coincides with its centrality when it is considered as a node in the

connected subgraph to which it belongs. So desideratum (b) is satis�ed.

Proposition 3.2 Let N1 and N2 be disjoint subsets of IN. Suppose �
j 2 GNj

is connected, j = 1; 2, and �1 [ �2 2 GN1[N2
.

If v 2 SN1[N2
and vj is the restriction of v to Nj, j = 1; 2, then for

i 2 Nj,

�i[v;�
1 [ �2] = �i[vj ;�

j]; j = 1; 2:

Proof:

Writing v in terms of the unanimity basis

v =
X

S�N1[N2

�(S)uS :

Then, by the linearity of projection P�1[�2 ,

w = P�1[�2(v) =
X

S�N1[N2

�(S)wS;�1[�2
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=
X
S�N1

�(S)wS;�1[�2 +
X
S�N2

�(S)wS;�1[�2 +
X

S � N

S \N1 6= ;
S \N2 6= ;

�(S)wS;�1[�2 :

As N1 \ N2 = ;, �1 [ �2 is disconnected and then, by Lemma 2.1 and

Proposition 2.1, uS belongs to ker(P�1[�2) when S \Nj 6= ;, for j = 1; 2.

Moreover, if S � Nj, wS;�1[�2 = wS;�j ; j = 1; 2; because the elements

of M�1[�2(S) are contained in Nj. Then,

w =
X
S�N1

�(S)wS;�1 +
X
S�N2

�(S)wS;�2 :

Let us observe that if i 2 Nj and S � Nk; k 6= j, (15) shows that

'i(wS;�k) = 0, because there are no sets inM�k(S) containing i. And then,

�i[v;�
1 [ �2] = �i[vj ;�

j ]:

Next proposition shows that, if v is symmetric and super-additive, iso-

lated nodes have minimal centrality, so desideratum (c) is satis�ed.

Proposition 3.3 Let v 2 SN \ AN and �0 2 GN . If i 2 N is an isolated

node in �0, then, for all � 2 GN , and for all j 2 N

�i[v;�
0] � �j [v;�]: (19)

Proof:

By de�nition of P�, the centrality of an isolated node of � is f(1).

Let j 2 N with degree k in �. If j is not isolated then 1 � k � n � 1.

Let us assume �j [v;�] < f(1). The node j will become an isolated node by

a stepwise elimination of the k edges incident on it. From Proposition 2.2,

the sequence of centralities of node j is not increasing. Then, j would be

an isolated node with centrality strictly less than f(1). This contradiction

proves the result.

Lemma 3.1, whose proof is straightforward, and Proposition 3.4 guaran-

tee that, if v is symmetric and super-additive, of all graphs with n nodes

the maximal centrality is attained by the hub of a star, so desideratum (f)

is satis�ed.

Lemma 3.1 Let v 2 SN \ AN and � 2 GN , w = P�(v). If i 2 N , then for

all S � N � fig

(i) w(S [ fig) � f(s+ 1);

(ii) w(S) � sf(1),
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(iii) w(S [ fig) � w(S) � f(s+ 1)� sf(1).

Proposition 3.4 Let v 2 SN \ AN . Let us suppose that �S 2 GN is the

star with n nodes where node 1 is the hub. Then, for all � 2 GN and for all

i 2 N

�i[v;�] � �1[v;�
S ]: (20)

Proof:

Without lost of generality we can relabel the node i in � as node 1.

Using the usual Shapley value expression for 1 2 N we have

�1[v;�] = '1(w) =
X
S:1=2S

s!(n� 1� s)!

n!
(w(S [ f1g) � w(S));

and for the hub of the star

�1[v;�
S ] =

X
S:1=2S

s!(n� 1� s)!

n!
(f(s+ 1)� sf(1));

and, by Lemma 3.1

�1[v;�] � �1[v;�
S ]:

Proposition 3.5, which needs Lemma 3.2 and Lemma 3.3, proves that if

v is symmetric and super-additive, of all connected graphs of n nodes, the

minimal centrality is attained by the end nodes in a chain, so desideratum

(e) is satis�ed.

Lemma 3.2 Let � 2 GN , S � N and Q a separated part of S in �, i.e.,

Q � S and there are no edges joining a node in Q with a node in S �Q. If

w = P�(v), then

w(S) = w(Q) + w(S �Q): (21)

Lemma 3.3 Let � 2 GN and S � N . Let us suppose i 2 N � S and

w = P�(v). Then we have

w(S [ fig) � w(S) = v(Q)� w(Q� fig) (22)

where Q is the i-component of S [ fig, i.e., the component of S [ fig in �

which contains i.

Proof:

Q�fig may not be connected, but it is a separated part of S. Note that

S [ fig �Q and S � (Q� fig) are both equal to S �Q.

As,

w(S [ fig) = w(Q) + w(S �Q);
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and

w(S) = w(Q� fig) + w(S �Q);

then,

w(S [ fig) � w(S) = w(Q) � w(Q� fig):

As Q is connected, w(Q) = v(Q). This proves the Lemma.

Proposition 3.5 Let v 2 SN \AN . If �C 2 GN is the chain with n nodes,

where node 1 is an end node, then, for all connected � 2 GN and for all

i 2 N ,

�1[v;�
C ] � �i[v;�]: (23)

Proof:

Let us suppose that the nodes of �C are labeled in the natural way. Then

we relabel the nodes of � as follows. Let node i be relabeled as 1. Then, let

2 be any node which is adjacent to 1. Let 3 be any node which is adjacent

to either 1 or 2 (or possibly both). Continuing in this manner let node

k be any node which is adjacent to at least one of the nodes 1; : : : ; k � 1.

Since � is connected, this process can be continued until all nodes have been

numbered. We see then that every segment f1; : : : ; kg is connected in �.

Let wC = P�C (v) and w = P�(v), then

�1[v;�
C ] = '1(w

C) =
X
S:1=2S

s!(n� 1� s)!

n!
(wC(S [ f1g) � wC(S)); (24)

whereas

�1[v;�] = '1(w) =
X
S:1=2S

s!(n� 1� s)!

n!
(w(S [ f1g) � w(S)): (25)

We shall show that each summand in (25) is at least as large as the

corresponding summand in (24).

In fact, for a given S, let K and Q be the 1-components of S[f1g in �C

and in �, respectively. K must be of the form f1; : : : ; kg. By Lemma 3.3,

we have

wC(S [ f1g) � wC(S) = v(K)� wC(K � f1g):

Since K has k elements, v(K) = f(k). Now, as K � f1g is connected in

�C , wC(K � f1g) = v(K � f1g) = f(k � 1), and therefore

wC(S [ f1g) � wC(S) = f(k)� f(k � 1):

Next, by the relabeling method used for �, we see that K is connected in

�. Thus we must have K � Q, which implies that q, the number of elements

in Q, cannot be smaller than k. Then,

w(S [ f1g) � w(S) = v(Q) �w(Q� f1g):

13



Since v(Q) = f(q) and w(Q � f1g) � v(Q� f1g) = f(q � 1), we realize

that

w(S [ f1g) � w(S) � f(q)� f(q � 1):

Since q � k, and v is convex, this leads to f(q)�f(q�1) � f(k)�f(k�1).
This proves that

w(S [ f1g) � w(S) � wC(S [ f1g) � wC(S):

Since this holds for every S, it proves the proposition.

Finally, if �C is a chain and v is symmetric and convex, centrality in-

creases from the end node to the median node as it is shown by Lemma 3.4

and Proposition 3.6, so desideratum (d) is satis�ed.

Lemma 3.4 Let n1; n2 2 IN; n1 < n2 and let v 2 SN2
\ CN2

. Let us

suppose that �Ci is a chain with ni nodes ordered in the natural way. Then,

�1[v;�
C
1 ] � �1[v;�

C
2 ]: (26)

Proof:

We will show that the result is true for n2 = n1 + 1. We have

�1[v;�
C
2 ]� �1[v;�

C
1 ] =

X
S�N2

�(S)'1(wS)�
X
S�N1

�(S)'1(wS):

As 1 is an end node, '1(wS) = 0 if 1 =2 S, and then

�1[v;�
C
2 ]� �1[v;�

C
1 ] =

X
12S�N2

�(S)'1(wS)�
X

12S�N1

�(S)'1(wS) =

=
X

1;n1+12S�N2

�(S)'1(wS):

There are

�
n1 � 1

s� 2

�
coalitions S � N2 with cardinality s and such

that f1; n1 + 1g � S. For each one, '1(wS) =
1

n1+1 . Then, the value of the

previous expresion is

1

n1 + 1

n1+1X
s=2

�
n1 � 1

s� 2

�
�(S):

From (4) and the symmetry of v

n1+1X
s=2

�
n1 � 1

s� 2

�
�(S) =

n1+1X
s=2

�
n1 � 1

s� 2

� sX
t=1

�
s

t

�
(�1)s�tf(t);

and after some algebraic manipulations we obtain

f(n1 + 1)� 2f(n1) + f(n1 � 1);

which is nonnegative when v is convex.
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Proposition 3.6 If v 2 SN \CN and �C is a chain with n nodes numbered

in the natural way, then for 1 � i � n=2

�i[v;�
C ] � �i+1[v;�

C ]: (27)

Proof:

For each i, 1 � i � n=2, removing the edge fi; i + 1g, the nodes i, i + 1

will become end nodes of chains that have i and n � i nodes respectively

(n � i � i). Let �Ci and �Cn�i be these chains. By Proposition 3.2 and

Lemma 3.4

�i[v;�
C
i ] � �i+1[v;�

C
n�i];

and from Proposition 2.2

�i[v;�
C ] � �i+1[v;�

C ]:

Let us note that if in each of the previous results, the super-additiveness

(convexity) condition is replaced by strict super-additiveness (strict convexi-

ty), then all inequalities become strict.

The above results show that if we choose a symmetric and convex game

v, the measure of centrality induced by v in a social network satis�es the

expected properties of what we have called centrality.

4 Some speci�c game functions

Granted that v is to be symmetric, de�ned by a function f which is to be

super-additive and even convex, what function f should be chosen? Several

come to mind:

� The messages game is de�ned by v1(S) = f1(s) = s2 � s. We note

that the Harsanyi dividends are given by

�1(S) =

�
2; if s = 2;

0; if s 6= 2:

In other words, for this function, just the two-player coalitions render

pro�t. In essence, this corresponds to the idea of sending messages:

the coalition fi; jg (where i 6= j) gives rise to two possible messages as

each of i and j can send a message to the other. Then, the modi�ed

game w will tell us how much each player contributes to the delivery

of messages.
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� The overhead game is de�ned by v2(S) = f2(s) = �1 for all s 6= 0.

The Harsanyi dividends are given by

�2(S) = (�1)s; s � 1:

The projected game shows us the expenses (or incomes) that corres-

pond to each player in a business.

� The conferences game is de�ned by v3(S) = f3(s) = 2s� s� 1. In this

case, the Harsanyi dividends are given by

�3(S) =

�
0; s = 0; 1;

1; s � 2:

In this game each coalition receives a unit for each possible meeting

or conference among two or more of its members .

To illustrate the ideas we tabled above, let us calculate the centrality of

di�erent nodes in some particular connected graphs. In certain examples we

will consider a general function v, whereas in others we will study only the

three particular games we have enumerated.

a) We �rst analyze the case of a star with n nodes (�S , Figure 1). If 1 is

the hub of the star, then

�1[v;�
S ] = �(1) +

1

n

nX
k=2

�
n+ 1

k + 1

�
�(k); (28)

and for the other nodes i 6= 1,

�i[v;�
S ] = �(1) +

nX
k=2

1

k + 1

��
n� 1

k � 1

�
+

1

k

�
n� 2

k � 2

��
�(k): (29)

If we particularize (28) and (29) to games vi; i = 1; 2; 3, we obtain

�1[v1;�
S ] = n2�1

3 ; �i[v1;�
S ] = 2n�1

3 ; for i 6= 1;

�1[v2;�
S ] = n�3

2 ; �i[v2;�
S ] = �1

2 ; for i 6= 1;

�1[v3;�
S ] = 1

n

h
2n+1 � n2+3n+4

2

i
;

�i[v3;�
S ] = 2

n(n�1)

�
(n� 2)2n�1 + 1

�
� 1

2 ; for i 6= 1:

For v1, if we standardize the centrality measure dividing by f1(n) =

n2 � n, (i.e., total centrality of the n nodes) we can study the asymptotic

behaviour of the centrality for the hub and for the other nodes. If we note

��i [v1;�
S ] =

�i[v1;�
S ]

n2 � n
;
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then we have,

limn!1 ��1[v1;�
S ] = 1

3 ;

limn!1 ��i [v1;�
S ] = 0; i 6= 1;

as in Grofman and Owen (1982).

b) Let us consider now a chain with 6 nodes, �C (Figure 3).

1 2 3 4 5 6
Γ C

Figure 3: Chain (�C)

We obtain for a general game v

�1[v;�
C ] = �6[v;�

C ] = �(1)+
29

20
�(2)+

21

10
�(3)+

37

20
�(4)+

13

15
�(5)+

1

6
�(6):

�2[v;�
C ] = �5[v;�

C ] = �(1)+
82

30
�(2)+

53

15
�(3)+

27

20
�(4)+

16

15
�(5)+

1

6
�(6):

�3[v;�
C ] = �4[v;�

C ] = �(1)+
199

60
�(2)+

131

30
�(3)+

59

20
�(4)+

16

15
�(5)+

1

6
�(6):

In the special games vi; i = 1; 2; 3 we obtain

�1[v1;�
C ] = 2:9; �2[v1;�

C ] = 5:47; �3[v1;�
C ] = 6:63:

�1[v2;�
C ] = �0:5; �2[v2;�

C ] = 0; �3[v2;�
C ] = 0:

�1[v3;�
C ] = 6:43; �2[v3;�

C ] = 10:2; �3[v3;�
C ] = 11:87:

c) To illustrate the calculation of centrality on graphs with cycles, we con-

sider the kite (�K , Figure 4) and the messages game.

1

3

6

54

2ΓK

Figure 4: Kite (�K)

Given that only �1(2) = 2 is di�erent from zero, it is su�cient to con-

sider coalitions of cardinality two. Table 1 below shows how the Harsanyi

dividends are allocated among the six players.
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Coalition Elements of �(S)'i(wS;�K ); i = 1; : : : ; 6

S M�K (S)

f1; 2g f1; 2g 1 1 0 0 0 0

f1; 3g f1; 2; 3g 0.666 0.666 0.666 0 0 0

f1; 4g f1; 2; 4g 0.666 0.666 0 0.666 0 0

f1; 5g f1; 2; 4; 5g; f1; 2; 3; 5; 6g 0.566 0.566 0.066 0.166 0.566 0.066

f1; 6g f1; 2; 3; 6g; f1; 2; 4; 5; 6g 0.566 0.566 0.166 0.066 0.066 0.566

f2; 3g f2; 3g 0 1 1 0 0 0

f2; 4g f2; 4g 0 1 0 1 0 0

f2; 5g f2; 4; 5g; f2; 3; 5; 6g 0 0.766 0.1 0.266 0.766 0.1

f2; 6g f2; 3; 6g; f2; 4; 5; 6g 0 0.766 0.266 0.1 0.1 0.766

f3; 4g f2; 3; 4g; f3; 4; 5; 6g 0 0.266 0.766 0.766 0.1 0.1

f3; 5g f3; 5; 6g; f2; 3; 4; 5g 0 0.1 0.766 0.1 0.766 0.266

f3; 6g f3; 6g 0 0 1 0 0 1

f4; 5g f4; 5g 0 0 0 1 1 0

f4; 6g f4; 5; 6g; f2; 3; 4; 6g 0 0.1 0.1 0.766 0.266 0.766

f5; 6g f5; 6g 0 0 0 0 1 1

Table 1

As mentioned above, when the cardinality of M�K (S) is greater than 1,

the associated calculus become complex. To illustrate this situation let us

consider the S = f1; 6g case in detail. For this coalition, S1 = f1; 2; 3; 6g
and S2 = f1; 2; 4; 5; 6g are the two minimal connected sets that contain S.

Then, using (14)

'i(wS;�K ) = 'i(uS1) + 'i(uS2)� 'i(uS1[S2):

Taking (15) into account

'1(wS;�K ) = 0:5 + 0:4� 0:333 = 0:566;

'2(wS;�K ) = 0:5 + 0:4� 0:333 = 0:566;

'3(wS;�K ) = 0:5 + 0� 0:333 = 0:166;

'4(wS;�K ) = 0 + 0:4� 0:333 = 0:066;

'5(wS;�K ) = 0 + 0:4� 0:333 = 0:066;

'6(wS;�K ) = 0:5 + 0:4� 0:333 = 0:566:

It may be seen that when there is no alternative, i.e., if M�K (S) has

cardinality 1, an intermediary (e.g., 2 in path 1� 2� 3) shares evenly with

the sender and receiver of the message. When there are alternatives (e.g.,

3 or 4-5 in the path from 2 to 6), these 'intermediate' players will receive

much less due to the di�erent paths available (competition).
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If we now add all �(S)'i(wS;�K ) from Table 1, we obtain the vector

�[v1;�
K ] = (3:464; 7:462; 4:896; 4:896; 4:630; 4:630); (30)

as centrality of the several nodes. As expected, node 2 has by far the greatest

centrality, while the nearly isolated node 1 has the least one.

Finally, Table 2 shows the centralities induced by vi, i = 1; 2; 3 in every

connected graph with 4 nodes.

4 3

21

3

2

4

1

3

21

4

4

3

2

1

1

3

2

4

3

21

4

NODES v1

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

3
3
3
3

-1/4
-1/4
-1/4
-1/4

11/4
11/4
11/4
11/4

-1/6
-1/3
-1/6
-1/3

17/6
8/3

17/6
8/3

3
3
3
3

-1/4
-1/4
-1/4
-1/4

11/4
11/4
11/4
11/4

8/3
8/3

13/3
7/3

-1/3
-1/3
1/6
-1/2

5/2
5/2

11/3
7/3

13/6
23/6
23/6
13/6

-1/2
0
0

-1/2

13/6
20/6
20/6
13/6

7/3
7/3
5

7/3

-1/2
-1/2
1/2
-1/2

7/3
7/3
4

7/3

19/6
17/6
19/6
17/6

GRAPHS

Γ 1

v2 v3

Γ 2

Γ 3

Γ 4

Γ 5

Γ 6

Table 2

5 A decomposition of the measure of centrality

In Table 2 of previous section, we showed that each node in the network

�1 has the same centrality than the equivalent node in the network �3 for
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each vi, i = 1; 2; 3. This might be seen as a not reasonable result because

the degree of connection in �1 is higher than in �3. Then it is interesting

to try to obtain more information by decomposing the actual measure into

two pieces.

Let us consider the messages game. As we mentioned in the introduction,

centrality in this game can be considered as having two components: the

ability to send and receive messages, and the ability to relay (or interrupt)

messages between other individuals. So, from (30) and Table 1, we can see

that, out of the 7:462 units of node 2, 4:532 come from the pairs f1; 2g,
f2; 3g, f2; 4g, f2; 5g and f2; 6g (messages individual 2 sends or receives)

whereas 2:93 units come from the pairs f1; 3g, f1; 4g, f1; 5g, f1; 6g, f3; 4g,
f3; 5g, f4; 6g (where 2 serves as intermediary). Doing the same with all

players, we realize that the centrality vector �[v1;�] can be expressed as the

sum of two vectors:

�C [v1;�] = (3:464; 4:532; 4:198; 4:198; 4:098; 4:098)

and

�B [v1;�] = (0; 2:92; 0:698; 0:698; 0:532; 0:532)

where �C [v1;�] corresponds to sending or receiving messages (source/sink),

while �B [v1;�] corresponds to relaying messages (intermediary).

More generally, for each node i in a network (N;�) and for v 2 SN , we
de�ne the communication centrality of node i, �Ci [v;�], as the portion of

total centrality of node i corresponding to a payo� received as a member of

di�erent coalitions S, and the betweenness centrality of node i, �Bi [v;�], as

the payo� for i from coalitions in which i is not a member but it may be

needed for the coalition to be connected.

Then, we propose the following decomposition

�[v;�] = �C [v;�] + �B [v;�]: (31)

If �S 2 IRn is the characteristic vector of S � N and for x; y 2 IRn, the

coordinates of x�y 2 IRn are xi �yi; i = 1; : : : ; n; the terms of the expression

(31) above are given by

�C [v;�] =
X
S�N

�(S) '

 
1�

rY
i=1

(1� uSi)

!
� �S

and

�B [v;�] =
X
S�N

�(S) '

 
1�

rY
i=1

(1� uSi)

!
� �N�S :
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Turning then to Table 2, for v1 and �1, the induced centrality in each

node can be decomposed in

�Ci [v1;�
1] = 3; �Bi [v1;�

1] = 0; 1 � i � 4;

whereas in the network (v1;�
3) we have

�Ci [v1;�
3] =

17

6
; �Bi [v1;�

3] =
1

6
; 1 � i � 4:

The resulting decomposition for the centrality induced by vi; i = 1; 2; 3

in every connected graph with 4 nodes which is shown in Table 2 is

Graphs Nodes v1 v2 v3
�Ci [v1;�] �Bi [v1;�] �Ci [v2;�] �Bi [v2;�] �Ci [v3;�] �Bi [v3;�]

�1 1; 2; 3; 4 3 0 �1=4 0 11=4 0

�2
1; 3

2; 4

3

17=6

1=6

0

�1=4
�1=3

1=12

0

11=4

8=3

1=12

0

�3 1; 2; 3; 4 17=6 1=6 �1=3 1=12 8=3 1=12

�4
1; 2

3

4

8=3

3

7=3

0

4=3

0

�1=3
�1=4
�1=2

0

5=12

0

5=2

11=4

7=3

0

11=12

0

�5
1; 4

2; 3

13=6

8=3

0

7=6

�1=2
�1=3

0

1=3

13=6

5=2

0

5=6

�6
1; 2; 4

3

7=3

3

0

2

�1=2
�1=4

0

3=4

7=3

4

0

5=4

Table 3

Let us summarize the results corresponding to the introduced decompo-

sition for the centrality induced by v1 in the star with n nodes and in the

graph of the cliques.

For the star with n nodes �S (Figure 1), we obtain

�C1 [v1;�
S ] = n� 1; �B1 [v1;�

S ] =
(n�1)(n�2)

3 ;

�Ci [v1;�
S ] = 2n�1

3 ; �Bi [v1;�
S ] = 0; i 6= 1:

In graph � of Figure 2(a), node 16 (the switchboard) has centrality

44:2, while nodes 5; 10 and 15 (the heralds) have centrality 29:8 each. The

remaining nodes have centrality 8:87 each.
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With this decomposition, we obtain

�C16[v1;�] = 11; �B16[v1;�] = 33:2;

�C5 [v1;�] = 10:33; �B5 [v1;�] = 19:47;

�C1 [v1;�] = 8:87; �B1 [v1;�] = 0:

As it was expected, given the de�nition of �Bi [v;�], for every v and

every �, all nodes of degree 1 are not able to intermediate and then, their

betweenness centrality is zero.

6 Final Comments

As was announced in the introduction, we have obtained di�erent centrality

measures depending on the assumed interactions interests. Some comments

seem to be outstanding:

(a) For a particular type of connected graphs, the trees (and even the

forests), some of the centrality measures we have introduced are very

related with the standard measures that are used in the study of social

networks.

� The centrality induced by the game

v2(S) = f2(s) = �1; s � 1

on a tree � is

�i[v2;�] =
1

2
�i(�)� 1; (32)

where �i(�) is the degree of node i in the graph �.

� The two components of the centrality measure induced by v1 in

a tree � are

�Ci [v1;�] =
X
j 6=i

2

d(i; j) + 1
; (33)

where d(i; j) is the distance between nodes i; j measured as the

number of edges in the (unique) geodesic path that join the two

nodes i and j in the graph �, and

�Bi [v1;�] =

nX
j < k

j; k 6= i

�jk(i)
2

d(j; k) + 1
; (34)

where �jk(i) =

�
1; if i is in the geodesic path that join j and k;

0; otherwise ;
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being �Ci a closeness measure of centrality and �Bi a betweenness

or intermediation measure.

When a graph has cycles, (33) and (34) (or their obvious exten-

sions for this case) are not valid. In the example below (Figure

5) nodes 2 and 5 receive 7=15 as a payo� as intermediate in com-

munication between 1 and 6, whereas nodes 3 and 4 have 1=15

each. From the extension of (34), 2 and 5 would receive 2=5

each, whereas 3 and 4 would receive 1=5 each. When there are

alternatives, Shapley value is less generous than (33) and (34)

are.

1 2

3

5 6

4

Figure 5

(b) The centrality measures induced by di�erent games, though they have

some similar patterns (e.g. the maximal centrality is attained by the

hub of a star), will not order in the same way, in general, the centrali-

ties of the di�erent nodes of a graph. For the comet �CT (Figure 6)

we obtain

�2[v2;�
CT ] =

1

2
�2(�

CT )� 1 = �
1

2
;

�29[v2;�
CT ] =

1

2
�29(�

CT )� 1 = 0;

whereas

�2[v1;�
CT ] = 15:69;

�29[v1;�
CT ] = 14:02:
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2

1

19

20 21 28 29 30

3

Figure 6: Comet (�CT )

Moreover this example shows that a node of degree 1 (node 2) is not

necessarily the node with least centrality in a graph as perhaps it

should be inferred from previous examples.

(c) In previous examples the two components of the centrality tend to go

together in the sense that they order the nodes in a graph in the same

way. This is not true in general. In the comet we have

�C2 [v1;�
CT ] = �2[v1;�

CT ] = 15:69; �B2 [v1;�
CT ] = 0;

whereas,

�C29[v1;�
CT ] = 8:04; �B29[v1;�

CT ] = 5:98:

(d) It is interesting to point out that the problem of computation associa-

ted with the de�ned centrality is NP-hard. For every S � N we must

�nd all elements of M�(S).
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