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In recent years a number of panel estimators have been suggested for sample selection models, 
where both the selection equation and the equation of interest contain individual effects which 
are correlated with the explanatory variables.  We review and compare some of these 
estimators, and apply them to estimating the return to actual labour market experience for 
females, using a panel of twelve years. All these estimators rely on the assumption of strict 
exogeneity of regressors in the equation of interest, conditional on individual specific effects and 
the selection mechanism.  This assumption is likely to be violated in many applications. Also, life 
history variables are often measured with error in survey data sets, because they contain a 
retrospective component. We show how non-strict exogeneity and measurement error can be 
taken into account within the estimation methods discussed. 
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1. Introduction 

 

In many problems of applied econometrics, the equation of interest is only defined for a 

subset of individuals from the overall population, while the parameters of interest are the 

parameters that refer to the whole population.  Examples are the estimation of wage 

equations, or hours of work equations, where the dependent variable can only be measured 

when the individual participates in the labour market.  If the sub-population is non-

randomly drawn from the overall population, straightforward regression analysis leads to 

inconsistent parameter estimates.  This problem is well known as sample selection bias, and 

a number of estimators are available which correct for this (see Heckman (1979), or Powell 

(1994) for an overview). 

 

Another problem is the presence of unobserved heterogeneity in the equation of interest.  

Economic theory often suggests estimation equations that contain an individual specific 

effect, which is unobserved, but correlated with the model regressors.  Examples are 

unobserved ability components in wage equations, correlated with wages and education (see 

Card (1994) for details), or the estimation of Frisch demand functions in the consumption 

and labour supply literature (see, for instance, Browning, Deaton, and Irish (1985), Blundell 

and MaCurdy (1999) and MaCurdy (1981)).  If unobserved individual specific (and time 

constant) effects affect the outcome variable, and are correlated with the model regressors, 

simple regression analysis does not identify the parameters of interest.  For the estimation of 

coefficients on variables which vary over time, panel data provide a solution to this latter 

problem, and a number of straightforward estimators are available (see Chamberlain (1984), 

and Hsiao (1986) for overviews). 

 

In many applications, both problems occur simultaneously.  If the selection process is time 

constant, panel estimators solve both problems.  But often this is not the case.  Recently, 

some estimators have been proposed which deal with both sources of estimation bias.  

These estimators require panel data, and produce consistent parameter estimates under 

various sets of assumptions.  We consider three estimators which allow for additive 

individual specific effects in both the (binary) selection equation and the equation of 

interest, and, at the same time, allow for the equation of interest being defined for a non-
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random sub population.  These estimators impose different consistency requirements, some 

of which may be restrictive in particular applications. 

 

The first estimator we consider has been proposed by Wooldridge (1995).  It relies on a full 

parameterisation of the sample selection mechanism, and requires specifying the functional 

form of the conditional mean of the individual effects in the equation of interest.  It does not 

impose distributional assumptions about the error terms and the fixed effects in the equation 

of interest.  The second estimator we discuss has been proposed by Kyriazidou (1997).  The 

basic idea of this estimator is to match observations within individuals, which have the 

same selection effect in two time periods, and to difference out both the individual 

heterogeneity term, and the selection term.  The third estimator has been developed in 

Rochina-Barrachina (1999).  This method adds a distributional assumption for the error 

term in the equation of interest. 

 

In the first part of the paper, we describe the main features of the three estimators, and point 

out the conditions under which each of them produces consistent estimates of the 

parameters of interest.  Not many applications of these estimators exist in the literature.  In 

the second part of the paper, we apply the three methods to a typical problem in labour 

economics.  We estimate wage equations for female labour market participants, and try to 

identify the effect of actual labour market experience on wages.  In this application, all the 

before mentioned problems arise.  Female labour market participants are non-randomly 

drawn from the overall population.  Their participation propensity depends on 

unobservables, which are likely to be correlated with the model regressors.  And their 

productivity depends on unobservables, which are likely to be correlated with the regressors 

in the main equation. 

 

All three estimators impose the assumption of strict exogeneity of the explanatory variables.  

In many typical applications, like the one we use as an illustration, this assumption is likely 

to be violated.  We show how all three estimators can be extended to relax this assumption 

in the main equation, maintaining only the strict exogeneity of the regressors in the 

selection equation.  We apply the extensions of the estimators to our particular problem, 

and compare the emerging estimates. 
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Another problem which frequently occurs with panel data is measurement error in some of 

the explanatory variables.  With most panel surveys, the construction of work history 

variables needs to be based on retrospective information, which is likely to suffer from 

measurement error.  If the affected variables enter the equation of interest in a non-linear 

manner, IV estimation does not solve the problem. We show how to address this problem 

within the methods discussed. 

 

The data for our empirical application is drawn from the German Socio-Economic Panel 

(GSOEP).  The dataset used for estimation is based on the first 12 waves of the panel. 

 

The paper is organised as follows.  In the next section we describe briefly the three 

estimators and their underlying assumptions.  Section 3 compares the estimators.  Section 4 

discusses problems of implementation, and describes extensions to the case where strict 

exogeneity of some of the model regressors in the main equation is violated.  Section 5 

describes the data and the model we estimate.  Section 6 presents the results, and Section 7 

concludes. 
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2. The Model and Estimators 
 

2.1 The model 

 

The model we consider in the following consists of a binary selection rule, which depends 

on a linear index, and an unobserved (time constant) additive individual effect, which may 

be correlated with the model regressors.  The selection rule assigns individuals in the 

overall sample population to two different regimes.  For one regime, a linear regression 

equation is defined, which again has an additive unobserved individual component, 

correlated with the model regressors.  The slope parameters of this equation are the 

parameters of interest. 

This model can be written as: 

 

w x i N t Tit it i it= + + = =β α ε ; ,..., ; ,..., ,1 1             (2.1) 

 

[ ]01; ** ≥=−−= itititiitit dduzd ηγ ,             (2.2) 

 

where 1[.] is an indicator function, which is equal to one if its argument is true, and zero 

otherwise.  Furthermore, β  and γ  are unknown parameter vectors, and x zit it,  are vectors 

of explanatory variables with possibly common elements3, including both time variant and 

time invariant variables, and time effects.  The α i  and η i  are unobservable and time 

invariant individual specific effects, which are possibly correlated with xit  and zit .  The ε it  

and uit  are unobserved disturbances.  The variable wit  is only observable if dit = 1 .  The 

parameter vector we seek to estimate is β . 

 

We assume that panel data is available.  Equation (2.1) could be estimated in levels by 

pooled ordinary least squares (OLS). This leads to consistent estimates of β  under the 

following condition: 

 

                                                           
3 For some estimators exclusion restrictions are not required because distributional assumptions (like 
normality of the error terms) identify the model.  We assume throughout that there are exclusion restrictions in 
(2.1). 
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( ) ( ) ( )E x d E x d E x d ti it it it i it it it it itα ε α ε+ = = = + = = ∀, , , ,1 1 1 0 .         (2.3) 

 

Accordingly, OLS estimates on the selected subsample are inconsistent if selection is non-

random, and/or if correlated individual heterogeneity is present.  In both cases, the 

conditional expectation in (2.3) is unequal to zero. 

One way to eliminate the fixed effects α i  is to use some type of difference estimator. Given 

identification4, the consistency condition for an estimator using differences across time 

instead of level equations is given by the following expression: 5 

 

( )E x x d dit is it is it isε ε− = = =, , ,1 0    s t≠ ,            (2.4) 

 

where s  and t  are time periods. 

 

Since condition (2.4) puts no restrictions on how the selection mechanism or the regressors 

relate to α i , differencing equation (2.1) across time not only eliminates the problem of 

correlated individual heterogeneity but also any potential selection problem which operates 

through α i .  

 

If conditions (2.3) or (2.4) are satisfied, the OLS estimator or the difference estimator 

respectively lead to consistent estimates.  No specification of the selection process is 

necessary.  If conditions (2.3) and (2.4) are violated, consistent estimation requires to model 

the selection process.  The estimators we describe in the next section take the consistency 

requirements (2.3) or (2.4) as a starting point.  The idea of the estimator by Wooldridge 

(1995) is to derive an expression for the expected value in (2.3), and to add it as an 

additional regressor to the equation of interest.  The estimator by Rochina-Barrachina 

(1999) derives an expression for the expected value in (2.4), which is then added as an 

additional regressor to the differenced equation.  The estimator by Kyriazidou (1997) 

                                                           
4 For identification we require the matrix ( ) ( )[ ]E x x x x x x d dt s t s t s t s− − = =' , , 1  to be finite and non-

singular. 
5 If s t= −1, the data is transformed by applying first differencing over time.  Other transformations include 
mean deviation operators.   
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matches pairs of observations for a given individual for whom the conditional expectation 

in (2.4) is equal to zero. 

 

2.2 Estimation in levels:  Wooldridge’s estimator 

 

The estimation method developed by Wooldridge (1995) relies on level equations.  The 

basic idea is to parameterise the conditional expectations in (2.3) and to add these 

expressions as additional regressors to the main equation.  The method is semiparametric 

with respect to the main equation, in the sense that it does not require joint normality of the 

errors in both equations.  Similar to Heckman’s (1979) two-stage estimator, only marginal 

normality of the errors in the selection equation and a linear conditional mean assumption 

of the errors in the main equation is required.  The time dimension allows controlling for 

individual effects in addition, which requires further assumptions for the conditional means 

of the individual effects in both equations.  Wooldridge (1995) imposes two assumptions on 

the selection equation (W1 and W2 below), and two assumptions about the relationship 

between α εi it,  and the resulting error term in the selection equation (W3 and W4). 

 

• W1:  The regression function of η i  on zi  is linear. 

Following Chamberlain (1984), Wooldridge (1995) specifies the conditional mean of the 

individual effects in the selection equation as a linear projection on the leads and lags of the 

observable variables: η δ δi i iT T iz z c= + + +1 1 ... , where ci  is a random component. 

 

• W2: The errors in the selection equation, v u cit it i= + , are independent of ~zi  and normal 

( )0 2,σ t , where ( )~ , 'z x zi i i=  with ( )x x xi i iT= 1,...,  and ( )z z zi i iT= 1 ,..., .6 

 

• W3: The regression function of α i  on xi  and ν it  is linear. 7 

                                                           
6 ν it  is heteroskedastic over time whenever uit  is. 
7 An alternative assumption is (see Mundlack (1978), Nijman and Veerbeck (1992), and Zabel (1992)) that α i  

depends only on the time average of xit . 
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Accordingly, ( )E z x xi i it i iT T t itα ν ψ ψ φ ν~ , ...= + + +1 1 .8  The conditional distribution of α i  

on xi , ν it  is linear, but otherwise unrestricted.  We do not observe ν it , however, but only 

the binary selection indicator dit .  Therefore, ( )E zi i itα ν~ ,  has to be replaced by the 

expectation of α i  given ( )~ ,z di it = 1 , which is obtained by integrating 

( )E z x xi i it i iT T t itα ν ψ ψ φ ν~ , ...= + + +1 1  over ν γ γit i t iT tTz z≤ + +1 1 ... .9  This yields 

( ) [ ]E z d x x E z di i it i iT T t it i itα ψ ψ φ ν~ , ... ~ ,= = + + + =1 11 1 . 

 

• W4:  ε it  is mean independent of ~zi  conditional on ν it  and its conditional mean is linear 

on ν it . 

Accordingly, ( ) ( )E z Eit i it it it t itε ν ε ν ρ ν~ , = = .  The first equality states that ε it  is mean 

independent of ~zi  conditional on ν it , and the second equality that ( )E it itε ν  is linear.  No 

restrictions are imposed on the temporal dependence of ε it , or on Corr ( )ε νit is, , for s t≠ .  

Again, as we do not observe ν it  but the binary selection indicator dit , we must find the 

expectation of ε it  given ( )~ ,z di it = 1 .  This is obtained by integrating ( )E zit i it t itε ν ρ ν~ , =  

over ν γ γit i t iT tTz z≤ + +1 1 ... , resulting in ( ) [ ]E z d E z dit i it t it i itε ρ ν~ , ~ ,= = =1 1 . 

 

Under assumptions W1– W4, Wooldridge (1995) derives an explicit expression for  

 

                                                           
8 The key point for identifying the vector β  is that, under vit  being independent of ~zi , and the conditional 

expectation ( )E zi i itα ν~ ,  being linear, the coefficients on the x r Tir , ,..., = 1 , are the same regardless of 

which ν it  is in the conditioning set.  This is crucial to the approach, and follows from the law of iterated 
expectations. For any t , 

( ) [ ]E z x x E z
x x
x x

i i i t iT tT t it i

i t iT tT

i iT T

α ψ ψ φ ν
ψ ψ
ψ ψ

~ ... ~

...
... .

= + + +

= + +
= + +

1 1

1 1

1 1

 

The second equality follows because [ ]E zit iν ~ = 0  under W2, and the third follows from the coefficients in 

the linear projection of α i  onto xi  being necessarily time-invariant. 
9 z zi t iT tT1 1γ γ+ +...  is the reduced form index for the selection equation in (2.2), once the time-constant 
unobserved effect η i  is specified as in W1. 
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( ) ( ) ( )
( ) [ ]

E z d E z d E z d x x

E z d

i it i it i i it it i it i iT T

t it i itt

α ε α ε ψ ψ

φ νρ

+ = = = + = = + + +

+ ⋅ =

~ , ~ , ~ , ...

~ ,

1 1 1

1

1 1
    (2.3’) 

 

which results in the following model: 

 

( )w x x x H eit i iT T it t it t it= + + + + +1 1ψ ψ β λ σ... ,             (2.5) 

 

where t t t= +φ ρ , tTiTtiit zzH γγ ++= ...11  is the reduced form index in the selection 

equation for period t , and ( ) [ ]λ σ νH E z dit t it i it= =~ , 1 .  

 

Notice that, since dir = 1 for r t≠  is not included in the conditioning sets  of 

( )E z di i itα ~ , = 1  and ( )E z dit i itε ~ , = 1 , the selection term [ ]E z dit i itν ~ , = 1  is not strictly 

exogenous in (2.5).  The condition, which holds for the new error term in (2.5), is 

( ) ( )E e z d E e z Hit i it it i it it
~ , ~ ,= = ≤ =1 0ν . We call this a “contemporaneous exogeneity” of 

the selection term [ ]E z dit i itν ~ , = 1  with respect to eit  in (2.5). 

 

To obtain estimates for ( )λ ⋅ , a probit on H z zit i t iT tT= + +1 1γ γ...  is estimated for each t in 

the first step.  In the second step, equation (2.5) is estimated either by minimum distance or 

pooled OLS regression.  Under the assumptions W1-W4, the estimator for β  is consistent.  

Since dependence between the unobservables in the selection equation, ν it , and the 

unobservables in the main equation, ( )iit αε , , is allowed for, selection may depend not only 

on the error ε it , but also on the unobserved individual effect α i .  For time invariant 

variables or variables that vary systematically over time, β  is not separable from ψ . For 

time varying variables we can identify β  given that the coefficients ψ ψ1 ,..., T  are constant 

for different time periods (assumption W3). 
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2.3 Estimation in differences I: Kyriazidou’s estimator 

 

The estimator developed by Kyriazidou (1997) relies on pairwise differences over time 

applied to model (2.1) for individuals satisfying d dit is= =1 , s t≠ .  The idea of the 

estimator is as follows. Re-consider first the expression in (2.4): 

 

( )
( ) ( )

E

E E

ε ε α η

ε α η ε α η
λ λ

it is it is i i it is

it it is i i it is is it is i i it is

its ist

z z d d

z z d d z z d d

− = = =

= = − = = ≡

−

~ , ~ , , ,
~ , ~ , , , ~ ,~ , , ,

1

1 1         (2.4’) 

 

where ( )~ , 'z x zit it it= , ( )~ , 'z x zis is is= , and for each time period the selection terms are 

 

( )
( )( )

λ ε α η γ η γ η

γ η γ η ε α η
its it it is i i it it i is is i

it i is i it it is it is i i

z z u z u z

z z F u u z z

= E  ~ , ~ , , , ,

, ; , , ~ , ~ , ,

≤ − ≤ −

= − −Λ
 

( )
( )( )

λ ε α η γ η γ η

γ η γ η ε α η

ist is it is i i is is i it it i

is i it i is is it it is i i

z z u z u z

z z F u u z z

= E

 

~ , ~ , , , ,

, ; , , ~ , ~ , ,

≤ − ≤ −

= − −Λ
 

 

where ( )Λ ⋅  is an unknown function and ( )F ⋅  is an unknown joint conditional distribution 

function of the errors.  The additional variables in the conditioning set in (2.4’), compared 

to the conditioning set in expression (2.4), follow from the fact that the sample selection 

mechanism has to be specified in this model.  The individual effects in both equations are 

allowed to depend on the explanatory variables in an arbitrary way, and are not subject to 

any distributional assumption.  Different to Wooldridge (1995), the individual effects are 

now included in the conditioning set. 

 

Under the assumption that for individuals for whom z zit isγ γ=  and d dit is= =1 , the 

sample selection effect is equal in t  and s  (that is, λ λits ist=  in (2.4’)).  Hence, 

differencing between periods s and t will entirely remove the sample selection problem and, 

at the same time, the time constant individual heterogeneity component. 
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In general however there is no reason to expect that λ λits ist=  holds even for individuals 

satisfying the conditions above.  In particular, the selection terms depend not only on the 

conditioning vector ( )~ , ~ , ,z zit is i iα η , but also on the joint conditional distribution of the error 

terms for the two time periods, which may differ across individuals, as well as over time for 

the same individual.  To ensure that λ λits ist=  holds, Kyriazidou (1997) imposes a 

“conditional exchangeability” assumption.  The resulting estimator is semiparametric with 

respect to both the error distribution and the distribution of the fixed effects. 

 

To implement this estimator, Kyriazidou (1997) imposes the following conditions: 

 

• K1:  ( )ε εit is it isu u, , ,  and ( )ε εis it is itu u, , ,  are identically distributed conditional on  

~ , ~ , ,z zit is i iα η . That is, ( ) ( )F u u z z F u u z zit is it is it is i i is it is it it is i iε ε α η ε ε α η, , , ~ , ~ , , , , , ~ ,~ , ,= . 

This “conditional exchangeability” assumption implies that the idiosyncratic errors are 

homoscedastic over time for a given individual.  Under this assumption, any time effects are 

absorbed into the conditional mean. 

 

• K2: An appropriate smoothness condition10 is imposed on the selection correction 

function ( )Λ ⋅ . 

This smoothness condition ensures that once K1 holds, z zit isγ γ=  implies λ λits ist= . 

 

Under assumptions K1-K2 and provided identification is met,11 the OLS estimator applied 

to 

( )w w x x eit is it is its− = − +β ,                 (2.6) 

 

                                                           
10 Kyriazidou (1997) imposes a Lipschitz continuity property on the selection correction function ( )Λ ⋅ . 

11 In this model identification of β  requires ( ) ( ) ( )[ ]E x x x x d d z zt s t s t s t s− − − =' γ 0  to be finite and 

non-singular.  Given that we require support of ( )z zt s− γ  at zero, nonsingularity requires an exclusion 

restriction on the set of regressors, namely that at least one of the variables zit  is not contained in xit . 
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for individuals satisfying d dit is= =1 , s t≠  and z zit isγ γ= , is consistent. The resulting 

error ( ) ( )eits it is its ist≡ − − −ε ε λ λ  has a conditional expectation that satisfies 

( )E e z z d dits it is i i it is
~ ,~ , , ,α η = = =1 0 . 

 

The estimator requires that there are individuals with z zit isγ γ=  with probability one, 

which is not the case if zit  contains a continuous variable.  To implement the estimator, 

Kyriazidou (1997) constructs kernel weights, which are a declining function of the distance 

z zit isγ γ− , and estimates pairwise differenced equations by weighted OLS12. 

 

The procedure requires estimates of γ , which can be obtained either by smoothed 

conditional maximum score estimation (see, for instance, Charlier, Melenberg and van 

Soest (1997) and Kyriazidou (1997))13  or conditional logit (Chamberlain (1980)) 

estimation. 

 

2.4 Estimation in Differences II:  Rochina-Barrachina’s estimator 

 

This estimator is also based on pairwise differencing equation (2.1) for individuals 

satisfying d dit is= =1 , s t≠ .  Different from Kyriazidou’s (1997) estimator, Rochina-

Barrachina’s (1999) estimator relies on a parameterisation of the conditional expectation in 

(2.4).  On the other hand, it does not impose the “conditional exchangeability” assumption. 

 

To implement the estimator, the following assumptions are made: 

  

• RB1:  The regression function of η i  on zi  is linear14. 

• RB2:  The errors in the selection equation, ν it it iu c= + , are normal ( )0 2,σ t . 

                                                           
12 The estimator is arbitrarily close to root n-consistency depending on the degree of smoothness one is willing 
to assume for the kernel function. 
13 Estimating γ  by the smoothed conditional maximum score estimator requires additional assumptions (see 
Manski (1987), Horowitz (1992), Kyriazidou (1994) and Charlier, Melenberg and van Soest (1997) for 
details). 
In Rochina-Barrachina (1999), a non-parametric specification of the conditional mean of η i  is used, where 

( )E zi iη  is left unrestricted. 
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• RB3:  The errors ( )[ ]ε ε ν νit is it is− , ,  are trivariate normally distributed conditional on ~zi . 

 

The first two assumptions refer to the selection equation and are equivalent to assumptions 

W1 and W2 above.  The third assumption imposes restrictions on the joint conditional 

distribution of the error terms in the two equations.  The method is non-parametric with 

respect to the individual effects in the main equation and allows, under its semi-parametric 

version, for a non-parametric conditional mean of the individual effects in the selection 

equation on the leads and lags of the explanatory variables in that equation. 

 

Under assumptions RB1-RB3,  the resulting estimation equation is given by 

 

( )w w x x
H H H H

eit is it is ts
it

t

is

s
ts st

is

s

it

t
ts its− = − + � � +

�

�
�

�
� +β λ

σ σ
ρ λ

σ σ
ρ, , , , ,          (2.7) 

 

where H z z t si i iT Tτ τ τγ γ τ= + + =1 1 ... , , ,  are the resulting reduced form indices in the 

selection equation for periods t and s , and ( )( )ρ ρ ν σ ν σts t t s s
=  is the correlation coefficient 

between the errors in the selection equation.  Furthermore, 

ts
it

t

is

s
ts st

is

s

it

t
ts

H H H Hλ
σ σ

ρ λ
σ σ

ρ, , , ,� � +
�

�
�

�
�  is the conditional mean 

( )E z d dit is i it isε ε− = =~ , 1  derived from the three-dimensional normal distribution 

assumption in RB3.15  The new error term ( ) [ ]eits it is ts its st ist≡ − − +ε ε λ λ  has a 

conditional expectation ( )E e z H Hits i it it is is
~ , ,ν ν≤ ≤ = 0 .  To construct estimates of the 

( )λ ⋅  terms the reduced form coefficients ( )γ γt s,  will be jointly determined with ρ ts , using 

a bivariate probit for each combination of time periods.  The second step is carried out by 

applying OLS to equation (2.7). 

 

                                                           
15  See Rochina-Barrachina (1999) for details.  
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3. Comparison of Estimators 
 

Table 1 summarises the main features of the three estimators, and the assumptions they 

impose on the data.  Wooldridge’s (1995) method is the only one that relies on level 

equations.  This makes it necessary to specify the functional form for the conditional mean 

of the individual effects in the main equation, α i , with respect to the explanatory variables 

(to allow for individual correlated heterogeneity) and with respect to the random error term 

ν it  (to allow for selection that depends on the unobserved effect α i ).  In the other methods, 

α i  is differenced out, and selection may therefore depend on α i  in an arbitrary fashion. 

 

With respect to the assumptions on the functional form of the sample selection effects, 

Kyriazidou (1997) treats them as unknown functions, which need not to be estimated.  

Wooldridge (1995) and Rochina-Barrachina (1999) parameterise these effects, which 

imposes three assumptions.  First, a normality assumption for the random component of the 

unobservables in the selection equation (ν it i itc u= + ).  Secondly, to explicitly modelling 

the dependence of η i  on the explanatory variables.  Thirdly, an assumption about the 

relationship between the errors in the main equation and the ν it  in the selection equation.  

In Wooldridge (1995) joint normality of unobservables in both equations is not needed once 

a marginal normality assumption for the ν it  and a linear projection specification for ε it  on 

ν it  are imposed.  In Rochina-Barrachina’s (1999) estimator, joint normality is assumed, and 

linearity between ε νit it and  results from the joint normality assumption. 

 

Kyriazidou (1997) does not impose any parametric assumption about the distribution of  the 

unobservables in the model.  However, the conditional exchangeability assumption in 

Kyriazidou’s (1997) estimator imposes restrictions on the time series properties of the 

model.  This assumption is more demanding than joint conditional stationarity for the time-

varying errors (see Kyriazidou (1997) for details).  While in Wooldridge (1995) and 

Rochina-Barrachina (1999) not only the conditional means, but also the second moments of 

the error terms may incorporate time effects, Kyriazidou’s (1997) estimator allows only for 

time effects in the conditional mean. 
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All these methods do not impose explicitly restrictions on the pattern of serial-correlation in 

the error processes.  However, in Kyriazidou (1997) serial correlation is allowed as far as 

this does not invalidate the “conditional exchangeability” assumption.  Wooldridge’s (1995) 

method imposes no restriction on the way the time-varying error in the main equation (ε it ) 

relates to the time-varying error in the selection equation (ν is ), for s t≠ .  Different to 

Wooldridge (1995), in Rochina-Barrachina’s (1999) estimator the joint normality 

assumption (RB3 above) extends linearity to the correlation between ε it  and ν is  for s t≠ , 

since it includes in the conditioning set not only dit , but d dit is, . 

 

The estimators differ in terms of sample requirements.  In Wooldridge (1995) the 

parameters of interest are estimated from those observations that have dit = 1 .  Rochina-

Barrachina’s (1999) estimator uses individuals with d dit is= =1.  Kyriazidou (1997) uses 

those observations that have d dit is= =1, and for which zitγ  and zisγ  are “close”.  

Asymptotically, the effective sample size is smaller for the latter method. 

 

At the stage of implementation, problems may arise with Kyriazidou’s (1997) method if 

there are strong time effects in the selection equation.  In this case, it may be difficult to 

find observations for which zitγ  and zisγ  are “close”.  Furthermore, identification 

problems arise if for individuals for whom zitγ  and zisγ  are “close”, also xit  is “close” to 

xis .  In this case, a higher weight is given to observations with little time-variation in the 

explanatory variables in the main equation.  A related problem arises if high matching 

weights are assigned to observations whose x  variables change in a systematic manner.  In 

this case it is not possible to separately identify the coefficients of these variables from 

coefficients on a time trend, or time dummies.  These problems are likely to occur in many 

empirical applications, as we demonstrate below. 
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TABLE 1:  COMPARATION OF ESTIMATORS 

 

Estimators Estimation Sample selection 
effects 

Distributional assumptions 
 

Specification of conditional means 

  
 

 αi ηi εit uit αI ηi εit 

Wooldridge Levels Parameterized None Normal random 
component ci  

None Normal LPa on xi & νit=ci+uit LPa on zi LPa on νit 

Kyriazidou Time diff. Unspecified None None None 
but CEb 

None but 
CEb 

None None None 

Rochina-Barrachina Time diff. Parameterized None Normal random 
component ci  

Normal Normal None LPa on zi/non-
parametric 

Linearity from 
joint normality 

 
 

Estimators Time series properties Sample 
 Time dummies or time 

trend 
Time 

Heterosk. 
Serial 

correlation 
Corr(εit,uis) 

t s≠  
requirements 

Wooldridge Yes Yes Yes Unspecified dit = 1 

Kyriazidou Yes No CEb CEb d d
z z

it is

it is

= =
≅

1,
γ γ

 

Rochina-Barrachina Yes Yes Yes subject to joint 
normality 

d dit is= =1 

a LP denotes the linear projection operator. 
b Subject to the “conditional exchangeability” (CE) assumption according to which the vectors of errors ( )ε εit is it isu u, , ,  and ( )ε εis it is itu u, , ,  are identically distributed conditional on 
~ , ~ , ,z zit is i iα η . 

 

 



 

16 

4. Extensions 
 

4.1 Estimation if regressors are non-strictly exogenous 

 

All the estimators above assume strict exogeneity of the regressors.  The variable xit  is 

strictly exogenous relative to ε it  if 

 

( )E x t Tit iε = =0 1, ,..., .               (4.1) 

 

A similar statement can be made about zit  with respect to uit .  If ( )E xit itε = 0 , we call this 

contemporaneous exogeneity. 

 

In many empirical applications, the strict exogeneity condition (after controlling for both 

individual heterogeneity and sample selection) is likely to be violated.  In the following, we 

describe how the above three estimators can be extended in this direction.  We maintain the 

strict exogeneity assumption of regressors in the selection equation. 

 

In Wooldridge (1995), the selection correction proposed has been derived under the 

assumption of strict exogeneity of the regressors conditional on the unobserved effect, that 

is, ( )E xit i iε α, = 0 . The strict exogeneity assumption is, for instance, needed for condition 

W3 to be valid.  To see this, suppose that the variables in the equation of interest are 

predetermined, and possibly correlated with the individual effects αi .  In this case, the set of 

valid conditioning variables for the linear projection of αi  on the regressors differs for 

different time periods – in period t the conditioning set is the vector ( )x x xi
t

i it≡ 1 ,..., .  If 

however the conditioning set changes over time, the coefficients for the leads and lags of 

the explanatory variables in the linear projection of α i  will likewise vary over time, thus 

invalidating W3.  Hence, the condition for β  to be separately identified from ψ (implying 

that ψ ψ ψ ψt tT T t T1 1 1= = =,..., , ,..., ) does not hold. 
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With pre-determined variables, identification of β requires the assumption that the variables 

in the main equation are not correlated with the individual effects αi . Assumption W3 is 

then substituted by  

 

( ) ( )E z d q E z di i it t it i itα φ ν~ , ~ ,= = + =1 1 .             (4.2) 

 

For many applications, this assumption is very restrictive. 

 

One way to relax this assumption is to substitute the non-strictly exogenous time-varying 

correlated regressors by their predictions, and to apply Wooldridge’s (1995) estimator.  The 

construction of these predictions is not straightforward, however.  For all time periods and 

for each non-strictly exogenous variable, T unique predictions are required.  To identify β , 

assumption W3 must hold.  Accordingly, predictions for xi  for period t can not be 

constructed by using the subsample of individuals who participate during that period, where 

the instruments are both the sample selection term for that period (λ it ) and the leads and 

lags of the explanatory variables in the sample selection equation.  This would produce 

multiple predictions for the same xi  in different time periods, thus invalidating W3.  Also, 

we do not obtain unique predictions for xi  for all periods by including all the sample 

selection terms in the conditioning set, because the lambda terms are not strictly exogenous 

in the equation of interest (see discussion above).  The way to obtain unique predictions is 

to predict each component of the vector xi , using the entire sample of individuals in the 

participation equation, and all leads and lags of the explanatory variables in that equation as 

instruments. 

 

The other two estimators rely on difference estimation.  Hence pre-determined regressors in 

the level equation lead to endogenous regressors in the difference equation.  In Kyriazidou’s 

(1997) method, a straightforward way to allow for endogenous regressors is an IV type 

procedure16.  Let zi  be the set of instrumental variables.  Then the difference ( )x xit is−  

                                                           
16 The IV version of Kyriazidou’s (1997) estimator has been proved to be consistent in Charlier, Melenberg 
and Van Soest (1997). 
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fitted by zi  is ( ) ( )� � ' 'x x z z z z x xit is i j
j

j j
j

jt js− = −
−1

, and the IV estimator bIV  has the 

form 

 

( ) ( ) ( )[ ] ( ) ( ) ( )[ ]b x x x x d d z z x x w w d d z zIV it is it is it is ts it is
i

it is it is it is ts it is
i

= − − − − − −
−

� � ' � � � ' �ϖ γ ϖ γ
1

(4.3) 

 

where ( )[ ]ϖ γts it isz z− �  is the kernel weight for individual i  in pair ( )t s, .  This approach 

allows to maintain the same dimension of ( )x xit is−  in the estimated instrument set 

( )� �x xit is− , which is computationally convenient.  The pre-estimation of instruments does 

not affect the second-stage variance. 

 

Given the non-parametric nature of the sample selection terms in this method, identification 

of the parameters of interest requires some component of zit  to be excluded from both the 

main equation and the instrument set.  In practical applications, to find such variables can 

be hard. 

 

The assumption of strictly exogenous regressors in the main equation for Rochina-

Barrachina’s (1999) estimator can be relaxed by applying a generalised method of moments 

estimator of the form 

 

( )b x z z x x z z w wGMM its its its its
ii

its its its it is
ii

= −−
−

−
�� �� �� �� �� �� �� ,' ' 'Ω Ω1

1
1           (4.4) 

 

where ( )[ ]�� , , 'x x xits it is its ist≡ − λ λ  and ( )�� ' , ,z zits i its ist≡ λ λ .  The matrix Ω is given by 

Ω = �� ��'z z rits its
i

its
2 , where ( ) ( ) [ ]r w w x x bits it is it is

IV
ts
IV

its st
IV

ist= − − − − +λ λ  are the 

estimated residuals.  The zi  are defined as above, but now the instrument vector for a given 

pair ( )t s, , ��zits , also includes the corresponding sample selection terms λ λits ist and . By 
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setting Ω = �� ��'z zits its
i

 the GMM estimator becomes a simple IV estimator, and estimates 

can be used as initial estimates for the GMM estimator. 

 

To summarise, if regressors in the main equation are non-strictly exogenous, the methods of 

Kyriazidou (1997) and Rochina-Barrachina (1999) may easily be extended to using IV or 

GMM type estimators. For Wooldridge’s (1995) estimator, one solution of the problem is to 

use predicted regressors. 

 

4.2 Measurement error 

 

In typical panel surveys, the construction of work history variables, like tenure and 

experience, is based on retrospective information, which is likely to suffer from 

measurement error.  An example is labour market experience, which is updated quite 

precisely during the course of the panel, but where the pre-sample information stems from 

retrospective data.  The measurement error in this case is constant within individuals.  If 

this variable enters the equation of interest in a linear way, differencing eliminates the 

measurement error.  If this variable enters in a non-linear way (for instance, by including 

squared terms), differencing over time does not eliminate the measurement error, but it 

eliminates the problem associated to it. 

 

To illustrate this, suppose that the variable xit  is measured with error, and we include its 

level and its square among the regressors in equation (2.1).  Let the measured  variable x it
*  

be equal to the true variable xit , plus an individual specific error term: 

 

x x eit it i
* = + ,                 (4.5) 

 

where ei  is assumed to be uncorrelated with xit .  For Wooldridge’s (1995) estimator, 

writing the true regression equation in (2.5) in terms of the observed variables leads to the 

following expression: 
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( )
( ) ( ) ( )[ ]

w x x x x x x H

e e e x x x e
it i iT T i iT T it it t it t

it T i T i i T iT it i

= + + + + + + + + +

− + + + + + + + − + + +

1 1 1 1 1 2

1 1 1 2
2

1 1 22

* * *2 *2 * *2

* * *

... ...

... ... ...

ψ ψ β β λ σ

ψ ψ β β β

Ψ Ψ

Ψ Ψ Ψ Ψ
        (4.6) 

 

where the new error term is now given by the expression in brackets. 

 

A common solution to solve the measurement error problem is to use instrumental variable 

estimation.  However, this estimation strategy does not longer lead to consistent estimates 

in a non-linear error in variables problem, because the error of measurement is no longer 

additively separable from the regressors (see expression (4.6)).  Hence, it is impossible to 

find instruments which are correlated with the observed regressors, but uncorrelated with 

the new error term in (4.6). 

 

An alternative solution is to use predicted regressors.  In contrast to standard instrumental 

variables techniques, the use of predicted regressors, once the disturbances of the equation 

of interest have been purged for correlated heterogeneity and sample selection, allows to 

estimate the model under some conditions.  

 

Let the true variable xit  be determined by a vector of instruments Zi , 

 

x Z sit i t it= +δ .                (4.7) 

 

Assume that δ t  is known since it is identified from 

 

x Z s eit i t it i
* = + +δ .                (4.8) 

 

For Wooldridge’s (1995) estimator, substitution of (4.7) into equation (2.5) yields the 

following expression 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )( )[ ]

w Z Z Z Z Z Z H

e s s s s s s Z s Z s Z s

it i i T T i i T T i t i t t it t

it i iT T it i iT T it i i i T iT T i t it

= + + + + + + + + +

+ + + + + + + + + + + +

δ ψ δ ψ δ δ δ β δ β λ σ

ψ ψ β β δ δ δ β

1 1 1

2

1

2

1

2

2

1 1 1 1
2

1
2 2

2 1 1 1 22

... ...

... ... ... ,

Ψ Ψ

Ψ Ψ Ψ Ψ
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where the term in brackets is the new error term.  The assumption that sit  is independent of 

Zi  is crucial for consistent estimation, and necessary because of the non-linear 

specification.  Independence guaranties not only that the first conditional moment of sit  is 

equal to zero, but also that the second conditional moment equals zero.  Hence, we obtain 

an expression with linear and quadratic terms in Z t Ti tδ , ,..., for = 1 , and a new error term 

that is a function of the original error term, of linear and quadratic terms in sit , and of cross 

products ( )s Zit i tδ .  To obtain consistent estimates, one needs to assume that 

( )E tnew error term Ziδ = 0 , implying that the Zi  are uncorrelated with the original error 

term in the equation of interest, and the sit  are independent of Zi . 

 

If estimating the model in differences (as in Kyriazidou (1997) or Rochina-Barrachina 

(1999)), and writing the true regression equation in (2.6) and (2.7) in terms of the observed 

variables in (4.5) we obtain: 

 

( ) ( ) ( ) ( )[ ]
( ) ( ) ( ) ( )[ ]

w w x x x x E e x x e

x x x x E e x x e

it is it is it is it is its it is i

it is it is it is its it is i

− = − + − + − ⋅ + − −

= − + − + − ⋅ + − −

* * *2 *2 * *

*2 *2

β β ε ε β

β β ε ε β

1 2 2

1 2 2

2

2
        (4.9) 

 

where ( )E it isε ε− ⋅  is equal to ( )E z z d dit is it is i i it isε ε α η− = =~ , ~ , , , 1  for Kyriazidou (1997) 

and to ( )E z d dit is i it isε ε− = =~ , 1  for Rochina-Barrachina (1999).  The new error is given 

by the term in brackets.  Now the measurement error in ( )x xit is
*2 *2−  does not imply a 

measurement error problem for consistent estimation because ei  is uncorrelated with 

( )x xit is− .17  Therefore, differencing eliminates the endogeneity problem due to 

measurement error, and the IV estimators in section 4.1 can be used18 to address the 

problem of non-strict exogenous regressors. 

                                                           
17 Since the error term in (4.9) includes ( )x x eit is i− , and ei  is uncorrelated with ( )x xit is− , 

( ) ( )[ ] ( ) ( )[ ]E x x e x x E x x e x xit is i it is it is i it is− − = − − =*2 *2 0 . 
18 Although differencing within individuals does not eliminate the non-linear errors in variables, it does 
eliminate the problem.  The quadratic terms, measured with error, are not longer endogenous to the new error 
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5. Empirical Model and Data 
 

5.1 Estimation equation 

 

We apply the estimators discussed in Section 2 to analyse wage equations of females, using 

data from a twelve-year panel. We define the wage equation and the participation equation 

as:19 

 

w x Exp Exp i N t Tit it it it i it= + + + + = =β ξ ζ α ε2 1 1; ,..., ; ,..., ,          (5.1) 

 

[ ]01; ** >=−−= itititiitit dduzd ηγ ,             (5.2) 

 

where itd  is an indicator variable, being equal to one if the individual participates.  The 

variable *itd  is a latent index, measuring the propensity of the individual to participate in 

the labour market.  Our parameter of interest is the effect of actual labour market experience 

(Exp) on wages.  The vector xit  is a subset of zit  that contains education and time 

dummies.  The vector zit  contains in addition age and its square, three variables measuring 

the number of children in three different age categories, an indicator variable for marital 

status, an indicator variable for the husband’s labour market state, and other household 

income.  We consider the participation equation as a reduced form specification, where 

labour market experience is reflected by the children indicators, age, and the other 

regressors.  We assume that all regressors in the participation equation are strictly 

exogenous.  The wage variable wit  in (5.1) is only observable if dit = 1  in (5.2). 

 

Within this model, there are a number of potential sources of bias for the effects of the 

experience variable.  First, unobserved heterogeneity.  Unobserved worker characteristics 

such as motivation and ability or effort may be correlated with actual experience: if high 

ability workers have a stronger labour market attachment than low ability workers, OLS on 

equation (5.1) results in upward biased coefficients.  Second, sample selection bias.  
                                                                                                                                                                                 
term in the equation.  The crucial conditions for this to happen are that the measurement error is time-constant, 
and uncorrelated with the underlying true variables. 
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Sample selection occurs if unobservable characteristics affecting the work decision are 

correlated with the unobservable characteristics affecting the process determining wages.  If 

these unobservable characteristics are correlated with the observables, then failure to 

control for them will lead to incorrect inference regarding the impact of the observables on 

wages.  Third, experience is likely to be non-strictly exogenous, even after controlling for 

heterogeneity and sample selection.  Labour market experience in any period t  is an 

accumulation of weighted past participation decisions: Exp r dit is is
s

t

=
=

−

1

1

, where ris  is the 

proportion of time individual i allocates in period s to the labour market20.  In turn, 

participation depends on wage offers received.  Accordingly, any shock to wages in period t 

affects the level of labour market experience in the future, thus violating condition (4.1).  

Furthermore, given the above formulation, past shocks to wages affect current experience 

also by altering the weights ris .  A final problem is measurement error.  As typical in survey 

data, the experience variable is constructed as the sum of pre-sample retrospective 

information, and experience accumulated in each year of the survey (see data section for 

details).  Experience updates constructed within the 12 years of the survey should only be 

marginally affected by miss-measurement, but the pre-sample experience information is 

likely to suffer quite considerably from measurement error.  This results in measurement 

error in the experience variable, which is constant over time for a given individual. 

 

5.2 Data and sample retained for analysis 

 

Our data is drawn from the first 12 waves of the German Socio-Economic Panel (GSOEP) 

for the years 1984-1995 (see Wagner et al. (1993) for details on the GSOEP).  We extract a 

sample of females between 20 to 64 years old, who have finished their school education, 

and who have complete data during the sample period on the variables in Table 2 (with the 

exception of wages for females who do not participate in a given period).  We exclude 

individuals who are self-employed in any of the 12 years.  We define an individual as 

participating in the labour market if she reports to have worked for pay in the month 
                                                                                                                                                                                 
19 See Appendix I for a motivation of this specification. 
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preceding the interview.  We compute wages by dividing reported gross earnings in the 

month before the interview by the number of hours worked for pay.  We obtain a final 

sample of 1053 individuals, resulting in 12636 observations.  We use both participants and 

non- participants for the estimation of the selection equation.  For estimating the wage 

equations, we use all females that participate in at least two waves. 

 

Summary statistics and a more detailed description of the variables are given in Table 2.  

The variable Exp, which reports the total labour market experience of the individual in the 

year before the interview, is computed in two stages:  First, we use information from a 

biographical scheme, which collects information on various labour market states before 

entering the panel.  This information is provided on a yearly basis, and participation is 

broken down into part-time and full-time participation.  We sum these two labour market 

states up to generate our total experience variable at entry to the panel.  In every succeeding 

year, this information is updated by using information from a calendar, which lists labour 

market activities in every month of the year preceding the interview.  Again, we sum up 

part-time and full-time work.  Accordingly, after entering the panel, our experience variable 

is updated on a monthly basis.  Furthermore, it relates to the year before the wage 

information is observed.  If wage contracts are re-negotiated at the beginning of each 

calendar year, this experience information should be the information on which the current 

contract is based.  Participation is defined as being in the state of part-time or full-time 

employment at the interview time.  Non-participation is defined as being in the state of non-

employment or unemployment.  On average, 54 percent of our sample population 

participates in the labour market.  The average age in the whole sample is 42 years, with 

individuals in the working sample being slightly younger than in the non-working sample. 

 

We do not restrict our sample to married females.  From the 12636 observations, 10680 

(84.52 percent) are married females, of whose 51 percent participate in the labour market.  

We observe a higher percentage of labour market participants (72 percent) among the non-

married.  Of the 1053 females in our sample, 780 are married in each of the 12 periods, 87 

                                                                                                                                                                                 
20 The process generating experience can be expressed as:  Exp Exp r dit it it it= +− − −1 1 1 , where by direct 

substitution we get Exp r dit is is
s

t

=
=

−

1

1

. 
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are not married in any period, and 186 are married between 1 and 11 years of the sample 

periods.  

 

Our children variables distinguish between the number of children aged between 1 to 3 

years, the number of children aged between 3 and 6 years, and the number of children 

between 6 and 16 years old.  As one should expect, for all three categories, numbers are 

higher among the non-participants. 

 

To estimate our wage equation conditional on fixed effects, we need repeated wage 

observations for the same individual.  Table 3 reports frequencies of observed wages, as 

well as the number of state changes between participation and non-participation.  23 percent 

of our sample individuals participates in none of the 12 years, and about 25 percent in each 

of the 12 years.  More than half of the sample has at least one state change within our 

observation window and there are no individuals who change state more than 7 times over 

the 12 years period.  In the longitudinal dimension, 767 women  (corresponding to 6757 

observations) worked for a wage at least in two years during the sample period.  Once we 

drop observations of individuals who do declare participation, but not wages, our number 

reduces to 5861 observations.  The data we use for estimating the wage equation uses all 

individuals who report wages in at least two periods. 
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TABLE 2:  DESCRIPTION OF VARIABLES AND SAMPLE STATISTICS (12,636 observations)a 

 
Variable Description Total 

Sample 
Work=1 (6802 
observations) 

Work=1 dropping individuals with participation in 
one year only and observations with missing 
wages (5861) 

Work=0(5834 
observations) 

Work dummy variable indicating participation of the female (work=1) or no 
participation (work=0) 

0.538 
(0.498) 

1 
(0) 

1 
(0) 

0 
(0) 

Lnwage log gross hourly real wages (1984 West German Marks) 2.681 
(0.435) 

2.681 
(0.435) 

2.685 
(0.432) 

 

Exp years-equivalent worked for money after leaving education 14.373 
(9.782) 

17.661 
(9.407) 

17.931 
(9.331) 

10.541 
(8.765) 

Exp2 experience squared and divided by 10 30.231 
(36.606) 

40.040 
(38.264) 

40.861 
(38.122) 

18.794 
(30.862) 

Time time (year-1900), we also use time dummies for estimation 89.500 
(3.452) 

89.477 
(3.435) 

89.457 
(3.437) 

89.526 
(3.472) 

Age age of the female in years 42.263 
(9.953) 

41.259 
(9.356) 

41.205 
(9.381) 

43.434 
(10.487) 

Age2 Age of the female squared and divided by 10 188.527 
(84.624) 

178.988 
(76.917) 

178.592 
(76.952) 

199.650 
(91.567) 

Ed Education of the female measured as years of schooling 10.847 
(1.958) 

11.057 
(2.129) 

11.103 
(2.128) 

10.602 
(1.705) 

Hhinc Additional real income per month (in thousands) 2.735 
(1.778) 

2.439 
(1.855) 

2.394 
(1.897) 

3.080 
(1.617) 

M Dummy variable with value 1 if female married and value 0 if not married 0.845 
(0.361) 

0.793 
(0.404) 

0.787 
(0.409) 

0.905 
(0.293) 

hworkb Dummy variable with value 1 if husband works and value 0 if does not 
work 

0.862 
(0.345) 

0.877 
(0.328) 

0.875 
(0.331) 

0.846 
(0.361) 

cc1 Number of children up to 3 years old in the household 0.117 
(0.399) 

0.064 
(0.301) 

0.059 
(0.287) 

0.179 
(0.481) 

cc2 Number of children between 3 and 6 years old in the household 0.173 
(0.442) 

0.118 
(0.364) 

0.110 
(0.351) 

0.238 
(0.511) 

cc3 Number of children older than 6 years in the household 0.436 
(0.739) 

0.393 
(0.696) 

0.366 
(0.675) 

0.485 
(0.784) 

aStandard errors in parenthesis. 
bThe reported sample statistics for this variable are conditional on the female being married.  
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TABLE 3:  STATE FREQUENCIES 

 
 Participating Individuals Number of State Changes 
No. of Years Frequency Percent Changes Frequency Percent 
0 241 22.89 0 502 47.67 
1 45  4.27 1 273 25.93 
2 29  2.75 2 131 12.44 
3 40  3.80 3 84  7.98 
4 53  5.03 4 47  4.46 
5 47  4.46 5 10  0.95 
6 37  3.51 6 3  0.28 
7 49  4.65 7 3  0.28 
8 49  4.65    
9 59  5.60    
10 61  5.79    
11 82  7.79    
12 261 24.79    
 1053 100  1053 100 
 
 
 
 
 
 
 
 
 
 
 
 
TABLE 4:  NUMBER OF OBSERVATIONS WORK=1 VERSUS WORK=0 

 
Years Ratios Work=1/0 in participation 

sample 
number of Work=1 dropping 
individuals with participation in one 
year only and observations with 
missing wages 

84 565/488 482 
85 579/474 500 
86 572/481 512 
87 561/492 493 
88 551/502 479 
89 563/490 488 
90 576/477 480 
91 592/461 496 
92 578/475 503 
93 576/477 487 
94 554/499 482 
95 535/518 459 
84-95 6802/5834 5861 
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6. Estimation Results 
 

We concentrate most of our discussion on the effect of labour market experience.  We use 

experience and its square as regressors in the wage equation.  To facilitate the comparison 

of results in the various model specifications, we compute the rate of return to work 

experience  

 

∂ ∂ ξ ζw EXP EXP= +2 ,                (6.1) 

 

where we evaluate the expression in (6.1) at 14 years of work experience (the sample 

average).21 We report estimates in Table 5.  The full set of results is given in Table II.1 in 

the appendix.  Rates of return implied by the different methods and for increasing levels of 

work experience are presented in Table II.2. 

 

Column (1) presents OLS estimates, where we allow for time effects, but no individual 

effects.  The results suggest that, evaluated at 14 years of labour market experience, an 

additional year increases wages by 1.48 percent.  If high ability individuals have a stronger 

labour market attachment than low ability individuals, then this estimate should be upward 

biased.  Furthermore, sample selection should re-enforce this upward bias if unobservables 

determining participation are positively correlated with unobservables in the wage equation 

(either through the α i  or the ε it  terms). 

 

In columns (2) and (3), we present estimators that difference out the fixed effects.  Column 

(2) displays standard fixed-effects (within) estimates (FE), and column (3) difference 

estimates (DE), where all pair differences within time periods per individual are used.22  

Both estimators allow for individual effects correlated with the explanatory variables.  

Thus, the upward bias induced by individual fixed effects and any sample selection bias 

acting through α i  should be eliminated. Interestingly,  

                                                           
21 Standard errors of this term are easily derived from the variances and covariances of the parameter estimates 
for  ξ and ζ.    
22 We estimate pooled OLS on 66 pairs corresponding to 25021 observations. 
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TABLE 5:  Marginal Experience Effects, WAGE EQUATIONa 

 

 (1) 
OLS 

(2) 
FE 

(3) 
DE 
(OLS) 

(4) 
DE 
(IV) 

(5) 
DE 
(GMM) 

(6)b 
W 
(MD) 

(7)c 
W 
(MD) ( )Exp�  

∂ ∂w EXP  
(14 years) 

0.0148* 
(0.0007) 

0.0223* 
(0.0056) 

0.0200* 
(0.0039) 

0.0340* 
(0.0054) 

0.0305* 
(0.0014) 

0.0148* 
(0.0077) 

0.0182* 
(0.0038) 

Wald Test 
 
(Selection) 

     χ12
2 = 

17.22 
(0.1412) 

2
12χ = 17.44 

(0.1336) 

Wald Test 
 
(Fixed 
Effects) 

     χ 2
2 = 6.03 

(0.049) 
χ 2

2 = 5.66 
(0.062) 

 
Hausman 
 
(Exo-geneity) 

   χ 14
2 = 92.84 

(0.000) 
χ 14

2 = 55.35 
(0.000) 

 χ 29
2 = 46.39 

(0.021) 

 
 
 
 (8)d 

K 
(9)d 
K 
(IV) 

(10)e 
RB 

(11)e 
RB 
(IV) 

(12)e 
RB 
(GMM) 

  

∂ ∂w EXP  
(14 years) 

0.0409* 
(0.0105) 

0.0116 
(0.0637) 

0.0129* 
(0.0054) 

0.0122* 
(0.0062) 

0.0097* 
(0.0017) 

  

Hausman 
 
(Selection) 

χ 2
2 = 

6.6332 
(0.036) 

      

Wald Test 
 
(Selection) 

  χ 132
2 = 

292.60 
(0.000) 

χ 132
2 = 

311.04 
(0.000) 

χ 132
2  

= 3859.11 
(0.000) 

  

Wald-test 
 
(Exo-geneity) 
 

   2
145χ = 

433.15 
(0.000) 

2
145χ = 

1241.19 
(0.000) 

  

a The numbers in parentheses below the coefficient estimates are standard errors. The numbers in parentheses below 
the test statistics are p-values. 
b Standard errors corrected for the first stage maximum likelihood probit estimates. 
c Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted regressors. 
d Standard errors corrected for the prior in the time dummies coefficients. 
e Standard errors corrected for the first stage maximum likelihood bivariate probit estimates. 
* Statistically different from zero at the five-percent significance level. 
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our estimates increase relative to the simple OLS estimations – point estimates for the fixed 

effect estimator and the difference estimator are 0.022 and 0.020 respectively. 

 

An explanation for these increases in coefficients is measurement error.  As we have shown 

above, differencing in a quadratic specification eliminates the effect of a time constant 

measurement error.  If the downward bias of the experience coefficient in a level equation, 

induced by measurement error, is larger than the upward bias due to individual fixed 

effects, then the coefficient estimates of difference estimators should increase, compared to 

level estimation. 

 

If past wage shocks affect current experience levels, then experience is not strictly 

exogenous in the wage level equation.  Furthermore, it is endogenous in the difference 

equation.  A common solution to this problem in standard difference estimators is to use 

instrumental variable techniques.  Column (4) and (5) present results when applying IV and 

GMM techniques to our particular problem.  These estimators are obtained by pooled IV 

and GMM on 66 pairs of combinations of time periods which we can form with a panel of 

12 years23.  As instruments, we use all leads and lags of the variables in the sample 

selection equation.  A Hausman-type test comparing the difference IV and GMM estimators 

with the differenced OLS estimator leads to rejecting exogeneity for the experience 

variables.  

 

The estimates we obtain for the rate of return to work experience are slightly higher than 

those obtained with the difference estimators, with point estimates of 0.034 and 0.030 in the 

IV and GMM estimators respectively.  This is consistent with experience being 

predetermined.  If past positive shocks to wages increase the probability of past 

participation, then the coefficient on the experience variable should be downward biased in 

a simple difference equation under OLS estimation.  

 

The (IV) difference estimates are consistent under the assumption that selection only works 

through the fixed effects.  If however there is sample selection acting through ε, our 

instruments are invalid.  In this case, the error term will incorporate the extra element: 

                                                           
23 The IV estimates are used as the first step estimates to obtain the GMM estimates. 
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( )E d dit is it isε ε− = = ≠1 0 .               (6.2) 

 

Clearly, a proper instrument set should be uncorrelated with the truncated conditional 

expectation in (6.2).  In most applications, this is unlikely to be the case since the available 

instruments determine also the selection into the observed regime.  For instance, in our 

case, every variable that affects the participation decision in previous periods should also 

affect the level of experience in the current period.  In this case, 

( ) ( )[ ]{ }E E d d zit is it is it is iε ε ε ε− + − = = ≠1 0 .  Accordingly, a time variant selection 

process may invalidate instruments in a difference equation, if these instruments are 

correlated with the selection process. 

 

We now turn to estimation results which take account of a selection process that operates 

both through ε and α , and we demonstrate how the problems of measurement error and 

pre-determinedness can be solved within this framework. 

 

6.1 Wooldridge’s estimator 

 

Estimation results for Wooldridge’s (1995) estimator are presented in columns (6) and (7).  

We have specified the conditional mean of the individual effects, following Mundlack 

(1978), as a linear projection on the within individual means of experience and its square.  

Results in column (6) are based on the assumption that experience is (strictly) exogenous.  

Results in column (7) allow for endogeneity by using predictions for the experience terms.  

This procedure takes care of both measurement error, and non-strict exogeneity. 

 

Estimators in columns (6)-(7) are implemented as follows.  After obtaining the selection 

terms by estimating probits for each wave, the wage equation in (2.5) is estimated for each 

time period.  From these estimations, we obtain the unrestricted coefficients for the constant 

and education, 2 coefficients for the mean of experience and its square, the 2 coefficients of 

interest for experience and its square, and the coefficient for the selection correction term in 

a given period.  In a second step, we use minimum distance to impose the cross-equation 
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restrictions.  To obtain the predictions for the experience variable (results in column (7)), 

we predict the vector ( )Exp Exp Exp Expi i i i1 12 1
2

12
2,..., , ,...,  using the 1053 individuals in the 

sample selection equation, as well as all the leads and lags of the explanatory variables in 

that equation.  The components of this vector of predictions are used to obtain the average 

predicted experience and its average predicted square. 

 

The coefficient estimate for Wooldridge’s (1995) estimator is 0.0148 (column 6), which is 

exactly equal to the OLS result.  It is smaller than the fixed effects estimators in columns 

(2) and (3), which is to be expected if participation is selective and/or there is a 

measurement error problem in the level equation (which leads to a downward bias).  To test 

for sample selection, we have performed a Wald test on the significance of the selection 

effects, where Ho: = 0 .  This test can be interpreted as a test of selection bias.  However, 

the assumptions under the null hypothesis are stronger than what is required for simple 

fixed effects estimators, since W3 is maintained under Ho 24.  The value for the test statistic 

is χ12
2 = 17.22 , with a p-value of 0.1412.  Thus, the null hypothesis can not be rejected.  

We also performed a Wald test for the joint significance of the ψ  coefficients, where 

Ho: ψ = 0 .  The resulting value for the test statistic is larger than the critical value of the 

χ 2
2 , at the five-percent significance level, rejecting the null hypothesis, and indicating the 

presence of correlated fixed effects. 

 

In column (7) we use predictions for the experience variables.  This leads to an increase of 

the experience coefficient (from 0.014 in column (6) to 0.018 in column (7)).  This 

indicates that there is endogeneity, induced by non-strict exogeneity of the experience 

variable, and/or measurement error.  Hausman-type tests, comparing (6) and (7), lead to 

rejecting exogeneity both after controlling for correlated heterogeneity and sample 

selection.  We perform a Wald tests for the estimates in column (7), testing the null 

hypotheses that Ho: = 0  and Ho: ψ = 0 .  Again, we cannot reject the null hypothesis 

Ho: = 0 , but we reject the null hypothesis Ho: ψ = 0  at a 6.21 percent significance 

level. 
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6.2 Kyriazidou’s estimator 

 

To implement this estimator, we estimate in a first step a conditional logit fixed effects 

model (see Chamberlain, 1980).  The results are displayed in column (4) of Table III.1 in 

Appendix III.  These first step estimates are then used to calculate weights for the pairs of 

observations in the difference estimator.  To construct the weights we use a normal density 

function for the kernel.  We follow the plug-in procedure described by Horowitz (1992) to 

obtain the optimal kernel bandwidth.25  Finally, we perform minimum distance to obtain the 

parameter estimates.  The minimum distance estimator is the weighted average of the 

estimators for each pair, with weights given by the inverse of the corresponding covariance 

matrix estimate26. 

 

As discussed above, the estimator relies on a conditional exchangeability assumption that 

restricts the error terms to be homoscedastic over time.  This assumption seems quite 

restrictive, in particular when estimating wage equations.  There is strong evidence that the 

variance of the wage distribution has increased considerably over the last two decades.  The 

assumption that the error terms in the selection equation are stationary over time is testable.  

Table III.1 displays results of the selection equation under the assumption of equal 

variances over time (column (2)), and estimates that relax this assumption (column (3)). A 

χ 2  test can be used to test for the joint conditional exchangeability assumption.  The 

increment in the distance statistic27 is 146.8201 with a p-value of 0.0002, which clearly 

leads to rejecting the null hypothesis (the test statistic is χ93
2  distributed)28.  Therefore, the 

joint conditional exchangeability assumption is rejected for our application. 

                                                                                                                                                                                 
24 See Wooldridge (1995) for details on this point. 
25With this procedure, some initial value for the bandwidth is chosen. Then the parameter estimates, the 
estimate of the asymptotic bias and the estimate of the covariance matrix are computed.  These estimates are 
used to compute the mean square error minimising bandwidths.  We do a search among initial bandwidths, 
stopping the process when the chosen initial value of the bandwidth is close enough to the optimal one.  As we 
estimate 66 panel wave pairs t s≠ , 66 optimal bandwidth are estimated.   
26 In principle, to estimate the optimal weighting matrix for the minimum distance will require estimates for 
the covariance matrix of the estimators for the different pairs of time periods.  However, Charlier, Melenberg 
and Van Soest (1997) proof that these covariances converge to zero due to the fact that the bandwidth tends to 
zero as the sample size increases.  As a consequence the optimal weighting matrix simplifies to a block 
diagonal matrix where each block corresponds to the inverse of the covariance matrix for a given panel wave 
pair. 
27 Testing for additional restrictions in minimum distance estimators can be found in Chamberlain (1984). 
28 The degree of freedom is 104 (the number of parameter estimates in the minimum distance for column (3)) 
minus 11 (the number of additional restrictions imposed in the minimum distance estimator of column (2)). 
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When applying this method to our data, we face a further problem:  Asymptotically, the 

method uses only observations for which the index from the sample selection rule is the 

same in the two time periods.  In our application, there are strong time effects in the 

selection equation.  Furthermore, changes in the variable experience are strongly related to 

changes in our identifying instruments, like, for instance, the number of children.  Any 

systematic increase in experience between two periods can not be distinguished from the 

time trend; any non-systematic change coincides with a change of variables in the selection 

equation.  By the nature of the estimator, however, the latter pairs of observations obtain a 

small kernel weight, and they therefore contribute very little to identifying the experience 

effects.  Hence, without further assumptions, we can not identify the experience effects.  

Similar identification problems are likely to occur in any application where unsystematic 

changes in the variable of interest coincide with differences in the index function used for 

constructing the weights.  For our particular application, a possible solution to this problem 

is to use information on aggregate wage growth from other sources.  To illustrate the 

estimator, we use here time effects obtained from simple difference estimators.  

 

Estimation results are displayed in columns (8) and (9).  In both specifications, we use time 

effects obtained from the difference estimator in column (3).  Column (8) displays results of 

simple weighted OLS estimation of equation (6).  The IV estimates presented in column (9) 

are obtained by following the procedure described for Kyriazidou´s (1997) method in 

section 4.1 above. 

 

As we already pointed out, given the non-parametric nature of the sample selection terms in 

this method, identification of the IV estimator requires at least one time-varying variable in 

the selection equation, which is to be excluded not only from the main equation, but also 

from the instrument set for experience.  Such exclusions are difficult to justify in most 

circumstances.  In our particular case, the experience variable measures the total labour 

market experience of the individual in the year before the interview.  Since it is the 

weighted sum of past participation decisions, it should be explained by variables that 

influence past participation, like lags of the husband’s income, and lagged children 

variables.  Participation in the current period is affected by current variables (like 
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children(t), hhinc(t), etc.).  This should identify the model.  We need one exclusion 

restriction, and we exclude current other household income hhinc(t) from the instrument set 

for experience. 

 

The estimator in (8) does not correct for possible endogeneity of the experience variable.  

The coefficient for the experience effect indicates that a year of labour market experience 

increases wages by 4.1 percent.  This estimate is very large.  The estimator in (9) corrects 

for non-strict exogeneity of the experience variable in the level equation.  Instrumenting 

reduces the experience effect to 1.2 percent, but the effect is not statistically significant 

(which may be due to the smaller effective sample size used for this estimator).  Because of 

the problems discussed above, we do not wish to overemphasise these estimates.  Also, the 

estimates are obviously sensitive to the choice of pre-estimated time effects. 

 

A Hausman-type test comparing the parameter estimates in column (8) with the difference 

estimator in column (3) indicates that the null hypothesis of no selectivity bias is rejected. 

 

6.3 Rochina-Barrachina’s estimator 

 

Columns (10)–(12) present estimates, using the method by Rochina-Barrachina (1999).  

Column (10) displays results of simple OLS estimation of equation (2.7).  IV-GMM 

estimates are presented in columns (11) and (12).  For estimation, we use each combination 

of panel waves (t,s), resulting in a total of 66 pairs.  To combine these estimates, we use 

minimum distance.29  We obtain coefficients for 11 time dummies, the coefficients on 

experience and its square, and estimates of 66*2=132 coefficients for the correction terms 

for all the pairs.30  The standard errors we present in table 5 are corrected for the first step 

bivariate probit estimates.  The variables used as instruments are the leads and lags of the 

variables included in the sample selection equation, and the corresponding two sample 

selection terms of each pair of time periods. 

 

                                                           
29  The optimal weighting matrix is obtained from an estimate for the covariance matrix of the estimators for 
the different time periods. 
30 The estimates can be obtained upon request. 
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The first step estimator of the parameters γ γ ρt s ts, , , which are used for constructing the 

correction terms, are obtained by estimating 66 bivariate probits.  The parameters we 

estimate in each bivariate probit are the reduced form parameters of the corresponding 

indices of the selection rules for the two time periods.  We also get an estimate of the 

correlation coefficient between the errors in the two time periods.  The mean value for ρ ts  

is 0.7862 (se=0.1299) with a minimum at 0.4845 and a maximum at 0.9658.  Consequently, 

we reject on average Ho: ρ ts = 0 .  Correlation appears because of the ci  component in the 

error term and/or because of serially correlated idiosyncratic errors. 

 

We test whether the 66*2 correction terms are jointly significant, using Wald tests.  The 

resulting values for the test statistics for the estimators in Columns (10) to (12) are clearly 

larger than the critical values of the χ 132
2  at any conventional significance level.  Hausman-

type tests comparing the IV and the GMM estimators with the OLS estimator in Column 

(10) lead to rejecting exogeneity both after controlling for correlated heterogeneity and 

sample selection.  

 

The estimated parameters are slightly lower than the OLS estimates, and do not differ very 

much between specifications.  They indicate that, evaluated at 14 years of labour market 

experience, an additional year increases wages by about 1 percentage point.  Compared to 

Wooldridge’s (1995) estimator, estimates are slightly smaller, which may be due to 

different parametric assumptions imposed by the two estimators.  Furthermore, estimates 

are remarkably similar across specifications.  One reason for this similarity is that with 

Rochina-Barrachina’s estimator, instrumenting corrects only for the non-strict exogeneity 

problem.  With Wooldridge’s (1995) estimator, the use of predicted regressors corrects also 

for the measurement error bias. 

 

Interesting is also a comparison of wage growth due to aggregate time effects.  In the last 

row of Table II.1, we display average wage growth for the 12 years period due to common 

time effects.  The numbers indicate that the different methods result in different numbers.  

For instance, Rochina-Barrachina’s estimator in column (10) assigns about 8 percent more 

wage growth over the 12 years period to time effects than the simple OLS estimator 

(column 3).  An explanation for these differences is that Rochina-Barrachina’s (1999) 
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method controls for time-varying sample selection (as does Wooldridge’s estimator).  As 

pointed out by Moffitt (1984), wages may trend not only because of aggregate wage growth 

(proxied by the time dummies), but also because of changes in the sample selection over 

time.  If sample selection decreases over time, and if we do not control for selection, the 

time dummies will pick up this trend, leading to decreasing time effects in standard fixed 

effects and difference estimators, like the ones displayed in columns (2) to (5).  This leads 

to downward biased time dummies.  With Rochina-Barrachina’s (1999) estimator, the time 

dummies will presumably pick up just the secular productivity growth, since it controls for 

the decline in sample selection over time. 

 

With this method, the sample selection term is given by a parameterisation of the 

conditional mean ( )E z d dit is i it isε ε− = =~ , 1 , s t< .  We obtain for most individuals 

negative predictions for these expectations.  To investigate whether sample selection does 

indeed decrease over time, we write the estimated values of these conditional means as a 

function of 11 time dummies in differences (after controlling for the increments in 

experience and its square).  Using minimum distance estimation, we obtain negative and 

significant coefficients for the time dummies, which increase in absolute value over time.  

This indicates that sample selection does in fact decline over time.31 

 

                                                           
31 This result is in line with the estimates obtained for the participation equation in Appendix III.  Here, the 
estimates for the time dummies show that female labour force participation increases over the length of the 
panel.  Hence, as participation probabilities increase, sample selection may be reduced. 
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7. Conclusions 
 

In many empirical applications, the equation of interest is defined for a non-random sample 

of the overall population.  Furthermore, at the same time the outcome equation contains an 

unobserved individual specific component which is correlated with the model regressors.  

In this paper we discuss three estimators which may be applied if both problems occur 

simultaneously:  The estimators of Wooldridge (1995), Kyriazidou (1997), and Rochina-

Barrachina (1999).  We investigate and compare the conditions under which they produce 

consistent estimates.  We show how these estimators can be extended to take account of 

non-strict exogeneity and/or time constant non-linear errors in variables.  We illustrate that, 

if regressors in the main equation suffer from these problems, the methods of Kyriazidou 

(1997) and Rochina-Barrachina (1999) can be straightforwardly extended to using IV or 

GMM type estimators.  For Wooldridge’s (1995) estimator, one solution of the problem is 

to use predicted regressors. 

 

Not many applications exist for sample selection estimators in panel data models.  To learn 

about the performance of the methods in a practical application, we apply the estimators 

and their extensions to a typical problem in labour economics:  The estimation of wage 

equations for female workers.  The parameter we seek to identify is the effect of actual 

labour market experience on wages.  The problems that arise in this application are non-

random selection, and unobserved individual specific heterogeneity which is correlated with 

the regressors.  In addition, actual experience is predetermined, and the experience measure 

is likely to suffer from measurement error. 

 

A flexible and attractive estimator is that by Kyriazidou (1997).  It turns out however that, 

for our particular application, this estimator is difficult to apply.  The estimator is very 

flexible in that it avoids specifying the sample selection terms, and it requires no parametric 

assumptions about the unobservables in the model.  But it imposes a conditional 

exchangeability assumption, which is rejected by the data in our particular application.  

Furthermore, in the case where any non-systematic variation in the variable of interest 

(experience in our case) coincides with changes in the selection index, this estimator runs 

into identification problems (between time effects and experience in our case), that can only 
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be solved by using additional information.  We use pre-estimated time dummies from 

simple difference estimators.  To implement the IV estimator (which is producing 

consistent estimates if experience is pre-determined and/or contemporaneously 

endogenous), we need a further identification assumption.  The estimate we obtain for the 

effect of labour market experience for the simple Kyriazidou estimator is quite large:  

Evaluated at 14 years of labour market experience, an additional year increases wages by 

about 4 percentage points.  The estimates are sensitive to the pre-estimated time effects.  

The IV estimates are smaller, but not precisely estimated. 

 

The results we obtain using Wooldridge’s and Rochina-Barrachina’s estimators indicate 

that there are correlated fixed effects, and non-random sample selection.  With 

Wooldridge’s (1995) estimator, the null hypothesis of no correlated fixed effects is rejected 

for all specifications.  Conditional on fixed effects, the null hypothesis of no sample 

selection can not be rejected with Wooldridge’s (1995) estimator, but it is clearly rejected 

with Rochina-Barrachina’s (1999) estimator.32  Using Wooldgridge’s (1995) estimator, we 

reject specifications, which do not allow for predetermined regressors (and 

contemporaneous endogeneity).  Rochina-Barrachina’s (1999) method rejects strict 

exogeneity of the experience variable, conditional on taking care of the measurement error 

problem by time differencing.  Accordingly, the use of sample selection models which take 

care of correlated fixed effects seems to be justified.  Furthermore, the extensions we 

suggest in this paper seem to be important for our particular application. 

 

The most general estimator using Wooldridge’s (1995) method implies an increase in 

wages by 1.8 percent for one year of labour market experience, evaluated at 14 years of 

experience.  According to this estimator, the return to experience decreases from 3.1 

percent for the first year to 2.2 percent after 10 years to 1.2 percent after 20 years (see Table 

II.2).  Estimates of Rochina-Barrachina’s (1999) most general estimator (the GMM) are 

slightly lower.  They range from 2.2 percent after the first year to 1.4 percent after 10 years 

to 0.4 percent after 20 years.  Simple OLS estimates are intermediate.  They range from 3.0 

percent after 1 year to 1.9 percent after 10 years to 0.8 percent after 20 years of labour 

market experience. 
                                                           
32 For Wooldridge’s estimator, however, the assumptions under the null hypothesis are stronger than what is 
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Our results also indicate that estimates of aggregate wage growth are sensitive to the trend 

in sample selection.  If sample selection decreases over time, simple difference estimators 

lead to downward biased time effects.  In our case, wage growth over the 12 years period 

due to the aggregate time trend is 14 percent for Wooldridge’s most general estimator, and 

16 percent for Rochina-Barrachina’s most general estimator. In contrast, a simple difference 

estimator assigns only 9 percent of wage growth to aggregate time effects over the 12 years 

period. 

                                                                                                                                                                                 
required for simple fixed effects. 
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Appendix I:  Econometric Model of Wages 
 

Our econometric model of wages may be motivated as follows.  Consider a model where 

human capital is accumulated in a learning by doing way.  The accumulation equation for 

human capital (measured in monetary units) is then given by: 

 

( ) ( )w w r d r d r d r d r d r dit it it it it it is is i i
ss

t

is is i i
ss

t
* * .= + + + −� �
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ξ ζτ τ
τ

τ τ
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         (I.1) 

 

Here dit  is the participation-status variable and ris  is the proportion of time individual i 

allocates in period s to the labour market.  Thus, ( )r dit it− −1 1  is equivalent to the increase in 

human capital in a given period.  Human capital depreciates while working, which is 

reflected by the term in brackets. There is no depreciation in periods out of work.  The 

actual market wage is given by w wit it i it= + +* α ε , where iα  is an individual effect and itε  

is some idiosyncratic shock.  By recursion, we obtain the following wage equation: 
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−
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1
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1 2
* ,ξ ζ α ε              (I.2) 

 

where the wage in period t depends on the initial wage, wi1
* , and cumulative work 

experience and its square. 

 

We assume that the entry wage, wi1
* , is solely determined by the individual’s unobserved 

ability, and the level of schooling: 

 

w Si S i1
* * ,= +β α                  (I.3) 

 

where S  is a measure for years of education, and α i
*  is an error term specific to the 

individual (e.g. “ability”).  Combining (I.2) and (I.3) gives: 
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w S r d r dit S is is
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,              (I.4) 

where ( )α α αi i i≡ + * .  The specification in (5.1) is obtained by using 
−

=

1

1

t

s
isis dr = itExp  and 

by adding to (I.4) time dummies, which reflect aggregate wage growth.   
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Appendix II:  Tables 

TABLE II.1:  ESTIMATES FOR THE WAGE EQUATIONa 

Variable (1) 
OLS 

(2) 
FE 

(3) 
DE 
(OLS) 

(4) 
DE 
(IV) 

(5) 
DE 
(GMM) 

(6)b 
W 
(MD) 

(7)c 
W 
(MD) ( )Exp�  

(8)d 
K 

(9)d 
K 
(IV) 

(10)e 
RB 

(11)e 
RB 
(IV) 

(12)e 
RB 
(GMM) 

CST 0.9990* 
(0.0310) 

1.1111* 
(0.0724) 

1.0162* 
(0.0804) 

D85 0.0047 
(0.0204) 

0.0056 
(0.0139) 

0.0052 
(0.0068) 

-0.0062 
(0.0074) 

-0.0041 
(0.0029) 

0.0247 
(0.0250) 

0.0482* 
(0.0236) 

0.0052 
(0.0068) 

0.0052 
(0.0068) 

0.0275 
(0.0203) 

0.0249 
(0.0200) 

-0.0088 
(0.0087) 

D86 0.0450* 
(0.0206) 

0.0308 
(0.0163) 

0.0291* 
(0.0095) 

0.0054 
(0.0115) 

0.0168* 
(0.0038) 

0.0466 
(0.0295) 

0.0556* 
(0.0264) 

0.0291* 
(0.0095) 

0.0291* 
(0.0095) 

0.0711* 
(0.0223) 

0.0536* 
(0.0226) 

0.0327* 
(0.0080) 

D87 0.0773* 
(0.0205) 

0.0588* 
(0.0199) 

0.0597* 
(0.0125) 

0.0238 
(0.0158) 

0.0332* 
(0.0046) 

0.0876* 
(0.0332) 

0.0920* 
(0.0257) 

0.0597* 
(0.0125) 

0.0597* 
(0.0125) 

0.1001* 
(0.0252) 

0.0960* 
(0.0267) 

0.0835* 
(0.0108) 

D88 0.0826* 
(0.0213) 

0.0492* 
(0.0240) 

0.0602* 
(0.0159) 

0.0131 
(0.0205) 

0.0317* 
(0.0056) 

0.1048* 
(0.0409) 

0.1212* 
(0.0350) 

0.0602* 
(0.0159) 

0.0602* 
(0.0159) 

0.1296* 
(0.0303) 

0.1253* 
(0.0326) 

0.0916* 
(0.0121) 

D89 0.1051* 
(0.0205) 

0.0614* 
(0.0284) 

0.0715* 
(0.0194) 

0.0131 
(0.0254) 

0.0341* 
(0.0066) 

0.1128* 
(0.0468) 

0.1142* 
(0.0347) 

0.0715* 
(0.0194) 

0.0715* 
(0.0194) 

0.1635* 
(0.0358) 

0.1437* 
(0.0398) 

0.1165* 
(0.0137) 

D90 0.1399* 
(0.0209) 

0.0941* 
(0.0330) 

0.1048* 
(0.0230) 

0.0355 
(0.0302) 

0.0568* 
(0.0077) 

0.1394* 
(0.0543) 

0.1466* 
(0.0402) 

0.1048* 
(0.0230) 

0.1048* 
(0.0230) 

0.2043* 
(0.0393) 

0.1863* 
(0.0447) 

0.1679* 
(0.0149) 

D91 0.1453* 
(0.0213) 

0.1142* 
(0.0378) 

0.1254* 
(0.0268) 

0.0454 
(0.0352) 

0.0622* 
(0.0089) 

0.1452* 
(0.0582) 

0.1421* 
(0.0378) 

0.1254* 
(0.0268) 

0.1254* 
(0.0268) 

0.2126* 
(0.0449) 

0.1872* 
(0.0505) 

0.1843* 
(0.0164) 

D92 0.1684* 
(0.0213) 

0.1274* 
(0.0426) 

0.1434* 
(0.0304) 

0.0523 
(0.0403) 

0.0766* 
(0.0104) 

0.1909* 
(0.0660) 

0.1605* 
(0.0403) 

0.1434* 
(0.0304) 

0.1434* 
(0.0304) 

0.2342* 
(0.0508) 

0.2227* 
(0.0568) 

0.1987* 
(0.0174) 

D93 0.1683* 
(0.0221) 

0.1258* 
(0.0475) 

0.1439* 
(0.0342) 

0.0422 
(0.0453) 

0.0706* 
(0.0109) 

0.1919* 
(0.0719) 

0.1991* 
(0.0430) 

0.1439* 
(0.0342) 

0.1439* 
(0.0342) 

0.2495* 
(0.0556) 

0.2308* 
(0.0626) 

0.2688* 
(0.0195) 

D94 0.1724* 
(0.0215) 

0.1276* 
(0.0525) 

0.1461* 
(0.0380) 

0.0335 
(0.0502) 

0.0628* 
(0.0112) 

0.2227* 
(0.0790) 

0.2073* 
(0.0455) 

0.1461* 
(0.0380) 

0.1461* 
(0.0380) 

0.2474* 
(0.0602) 

0.2361* 
(0.0670) 

0.2769* 
(0.0218) 

D95 0.2159* 
(0.0225) 

0.1398* 
(0.0572) 

0.1594* 
(0.0415) 

0.0367 
(0.0549) 

0.0668* 
(0.0131) 

0.2591* 
(0.0856) 

0.2519* 
(0.0512) 

0.1594* 
(0.0415) 

0.1594* 
(0.0415) 

0.2736* 
(0.0659) 

0.2795* 
(0.0748) 

0.3556* 
(0.0238) 

ED 0.1133* 
(0.0020) 

0.1065* 
(0.0042) 

0.1086* 
(0.0043) 

EXP 0.0309* 
(0.0019) 

0.0349* 
(0.0062) 

0.0324* 
(0.0042) 

0.0522* 
(0.0058) 

0.0473* 
(0.0017) 

0.0230* 
(0.0090) 

0.0320* 
(0.0060) 

0.0525* 
(0.0222) 

0.0157 
(0.1935) 

0.0244* 
(0.0060) 

0.0248* 
(0.0071) 

0.0229* 
(0.0021) 

EXP2 -0.0058* 
(0.0005) 

-0.0045* 
(0.0005) 

-0.0044* 
(0.0002) 

-0.0065* 
(0.0003) 

-0.0060* 
(0.0001) 

-0.0029* 
(0.0009) 

-0.0049* 
(0.0012) 

-0.0041 
(0.0050) 

-0.0014 
(0.0470) 

-0.0041* 
(0.0005) 

-0.0045* 
(0.0006) 

-0.0047* 
(0.0002) 

∂ ∂w EXP
(14 years) 

0.0148* 
(0.0007) 

0.0223* 
(0.0056) 

0.0200* 
(0.0039) 

0.0340* 
(0.0054) 

0.0305* 
(0.0014) 

0.0148* 
(0.0077) 

0.0182* 
(0.0038) 

0.0409* 
(0.0105) 

0.0116 
(0.0637) 

0.0129* 
(0.0054) 

0.0122* 
(0.0062) 

0.0097* 
(0.0017) 

Av. ret. T. 
dummies 

0.1204* 
(0.0150) 

0.0850* 
(0.0336) 

0.0953* 
(0.0228) 

0.0268 
(0.0301) 

0.0461* 
(0.0075) 

0.1387* 
(0.0492) 

0.1399* 
(0.0306) 

0.0953* 
(0.0228) 

0.0953* 
(0.0228) 

0.1739* 
(0.0380) 

0.1624* 
(0.0428) 

0.1607* 
(0.0137) 

 a The numbers in parentheses are standard errors. 
 b Standard errors corrected for the first stage maximum likelihood probit estimates. 
 c Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted regressors. 
 d Standard errors corrected for the prior in the time dummies coefficients. 
 e Standard errors corrected for the first stage maximum likelihood bivariate probit estimates. 
 *Statistically different from zero at the five-percent significance level.
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TABLE II.2:  ESTIMATED RATES OF RETURN FOR WORK EXPERIENCE (∂ ∂w EXP )a 

 
Years of 
work 
experience 

(1) 
OLS 

(2) 
FE 

(3) 
DE 
(OLS) 

(4) 
DE 
(IV) 

(5) 
DE 
(GMM) 

(6)b 
W 
(MD) 

(7)c 
W 
(MD)
( )Exp�  

(8)d 
K 

(9)d 
K 
(IV) 

(10)e 
RB 

(11)e 
RB 
(IV) 

(12)e 
RB 
(GMM) 

1 0.0298* 
(0.0018) 

0.0340* 
(0.0061) 

0.0315* 
(0.0041) 

0.0509* 
(0.0057) 

0.0461* 
(0.0017) 

0.0224* 
(0.0089) 

0.0310* 
(0.0058) 

0.0516* 
(0.0213) 

0.0154 
(0.1842) 

0.0236* 
(0.0059) 

0.0239* 
(0.0070) 

0.0220* 
(0.0021) 

5 0.0252* 
(0.0015) 

0.0304* 
(0.0059) 

0.0280* 
(0.0041) 

0.0457* 
(0.0056) 

0.0413* 
(0.0016) 

0.0201* 
(0.0085) 

0.0271* 
(0.0051) 

0.0483* 
(0.0177) 

0.0143 
(0.1468) 

0.0203* 
(0.0057) 

0.0203* 
(0.0067) 

0.0182* 
(0.0019) 

10 0.0194* 
(0.0010) 

0.0259* 
(0.0057) 

0.0236* 
(0.0040) 

0.0392* 
(0.0055) 

0.0353* 
(0.0015) 

0.0172* 
(0.0080) 

0.0222* 
(0.0043) 

0.0442* 
(0.0134) 

0.0128 
(0.1003) 

0.0162* 
(0.0055) 

0.0158* 
(0.0064) 

0.0135* 
(0.0018) 

15 0.0137* 
(0.0006) 

0.0214* 
(0.0056) 

0.0192* 
(0.0039) 

0.0327* 
(0.0054) 

0.0293* 
(0.0014) 

0.0143* 
(0.0076) 

0.0172* 
(0.0038) 

0.0400* 
(0.0099) 

0.0113 
(0.0547) 

0.0121* 
(0.0053) 

0.0113 
(0.0062) 

0.0088* 
(0.0017) 

20 0.0079* 
(0.0004) 

0.0170* 
(0.0055) 

0.0148* 
(0.0039) 

0.0262* 
(0.0053) 

0.0233* 
(0.0013) 

0.0114 
(0.0074) 

0.0123* 
(0.0035) 

0.0359* 
(0.0080) 

0.0099 
(0.0184) 

0.0080 
(0.0052) 

0.0068 
(0.0060) 

0.0041* 
(0.0016) 

 a The numbers in parentheses are standard errors. 
 b Standard errors corrected for the first stage maximum likelihood probit estimates. 
 c Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted regressors. 
 d Standard errors corrected for the prior in the time dummies coefficients. 
 e Standard errors corrected for the first stage maximum likelihood bivariate probit estimates. 
* Statistically different from zero at the five-percent significance level.   
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Appendix III:  The Participation Equation 
 

Results for the participation equation for a selection of estimators are given in Table III.1.  

The first model is a pooled probit, not taking account of a possible correlation between the 

explanatory variables and the individual effects.  Columns (2) and (3) report results from a 

specification where individual effects are written as a linear projection on leads and lags of 

time-varying regressors (see Chamberlain (1984)).33  The estimation procedure consists of 

two steps.  In the first step cross-equation restrictions are ignored, and the tγ  are estimated 

by probit for each time period separately.  The second step is a minimum distance step.  The 

results in column (2) impose the restriction that σσ =t  for 95,...,84=t .  In column (3), 

84σ  has been normalised to 1, and the remaining variances are estimated. 

 

Finally, in column (4) we present results from a fixed effect logit model, as proposed by 

Chamberlain (1980).  This is the estimator used for the weights in Kyriazidou´s (1997) 

method.  Since the scaling is different, only the sign (and the ratios) of the coefficients can 

be compared with the other 3 models. 

 

The estimates for the time dummies show that female labour force participation increases 

over the length of the panel.  Participation probabilities increase until the age of 30-35 

(depending on the specification), and decrease thereafter.  An increase in other family 

income (hhinc) has a negative effect on the participation probability, indicating that  leisure 

is a normal good.  The dummy for the husband working has a positive effect on the 

participation probability, but is insignificant in two out of the four specifications.  The 

number of children in different age groups has a negative effect, where the effect decreases 

with the age group of the children. 

 
                                                           
33The individual effect is written as η δ δi i iT T iz z c= + + +1 1 ... , with ic ∼ ( )2,0 cN σ  and independent of 

iz .  The ( )́,...,1 iTii uuu =  are assumed to be i.i.d. ( )Σ,0N .  Define ( ) 2122~
ctt σσσ += , were 2~

tσ  is the 
tht  diagonal element of Σ .  Then 

[ ] ( ) [ ]P d z
z z z

z zit i
it i iT T

t
i t iT tT= =

− + +
� � = + +1 1 1

1 1Φ Φ
γ δ δ

σ
γ γ

...
...  where 
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The specification in column 1 does not control for correlated individual specific effects, 

while specifications in the other columns do.  When we compare the first two columns, we 

observe that the effect of the children variables, and other household income decreases 

quite substantially, while the effect of education increases.  This is consistent with the 

notion that unobserved ability components which increase the woman’s competitiveness in 

the labour market (and therefore her participation propensity) are negatively correlated with 

the number of children, but positively correlated with educational achievements.  They also 

seem to be negatively correlated with other household income. 

 

The results in column (3) allow for different variances over time.  The coefficient of the 

constant term is similar in columns (1) and (2) but much smaller (in absolute value) in 

column (3).  To test for the 11 additional restrictions imposed on column (2), relative to 

column (3), we perform a 2χ  test (see Chamberlain (1984) to test for additional restrictions 

in minimum distance estimators).  The increment in the distance statistic is 146.8201 with a 

p-value = 0.0002, which clearly leads to rejecting the null hypothesis (the test statistic is 

χ93
2  distributed)34.  We conclude that there are different variances over time for the error 

term in the selection equation. 

                                                                                                                                                                                 

( )γ σ δ δ γ δ δ δt t t t t T= −−
− +

1
1 1 1
' ' ' ' ' ' '
,..., , , ,...,  

34 The degree of freedom is 104 (the number of parameter estimates in the minimum distance for column (3)) 
minus 11 (the number of additional restrictions imposed in the minimum distance estimator of column (2)). 
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TABLE III.1:  SOME ESTIMATES FOR THE PARTICIPATION EQUATION a 

 
Variables (1) 

Pooled probit 
(2) 
Chamberlain(1984)
σ = 1 

(3) 
Chamberlain 
(1984, σ 84 1= ) 

(4) 
Conditional logit  
(1980) 

CST -2.1644* 
(0.2309) 

-1.9921* 
(0.2662) 

-1.4615* 
(0.2686) 

 

D85 -0.1394* 
(0.0575) 

-0.0570 
(0.0599) 

-0.1396* 
(0.0666) 

0.1897 
(0.1548) 

D86 0.0633 
(0.0579) 

0.0652 
(0.0592) 

0.0558 
(0.0638) 

1.1056* 
(0.1722) 

D87 0.0623 
(0.0580) 

0.0573 
(0.0601) 

0.0001 
(0.0560) 

1.5592* 
(0.1962) 

D88 0.0679 
(0.0580) 

0.0770 
(0.0603) 

-0.0220 
(0.0538) 

2.0835* 
(0.2265) 

D89 0.1329* 
(0.0581) 

0.1779* 
(0.0605) 

0.0878 
(0.0586) 

2.7388* 
(0.2614) 

D90 0.2056* 
(0.0584) 

0.2014* 
(0.0609) 

0.1073* 
(0.0595) 

3.5187* 
(0.3010) 

D91 0.6617* 
(0.0623) 

0.6045* 
(0.0644) 

0.9144* 
(0.1262) 

5.4085* 
(0.3570) 

D92 0.2786* 
(0.0589) 

0.2454* 
(0.0621) 

0.0988* 
(0.0541) 

4.7497* 
(0.3867) 

D93 0.3138* 
(0.0593) 

0.3269* 
(0.0634) 

0.1008* 
(0.0537) 

5.3176* 
(0.4318) 

D94 0.2920* 
(0.0595) 

0.2786* 
(0.0644) 

0.1048* 
(0.0570) 

5.6722* 
(0.4770) 

D95 0.2649* 
(0.0599) 

0.2492* 
(0.0651) 

0.0889 
(0.0581) 

6.0183* 
(0.5228) 

AGE 0.1443* 
(0.0111) 

0.1432* 
(0.0124) 

0.1097* 
(0.0146) 

 

AGE2 -0.0021* 
(0.0001) 

-0.0022* 
(0.0001) 

-0.0017* 
(0.0002) 

-0.0069* 
(0.0006) 

ED 0.0806* 
(0.0066) 

0.0902* 
(0.0071) 

0.0878* 
(0.0090) 

 

CC1 -0.7635* 
(0.0368) 

-0.5880* 
(0.0419) 

-1.1583* 
(0.0941) 

-1.9587* 
(0.1079) 

CC2 -0.5757* 
(0.0298) 

-0.4361* 
(0.0369) 

-0.5092* 
(0.0501) 

-1.3773* 
(0.0907) 

CC3 -0.2265* 
(0.0174) 

-0.1027* 
(0.0260) 

-0.2053* 
(0.0302) 

-0.3807* 
(0.0717) 

HWORK 0.1032* 
(0.0372) 

0.0094 
(0.0510) 

-0.0281 
(0.0439) 

0.2923* 
(0.1355) 

HHINC -0.1383* 
(0.0070) 

-0.0430* 
(0.0085) 

-0.0506* 
(0.0092) 

-0.3334* 
(0.0375) 

M -0.3171* 
(0.0433) 

-0.5324* 
(0.0766) 

-0.2983* 
(0.0680) 

-1.5269* 
(0.1980) 

σ 85
   1.1650* 

(0.1425) 
 

σ 86
   1.1404* 

(0.1140) 
 

σ 87
   0.8926* 

(0.0799) 
 

σ 88
   0.7948* 

(0.0699) 
 

σ 89
   0.9103* 

(0.0860) 
 

σ 90
   0.8675* 

(0.0871) 
 

σ 91
   1.9506* 

(0.2130) 
 

σ 92
   0.6530* 

(0.0583) 
 

σ 93
   0.6313* 

(0.0551) 
 

σ 94
   0.7508* 

(0.0677) 
 

σ 95
   0.7940* 

(0.0743) 
 

 a The numbers in parentheses are standard errors. 
 * Statistically different from zero at the five-percent significance level. 
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