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Abstract

The negative consequences of long-term exposure to particulate pollution are well-established
but a number of studies find no effect of short-term exposure on health outcomes. The high
correlation of industrial pollutants complicates the estimation of the impact of individual
pollutants on health. In this study, we use emissions from Kı̄lauea volcano, which are uncor-
related with other pollution sources, to estimate the impact of pollutants on local emergency
room admissions and a precise measure of costs. A one standard deviation increase in par-
ticulates leads to a 23-36% increase in expenditures on ER visits for pulmonary outcomes,
mostly among the very young.
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In this paper, we use volcanic emissions to document the effect of particulate pollution on hospi-

tal admissions and charges. Industrial and other types of anthropogenic pollution generally induce

high correlation among various pollutants, possibly complicating the attribution of quantifiable

effects to several different pollutants. Our pollution source, on the other hand, leads to relatively

independent variation in pollutants. This variation allows us to more precisely measure the effect

of particulate matter on various public health outcomes and costs in a context where pollution

levels are well below Environmental Protection Agency (EPA) ambient air quality standards.

Kı̄lauea is the most active of the five volcanoes that form the island of Hawai‘i. Emissions

from Kı̄lauea produce what is known as “vog” (volcanic smog) pollution. Vog is essentially small

particulate matter (sulfate aerosols) suspended in the air, akin to smog pollution in many cities.

Vog represents one of the truly exogenous sources of air pollution in the United States. Based on

local weather conditions (and whether or not the volcano is emitting), air quality conditions in the

state of Hawai‘i can change from dark, polluted skies to near pristine conditions in a matter of

hours.

We adopt two main approaches to estimate the health impact of the pollution produced by

Kı̄lauea. Both use high frequency data on air quality and emergency room (ER) admissions and

estimate linear models. The first method estimates a parsimonious model with regional and sea-

sonal fixed effects via Ordinary Least Squares (OLS). The second method exploits variations in

wind patterns in the island chain in conjunction with information on emissions levels near Kı̄lauea

to construct an instrumental variables (IV) estimator.

The OLS estimator can be justified on the grounds that the variation in air quality is unrelated

to human activities. The two main omitted variables that could impact our analysis are traffic

congestion and avoidance behaviour (e.g., people avoiding the outdoors on “voggy” days). We see

no compelling reason to believe that the former is systematically correlated with volcanic pollution.

In addition, adjusting for a flexible pattern in seasonality will control for much of the variation

in traffic congestion. The latter, avoidance behaviour, is thornier and has bedevilled much of

the research in this area. We are unable to control for this omitted variable and our estimates

of the effects of pollution on health care utilization should be viewed as being inclusive of this
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adjustment margin (we nevertheless see no effect of pollution on fractures which may be indicative

of limited avoidance behaviour). In addition, a large degree of measurement error in our pollution

variables should bias our estimates downwards. Error in pollution exposure measurement may

arise through imprecision in measurement instruments and misalignment between measurement

and exposure locations. As such, one can reasonably view our OLS estimates as lower bounds

of the true impact of vog on emergency medical care utilization (as in much of the literature).1

Finally, but importantly, a unique feature of our design is that we have a source of particulate

pollution that is much less related to many other industrial pollutants than in other regions of

the US. Consequently, we provide an estimate of the health cost of a specific type of particulate

pollution that is more credible than much of the extant literature.

To address the measurement error bias as well as any lingering omitted variables biases from

industrial pollution or traffic congestion, we also employ an instrumental variables (IV) estimator.

Our strategy employs emissions measurements from the south of Hawai‘i island (where Kı̄lauea is

located) in conjunction with wind direction data collected at Honolulu International Airport to

instrument for particulate levels on the south shore of O‘ahu (a different island with high population

density). Kı̄lauea is located on the southeast part of the island of Hawai‘i which can be seen in

the map in Figure 1. The basic idea is that when winds come from the northeast there is very

little particulate pollution on O‘ahu, which as shown in Figure 2 is to the northwest of the island

of Hawai‘i, because all of the emissions from Kı̄lauea are blown out to sea. Figure 3 is a satellite

image showing sulphur dioxide concentrations during typical northeast wind conditions: the plume

of emissions coming from the volcano is blown to the southwest, away from the Hawaiian islands.

On the other hand, when volcanic emissions levels are high and when the winds come from the

south, particulate levels on O‘ahu are high.

Little is known about the health impacts of volcanic emissions, although a few recent studies

have focused on modern eruptions.2 In a study of Miyakejima island in Japan, Ishigami et al.

1For example, Künzli and Tager (1997) explain how simple OLS designs tend to underestimate the effect of air
pollution on health. Sheppard et al. (2012) and Goldman et al. (2011) both suggest that the usual estimators may
suffer from severe attenuation bias due to measurement error.

2In terms of historical eruptions, Durand and Grattan (2001) use health records from 1783 to document a
correlation between pulmonary ailments and vog in Europe caused by the eruption of Laki volcano in Iceland.
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le Figure 1: Topographical Map of the Island of Hawai‘i

Figure 2: Map of the Hawaiian Islands
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Figure 3: Satellite Image of Sulphur Dioxide Mass

Source: NASA Earth Observatory

(2008) found a strong correlation between sulphur dioxide (SO2) concentrations and self-reported

pulmonary effects (cough, sore throat, and breathlessness). Kı̄lauea itself has been the focus of a

number of recent epidemiological studies. Prior to the 2008 escalation in emissions, nearby residents

self-reported increased pulmonary, eye, and nasal problems relative to residents in areas unaffected

by vog (Longo et al. (2008); Longo (2009)). A strong correlation between vog and outpatient

visits for pulmonary problems and headaches was found by Longo et al. (2010). Longo (2013) uses

a combination of self-reported ailments and in-person measurements (blood pressure and blood

oxygen saturation) to document strong statistical correlations with exposure to vog. Half of the

participants perceived that Kı̄lauea’s intensified eruption had negatively affected their health, and

relatively stronger magnitudes of health effects were associated with the higher exposure to vog

since 2008. In a non-comparative study, Camara and Lagunzad (2011) report that patients who

complain of eye irritation due to vog do have observable ocular symptoms. Most recently, Tam et

al. (2016) show an association between vog exposure and respiratory outcomes including cough and

forced expiratory volume (FEV1). Still, it remains unclear whether increased volcanic emissions

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
are causing health problems. In particular, selection bias (for example, respondents volunteered

to answer surveys and the socio-economic characteristics of individuals who choose to live close to

the volcano are quite different to the rest of the state) and self-reporting errors make it difficult to

infer causal evidence from previous epidemiological studies on Kı̄lauea.3

There is, of course, a much broader literature that attempts to estimate a causal relationship

between industrial sources of pollutants and human health. Within economics, there has been an

attempt to find “natural” or quasi-random sources of pollution variation in order to eliminate many

of the biases present in epidemiological studies based on purely correlative evidence. Chay et al.

(2003) use variation induced by the Clean Air Act in the 1970s to test for a link between particulate

matter and adult mortality. Chay and Greenstone (2003) use the 1981-82 recession as a quasi-

random source of variation in particulate matter to test for an impact on infant mortality. Neidell

(2004) uses seasonal pollution variation within California to test for a link between air pollution

and children’s asthma hospitalizations. Lleras-Muney (2010) uses forced changes in location due

to military transfers to study the impact of pollution on children. Moretti and Neidell (2011) use

boat traffic in Los Angeles; Schlenker and Walker (2016) use airport traffic in California; Knittel

et al. (2016) use road traffic; and Currie and Walker (2011) use the introduction of toll roads as

sources of quasi-exogenous pollution variation. Arceo-Gomez et al. (2016) use thermal inversions

to measure the effect of CO and PM10 on infant mortality in Mexico.

There is also a corresponding medical literature on the health effects of pollution. The studies

that most closely align with our own investigate the effects of particulates on respiratory hospital

admissions and mortality. An early and influential study exploited the intermittent closure of a

steel mill in Utah Valley to demonstrate a causal link between PM10 pollution and respiratory

hospital admissions, particularly among pre-school age children Pope III (1991). This study used

monthly hospital admissions. A follow-up study in the same area found a significant correlation

between 5-day moving average PM10 pollution and non-accidental mortality Pope III et al. (1992).

3The leading scholar in this literature notes that her “cross-sectional epidemiologic design was susceptible to
selection bias, misclassification, and measured associations, not causality” Longo (2013, p. 9). In particular, the
cross-sectional nature of previous studies may not eliminate unobserved confounding factors. Because we exploit
variation in pollution from the volcano over time within a region, our research design does a more thorough job of
eliminating these confounds.
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Dockery et al. (1993), Pope et al. (1995), Pope III et al. (2002) and Pope III et al. (2009) all

investigate the effects of long-term exposure to particulates and observe strong correlations with

mortality in the US.

The contributions of this study to the existing literature are as follows. First, the vast majority

of the studies in the economics literature exploit sources of pollution that are the result of human

activity (e.g., from cars, airplanes, factories, or starting fires to clear forest).4 Second, we use more

accurate data on the costs of hospitalization than much of the other literature and, particularly,

we do not rely on imputations to construct cost measures. Third, the variation in many of the

pollution measures in our data on a day-to-day basis is much greater than in previous work. Fourth

(as discussed earlier), much of the epidemiological work on the health consequences of vog relies on

a single cross-section of largely self-reported data in which cross-sectional omitted variables are apt

to be confounds (for example, the extremely ill are less likely to volunteer to fill out surveys). Our

approach is to use a regional panel that can eliminate cross-sectional confounds and we examine

objective health outcomes from a registry of hospitals in the state of Hawai‘i. Moreover, because

we rely on high frequency (daily) variation in pollution within a region, any potential confound in

our study would have to vary on a daily basis in lock-step with air quality within a region; few

omitted variables do this. Fifth, given that vog is composed almost entirely of sulfate aerosols, our

results shed light on the unresolved question of how the chemical composition and characteristics

of particulates affect human health Pope III and Dockery (2006). Finally, the results in this paper

stem almost entirely from particulate matter and no other industrial pollutant. As such, we are

quite confident that we have clean estimates of the pure effect of particulate matter on important

health outcomes. In most other studies, particulates and other pollutants are strongly correlated,

making it difficult to disentangle the effects of one pollutant from another.5

We find strong effects of particulate pollution on ER admissions for pulmonary-related reasons.

In particular, we find that a one standard deviation increase in particulate matter on a given day

4There is a literature, predominantly in environmental science, that investigates the health effects of dust storms
e.g. Chan et al. (2008) and Perez et al. (2012).

5For example, Le Tertre et al. (2002) find that the effect of particulate pollution on cardiovascular disease
disappears once they control for other correlated pollutants (p. 773): “The effect of PM10 was little changed by
control for ozone or SO2, but was substantially reduced (CO) or eliminated (NO2) by control for other traffic related
pollutants”.
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is associated with 2% additional ER charges when we use our OLS estimates. Our IV estimates

imply a much larger effect, between 23 and 36%. We find strong effects among the very young.

We do not find any effects of particulate pollution on cardiovascular-related or fracture-related

admissions, of which the latter is our placebo.

The balance of this paper is organized as follows. In the next section, we give some further

background on the volcano and describe our data. Following that, we discuss the relationship be-

tween volcanic emissions and pollution. We then describe our methods. After that, we summarize

our results. Finally, we conclude.

1 Background and Data

Kı̄lauea’s current eruption period began in 1983 and occasionally disrupts life on the island of

Hawai‘i and across the state. Lava flows displaced some residents in 1990 and a small number

again in late 2014. Other than these minor impacts, the lava flows serve mainly as a tourist

attraction. The primary impact of the volcano on human activity has been intermittent but severe

deteriorations in air quality. Kı̄lauea primarily emits water vapour, carbon dioxide, and sulphur

dioxide (these gases comprise 99% of total emissions), along with other minor trace gases (hydrogen,

hydrogen chloride, hydrogen fluoride, and carbon monoxide (CO); totalling 1% of emissions).6 SO2

poses a serious threat to human health and is also a common industrial pollutant. Moreover, SO2

turns into particulate matter which is also another harmful pollutant and the main pollution

problem caused by the volcano.

There are currently two main sources of air pollution on Kı̄lauea: the summit itself and a hole

(volcanic cone) in the “East Rift Zone” on the side of the volcano. Since March 12, 2008, there

has been a dramatic increase in emissions from Kı̄lauea: a new vent opened inside the summit,

and average emissions have increased threefold, breaking all previous emissions records. Currently,

6Although carbon monoxide is emitted from the volcano, it is in such small quantities that it is not a cause for
concern. Carbon monoxide is not measured on Hawai‘i or Maui islands or at the summit of the volcano by the
United States Geological Survey (USGS). The nearest accurate measurement of carbon monoxide is in Honolulu on
O‘ahu where the last time the EPA’s 1 hour standard for carbon monoxide was exceeded was on the 15th January
1973. See the USGS Kı̄lauea volcano website for more details: https://volcanoes.usgs.gov/observatories/

hvo/hvo_gas.html
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emissions fluctuate on a daily basis between 500 and 1,500 tons of SO2 per day. As a reference point,

the Environmental Protection Agency’s safety standard for industrial pollution is 0.25 tons of SO2

per day from a single source (Gibson (2001)). Kı̄lauea is, not surprisingly, the largest stationary

source of SO2 pollution in the United States of America. Depending on volcanic activity, rainfall,

and prevailing wind conditions, there can be vast daily differences in the actual amount of SO2

present near the summit and surrounding areas, ranging from near pristine air quality to levels

that far exceed guidelines set by the EPA.

Volcanic pollution, or vog, is composed of different gases and aerosols, and the composition

typically depends on proximity to the volcano. Near Kı̄lauea’s active vents, vog consists mostly of

SO2 gas. Over time, SO2 gas oxidizes to sulfate particles through various chemical and atmospheric

processes, producing hazy conditions (particulate pollution). Thus, farther away from the volcano

(along the Kona coast on the west side of Hawai‘i Island and on the other Hawaiian islands),

vog is essentially small particulate matter (sulphuric acid and other sulfate compounds) and no

longer contains high levels of SO2. Because this species of particulates is high in sulphuric acid, the

results of this study may be more pertinent to other particulate sources that are also high in sulfate

aerosols such as coal-fired power plants. In summary, the volcano has the potential to produce

high levels of SO2 pollution near the volcano and high levels of a particular species of particulate

pollution anywhere in the state of Hawai‘i.

We employ data from two primary sources. First, we obtained data on ER admissions and

charges in Hawai‘i from the Hawai‘i Health Information Corporation (HHIC). Second, we obtained

data from the Hawai‘i Department of Health (DOH) on air quality from thirteen monitoring stations

in the state.

The ER data include admissions information for all cardiovascular and pulmonary diagnosis-

related groups, as well as all admissions for fractures and dislocations of bones other than the

pelvis, femur, or back. Fractures are designed to serve as a placebo, as they should be unaffected

by air pollution. The data span the period January 1, 2000 to December 31, 2012. These data

include information on the date and cause of admission as well as the total amount charged for

patient care. In addition, we know the age and gender of the patient. We also have information
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on a broadly defined location of residence. In particular, HHIC reports the residence of location

as an “SES community,” which is a collection of several ZIP codes. We show the SES communities

on the islands of O‘ahu, Hawai‘i, Maui, Lāna‘i, Moloka‘i and Kaua‘i in Figure A1 in the appendix.

To put the data in a format suitable for regression analysis, we collapsed the data by day,

cause of admission, and SES community to obtain the total number of admissions and total ER

charges on a given day, in a given location, and for a given cause (i.e., pulmonary, cardiovascular,

or fractures). Once again, it is important to note that the location information corresponds to the

patient’s residence and not the location of the ER to which he or she was admitted. We did this

because we believed that it would give us a more precise measure of exposure once we merged in

the pollution data.

We use measurements of the following pollutants: particulates 2.5 and 10 micrometres in di-

ameter (PM2.5 and PM10) and SO2.7 All measurements for SO2 are in parts per billion (ppb), and

particulates are measured in micrograms per cubic meter (µg/m3). For particulates, two mea-

sures were available: an hourly and a 24-hour average computed by the DOH.8 Using the hourly

measures, we computed our own 24-hour averages, which were arithmetic averages taken over 24

hourly measures. Most of the time, either the one hour or the 24-hour measure was available,

but rarely were both available on the same day. When they were, we averaged the two. For our

empirical results, we spliced the two time series of particulates (e.g. the 24 hour averages provided

by the DOH and taken from our own calculations) together and took averages when appropriate

so we could have as large of a sample as possible for our regression analysis. The measurements of

SO2 were taken on an hourly basis; to compute summary measures for a given day, we computed

means for that day.

To merge the air quality data into the ER admissions data, we used the following process. First,

we computed the exact longitude and latitude of the monitoring station to determine in which ZIP

code the station resided. Next, we determined the SES community in which the station’s ZIP

code resided. If an SES community contained numerous monitoring stations, then we computed

7To be more precise, PM2.5 (PM10) is the mass per cubic meter of particles passing through the inlet of a size
selective sampler with a transmission efficiency of 50% at an aerodynamic diameter of 2.5 (10) micrometres.

8The DOH did not simply compute an arithmetic average of hourly measurements as we did. Unfortunately,
even after corresponding with the DOH, it is still not clear to us how their 24-hour averages were computed.

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
means for all the monitoring stations on a given day in a given SES community. Table A1 in the

appendix displays the mapping between the monitoring stations and the SES communities. We

did not use data from SES communities that had no monitoring stations. In total, we used data

from nine SES communities.

Unfortunately, we do not have complete time series for pollutants for all nine SES communities.

By far, we have the most comprehensive information for PM2.5 and, to a lesser extent, SO2. We

report summary statistics for the pollutants in Table 1.9

In Figures 4 through 6, we present graphs of the time series for each of the pollutants that we

consider by SES community. For each pollutant, we include a horizontal line corresponding to the

National Ambient Air Quality Standards (NAAQS) for that pollutant. We use 24-hour averages

of 35 µg/m3 for PM2.5 and 150 µg/m3 for PM10. We used the older 24-hour average of 140 ppb

for SO2.10

On the whole, Figures 4 through 6 indicate periods of poor air quality in particular regions.

Looking at PM2.5 in Figure 4, we see violations of NAAQS in Aiea/Pearl City, Central Honolulu,

Ewa, Hilo/North Hawai‘i, Kona, West/Central Maui, and South Hawai‘i. The noticeable spike

in PM2.5 in 2007 in West/Central Maui was caused by a large brush fire. Hilo/North Hawai‘i,

Kona, and South Hawai‘i are all on the island of Hawai‘i, which generally appears to have poor

air quality. We do not see any violations of NAAQS for PM10, although this is not recorded on

the island of Hawai‘i. However, in Figure 6, we see that SO2 levels are very high in Hilo/North

Hawai‘i, South Hawai‘i and, to a lesser extent, in Kona; there are violations of NAAQS in the first

two of these regions.11 These trends make sense in that SO2 emissions should be highest near the

volcano and then dissipate with distance. SO2 reacts with other chemicals in the air to produce

particulate pollution. This mixes with other volcanic particulates to form vog, and this smog-like

substance can be carried farther across the Hawai‘ian islands, depending on the wind direction.

For our instrumental variables results, we employ data on wind direction collected by the Na-

9For both the pollution and ER data, we trimmed the top and bottom 1% from the tails.
10For information on particulates, see http://www.epa.gov/air/criteria.html. Note that the current NAAQS

for SO2 is a one hour average below 75 ppb.
11The state of Hawai‘i’s only coal-fired power plant is located in the ’Ewa SES. This is a small plant (roughly a

quarter the size of the average coal plant on the mainland), and prevailing winds blow its emissions directly offshore.
The plant appears to have no effect on SO2 levels in ’Ewa.
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Figure 5: PM10 by SES Community
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Figure 6: SO2 by SES Community
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tional Oceanic and Atmospheric Association from their weather station at Honolulu International

Airport. These data are reported in degrees (rounded to the nearest ten) with zero corresponding

to the winds coming from due north. We summarize these data in the histogram in Figure 7. As

can be seen, the winds primarily come from the northeast. In fact, the mean wind direction is 92.3

degrees and the median is 70 degrees. However, we do see a cluster of data between 120 and 180

which reflects that occasionally the winds do come to O‘ahu from the south. When this happens,

the volcanic emissions from Kı̄lauea are blown to the island of O‘ahu, not out to sea. Travel time

from Kı̄lauea to O‘ahu depends on wind strength, exact direction, and the location of the plume

offshore. According to Tofte et al. (2017): “The straight-line distance from the vents to Honolulu

is about 350 km. A typical wind speed between 4 and 10 m/s would give the vog plume 10 to 24 h

to reach Honolulu.” This travel time could be shorter if the plume is sitting offshore directly south

of O‘ahu due to recent northeast winds (as depicted in Figure 3).

Figure 7: Histogram for Wind Direction Data

We conclude this section by reporting summary statistics from the HHIC data for all the SES

Communities for which we have air quality information in Table 1. An observation is an SES

community/day. For all the SES communities we consider, we see that, on an average day, there

were 4.01 admissions for cardiovascular reasons, 5.00 admissions for pulmonary reasons, and 1.98

This article is protected by copyright. All rights reserved. 
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admissions for fractures in a given region. Total charges for cardiovascular-related admissions

are $5159.18 per day, whereas pulmonary-related admissions cost a total of $4204.16. Finally,

note that these amounts correspond to what the provider charged, not what it received, which,

unfortunately, is not available from HHIC. While some may view this as a data limitation, there

may be some positive aspects to this as well if the amount charged is a better measure of the actual

cost of the health service. Often, the amount paid (as opposed to charged) reflects factors other

than the cost of the service such as the monopsony power of the payer.

2 Methods

We employ two approaches to estimate the impact of volcanic emissions on ER utilization. The

first is to simply estimate a linear regression of clinical outcomes onto our pollution measures while

controlling for a flexible pattern of seasonality via OLS. The second is an IV approach in which

we leverage data on volcanic emissions and wind direction to instrument for particulate pollution.

Throughout, we adopt the notation that t is the time period and r is the region. In addition, we

let d denote the day of the week, m denote month of the year, and y denote year corresponding to

time period t.

First, we consider the following parsimonious empirical model:

outcometr = βq (L) ptr + αd + αm + αy + αr + εtr (1)

where outcometr is either ER admissions or charges and ptr is a measure of air quality for a given

day in a given region. The next three terms are day, month, and year dummies which adjust for

possible confounds due to traffic or weather patterns. The parameter, αr, is a region dummy. The

final term is the residual. The term βq (L) is a lag polynomial of order q, which we will use to test

for dynamic effects of pollution on health outcomes.

We use the counts of total admissions and not rates as the dependent variable for several

reasons. First, accurate population numbers are not available between census years. In particular,

we have daily data that span the years 2000 to 2012 and, so it is a somewhat futile exercise to
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attempt to construct a sensible denominator for each of these days. Second, regional fixed effects

will account for cross-sectional differences in the population. In addition, we also employ region-

specific trends in some robustness checks. Third, year fixed effects account for population changes

over time. Finally and most importantly, due to the presence of regional fixed effects, we are, in

effect, exclusively relying on time series variation in the relationship between pollution and ER

admissions. Hence, the only way that failure to use rates as opposed to levels could be problematic

is if volcanic emissions were seriously impacting regional populations on a day-to-day basis which

we think is implausible.12

OLS estimation of equation (1) has the advantage that it utilizes all the available data (our

IV approach does not as the reader will see). On the other hand, OLS estimation of βq (L) will

be biased downwards due to a large degree of measurement error in our pollution measurements

(see footnote 1). Our IV estimates will correct this and any possible lingering biases from omitted

variables.

Next, for our instrumental variables regression, we use SO2 emissions from Kı̄lauea as an in-

strument for particulate pollution on O‘ahu. Our proxy of SO2 emissions is the measurement of

SO2 levels from the South Hawai‘i monitoring stations discussed in the previous section from the

Hawai‘i DOH. There are four monitoring stations in South Hawaii that essentially surround the

volcano. Mountain View station is located to the northeast of the Volcano, Ocean View station

is located to the southwest, Pahala station is located to the west, and Puna station is located to

the east. On each day, our measure of SO2 is the maximum SO2 level recorded at any one of these

stations. Thus, wind direction should have a negligible impact on the actual measurement of SO2

within close proximity to the volcano, since no matter which direction the wind blows, there is a

weather station that should be intercepting the emissions.13

12To see this more formally, let At denote admissions on day t and POPt denote the population on day t. Then
we will have that log At

POPt
= logAt− logPOPt. In the absence of any effects of pollution on day-to-day population

movements, the entirety of the action will stem from its impact on admission counts.
13There is also data from the US Geological Survey but these data are very incomplete so we do not use them

in our IV regressions. For example, the measurements of volcanic emissions are very intermittent, and thus, IV
estimates would lower the sample size substantially. Furthermore, sampling of volcanic emissions is endogenously
determined by the US Geological Survey. During periods of elevated SO2 emissions, the USGS tries to measure
emission rates more frequently (often daily). When emissions are lower, the USGS chooses not to measure emissions
every day and will often wait for weeks before taking a new measurement. Also, the device the USGS uses to
measure emissions (a mini-UV spectrometer) only works when certain weather conditions exist (steady winds with
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We would argue that SO2 levels in South Hawai‘i are unrelated to most causes of particulate

pollution on O‘ahu other than, of course, vog. It is also important to say that, in unreported

results, we found no direct effects of SO2 on pulmonary outcomes and, so, it appears as if using

SO2 levels from South Hawai‘i as an IV does not violate any exclusion restrictions. In addition, we

exploit the fact that most of the time trade winds from the northeast blow the volcanic emissions

out to sea and so, on days with trade winds there is very little vog. However, on occasion, the

winds reverse direction and come from the south and this blows the vog towards the island of

O‘ahu.

We restrict the IV estimations to the island of O‘ahu since one of the aims of this work is the

estimate the health consequences of particulate pollution without being contaminated by other

pollutants. Using SO2 pollution from the island of Hawai‘i (in conjunction with wind direction)

as an instrument for particulate pollution on O‘ahu provides us with a clean way of doing this.

Inclusion of regions on Maui or Hawai‘i in the estimations may have compromised this because these

regions may have had higher SO2 concentrations due to their proximity to the volcanic eruptions.

Accordingly, our IV approach works as follows. The first stage is

ptr = γr + γ1SO2t + γ2NEt + γ3SO2t ×NEt + etr (2)

where ptr is the particulate level (either PM10 or PM2.5) in any of the regions on O‘ahu at time

t, SO2t is the SO2 level at time t in South Hawai‘i, NEt is a dummy variable indicating that the

winds at Honolulu International Airport are coming from the northeast (i.e. the wind direction

measurements take on values between 10 and 360 degrees: NEt is a dummy variable for wind

directions between 10 and 90 degrees), and γr is a regional fixed effect. We do not include any

seasonality controls since there are no systematic seasonal patterns in volcanic emissions that are

also correlated with ER utilization and inclusion of these would greatly weaken the explanatory

power of the instruments. In the second stage, we then estimate

outcometr = βp̂tr + αr + εtr (3)

little to no rain).
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using only ER utilization data from O‘ahu.

There is an important caveat to our results, which is that our OLS and IV estimates include

any sort of adaptation that may have taken place. If, for example, people were more likely to

stay indoors on days when the air quality was poor, this most likely would dampen the estimated

effects of pollution on health outcomes Zivin and Neidell (2009); Neidell (2009); Moretti and Neidell

(2011).14 In this sense, our estimates could be viewed as lower bounds on the effects of pollution

on ER admissions if one were to fully control for adaptation.

To compute the standard errors, we will rely on an asymptotic distribution for large T but a

fixed number of regions. For a discussion of such an estimator, we refer the reader to Arellano

(2003), p.19. The main reason for this approach is that we have many more days in our data

than regions. In addition, the large-T fixed effects estimator allows for arbitrary cross-sectional

correlation in pollution since it does not rely on cross-sectional asymptotics at all. However,

large-T asymptotics require an investigation of the time series properties of the residual, and if any

serial correlation is present, Newey-West standard errors must be used for consistent estimation

of the covariance matrix. We used ten lags for the Newey-West standard errors, although the

standard errors with only one lag were very similar, indicating that ten lags is most likely more

than adequate.15 These standard errors allow for arbitrary correlations in residuals across the

Hawaiian islands on a given day and serial correlation in the residuals for up to ten days. In the

appendix, we also report alternative standard errors as well.

14For example, the State of Hawai‘i encourages citizens to stay indoors during heavy vog conditions: http:

//ltgov.hawaii.gov/emergency-information/important-information-about-vog/. It should also be noted
that there could be behavioural responses that work in the opposite direction: a pre-existing sore throat might
become more salient when there is vog in the air.

15To choose the number of lags for the Newey-West standard errors, we estimated our models for pulmonary
outcomes (which preliminary analysis revealed were the only outcomes for which we might find significant effects)
and for three different pollutants. We then took the fitted residuals from these models and estimated AR(20)
models. For particulates, we found that the autocorrelations were significant up to ten lags. For SO2, we found
significant autocorrelations for more than ten lags. For the coming estimations, we used ten lags for the Newey-West
standard errors since preliminary work showed that there was little effect of SO2 for any of the outcomes.
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3 Volcanic Emissions and Pollution

In this section, we establish a connection between SO2 emissions as measured in tons/day (t/d)

on our air quality measures. We do this to establish that SO2 emissions from Kı̄lauea are the

source of the particulate pollution that we consider in this paper. In addition, the results in this

section provide some insights into how volcanic emissions affect pollution in the state over time.

Finally, some of the estimations in which we restrict the sample to south Hawai‘i establish a clear

connection between the volcanic emissions and SO2 levels near Kı̄lauea which is a precursor to the

first stage of the IV estimation that we report in the next section.

To accomplish this, we estimate a very simple regression of air quality on emissions:

ptr = α1 + α2Et + etr. (4)

Our measure of volcanic emissions is Et. Data on emissions come from the US Geological Survey

(USGS). We employ daily measurements on SO2 emissions in t/d from Kı̄lauea from two locations,

the edge of the crater at the summit and Pu‘u ‘Ō‘ō volcanic cone within the Eastern Rift Zone

(ERZ), from January of 2000 to December of 2010. The two locations are about 11.5 miles

apart. Note that these measurements were not taken on a daily basis, that many days have no

measurements, and that many others have a measurement from only one of the locations. The

measurements are taken by USGS staff using vehicle-based spectrometres. Due to staffing and

other logistical constraints, it is not always possible to take a measurement at both locations on

every day of the year. So, for these regressions, we only include Et from the summit or from

the ERZ. Finally, because a second vent opened in the summit during 2008, we estimate the

model separately for the periods 2000-2007 and 2008-2010. Emissions from the summit increased

threefold starting on March 12, 2008.

Table 2 displays the relationship between volcanic emissions and particulate pollution (PM10

and PM2.5). In column 1, we see that there is no relationship between emissions from the summit

and PM10 during the period 2000-2007, but there is a substantial relationship for the subsequent

period, 2008-2010, in column 2. Looking at emissions from the ERZ in the next two columns of the
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table, we see a significant relationship between air quality and emissions in both periods. In fact,

the estimated coefficients are almost identical (0.00059 compared to 0.00055). This is reassuring

given that the level of emissions from the ERZ has been relatively constant over the two time

periods. It is only the summit source of emissions that has experienced the very large increase

since 2008.

Turning to PM2.5 in the final four columns, we still see significant effects of volcanic emissions on

air quality in all four columns. Comparing emissions from the summit in 2000-2007 and 2008-2010

in columns (5) and (6), while we do not see that the point estimate is higher for the later period, it

is more tightly estimated than the estimate for the period 2000-2007 with a standard error about

one-tenth of the size of the standard error in column (1). So we see a much more statistically

significant relationship between emissions and PM2.5 for 2008-2010 than for the earlier period. In

the last two columns, we estimate the relationship between emissions from the ERZ and PM2.5; we

see a statistically significant relationship in both periods, although the point-estimates are not as

close as we observed for PM10.

In Table 3, we estimate the impact of SO2 emissions from Kı̄lauea in t/d on SO2 levels in ppb

across the state. The first four columns focus on emissions from the summit, whereas the last four

columns focus on emissions from the ERZ. Since SO2 levels should be highest near the volcano, we

estimate this model only using data from South Hawai‘i, in addition to using SO2 levels from all

available monitoring stations. On the whole, both tables show a significant relationship between

SO2 emissions and SO2 pollution levels throughout the state. Of note is that these estimates are

substantially higher when we restrict the sample to South Hawai‘i, as expected.

As further evidence of the independent variation of SO2 and particulate pollution, we present

correlation coefficients between various pollutants in the state of Hawai‘i in Table 4. In most parts

of the United States, air pollutants are highly correlated.16 For example, in the Neidell (2004) study

of California, the correlation coefficient between PM10 and the extremely harmful pollutant carbon

monoxide (CO) is 0.52. In our sample, it is 0.0081. In the same Neidell study, the correlation

between PM10 and NO2 is 0.7, whereas in our sample it is 0.0267. In the city of Phoenix, Arizona,

16This relationship also holds in many other parts of the world, including developing countries. Ghosh and
Mukherji (2014) report that the different pollutants in their sample are “highly correlated” (p. 207).
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the correlation coefficient between CO and PM2.5 is 0.85 (see Mar et al. (2000)). In our sample,

it is 0.0118. As evidence that SO2, PM2.5, and PM10 are being generated by the same source,

the correlation coefficient between PM2.5 and PM10 is 0.52, between PM2.5 and SO2 it is 0.4, and

between PM10 and SO2 it is 0.1.17 So a unique feature of our design is that we have a source of

particulate pollution that is unrelated to many other industrial pollutants (other than, of course,

SO2).

4 Results

4.1 OLS Results

First, we consider the effects of pollutants on ER admissions and charges for pulmonary-related

reasons via OLS estimation of equation (1). Results are reported in Table 5. We estimate two

specifications: one that only includes the contemporaneous pollution measure and another that

includes contemporaneous and lagged pollution. For reasons discussed above, we report Newey-

West standard errors for all estimations. Finally, we estimate the model in both levels and logs.18

In the first column of Table 5, we see that a one µg/m3 increase in PM10 is associated with

0.015 additional admissions for a day/SES community observation. In the fifth column, we see that

the effects of PM2.5 are larger, with an estimate of 0.030 additional admissions. Both estimates

are significant at the 1% level. The standard deviation of PM10 is 6.24 µg/m3, indicating that a

one standard deviation increase in PM10 results in an additional ER admission every 10.68 days.

Similarly, the standard deviation of PM2.5 is 3.30 µg/m3, indicating that a one standard deviation

increase in PM2.5 results in one additional ER admission every 10.10 days for pulmonary-related

reasons in a given region. Turning to the estimates of the effects of particulates on log admissions

in columns (3) and (7), we do not see a statistically significant effect for PM10, but we do see a

significant effect for PM2.5 of 0.36%.

Now looking at the effects on ER charges in the bottom panel, we see that a one µg/m3

increase in PM10 is associated with $13.67 more charges for pulmonary-related admissions. The

17It is important to note that PM2.5 is a component of PM10.
18Because a small number of the observations were zeros, we took the log of the outcome plus one.
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corresponding number for PM2.5 is $43.61. Respectively, a one standard deviation increase in

PM10 and PM2.5 results in $85.30 and $143.91 additional charges in a given region on a given day.

Looking at the results using the log of charges as the outcome variable, we see that a one µg/m3

increase in PM2.5 is associated with a 0.52% increase in charges in column (7). However, we see

that the effect of PM10 on log charges is negative in column 3 and significant at the 10%.19

We report the results of the distributed lagged variant of the model in the even columns of

the table. On the whole, there is mixed evidence for persistent effects of particulate pollution

on pulmonary-related ER admissions. We do see evidence for persistent effects on the level of

admissions for PM10 in column 2 and on log charges for PM2.5 in column 6. However, the remainder

of the estimations do not indicate evidence of persistent effects.

An important point is that the effects of PM2.5 are systematically larger than the effects of PM10

in Table 5. This is consistent with the medical consensus since PM2.5, due to their small size, can

travel deeply into lungs making them particularly dangerous. Note that PM10 does contain PM2.5.

Because of this and because the smaller particulates are more dangerous, one can view PM10 as

a noisy proxy for PM2.5 where the measurement error due to the addition of coarser particulates

between 2.5 and 10 µg/m3 is not mean zero but classical otherwise. As we have witnessed in Table

5, this would suggest that the estimates of the effects estimated using PM10 should be attenuated.

We provide a formal explanation of this in the appendix.

We also investigated the impact of particulates on cardiovascular-related ER admissions as well

as SO2 on both pulmonary and cardiovascular admissions. We did not uncover any effects in any

of these investigations. We do not report these results, but they are available upon request.

As a placebo test, we look at the effects of PM10 and PM2.5 on admissions for fractures in Table

6. We consider both the specification with only contemporaneous pollution and the distributed

lag model. We see no evidence that ER admissions for fractures increase as a consequence of

particulate pollution.

Finally, in the appendix we conduct a number of robustness tests. First, we investigate ro-

bustness to region-specific trends. We show that there are still significant effects with the regional

19The effects of PM10 on all logged outcomes appear to be mostly insignificant and, so the negative effect on log
charges may be spurious.
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trends, but they are somewhat attenuated. Second, we explore the robustness of the results in

Table 5 to using alternative fixed effects that more thoroughly adjust for seasonality and, once

again, the results are robust to their inclusion. Third, we estimate the model in equation (1) using

the negative binomial model (NBM) and Tobit. Most of the results are still significant with the

NBM and Tobit. Fourth, we compute alternative standard errors of the model and compare these

to the Newey-West standard errors that we have already computed. Generally, we find that the

Newey-West standard error lies between the Eicker-White robust standard error and the standard

error clustered on SES regions.

4.2 IV Results

We begin by discussing the first stages for PM10 and PM2.5 which are reported in Table 7. For

each particulate measure, we report the results from the estimation of four specifications. The first

contains no seasonality controls. The second, third, and fourth include day of the week, month

and year dummies in a cumulative fashion.

In columns (1)-(2) and (5)-(6), we see that winds coming from the northeast have a strong

negative impact on particulate levels on O‘ahu for both PM10 and PM2.5. As we discussed, north-

easterly winds are called trade winds and they blow the vog out to sea. Note, however, that the

inclusion of month dummies in columns (3)-(4) and (7)-(8) greatly attenuates the dummy variable

for northeasterly winds. The reason for this is that the trade winds display strong seasonal pat-

terns which includes a period in which they are less present during the months of August through

October when O‘ahu residents experience what is called “Kona weather” in local parlance. This

seasonality is depicted in Figure 8.20 As can be seen in the F -statistics reported in the bottom

of the table, the net effect of this is to greatly attenuate the explanatory power of the excluded

instruments since the F -statistics go from 18.46 and 17.76 in columns (1)-(2) to 8.99 and 4.28 in

columns (3)-(4). We see a similar pattern for PM2.5 with the F -statistic going from 29.54 and 28.87

in columns (5) and (6) to 13.16 and 14.64 in columns (7) and (8).

We do not believe omitting month dummies to be a serious threat to our identification. While

20Note that the figure shows that northeasterly winds are actually least prevalent during the winter months.
Nevertheless, our main point remains which is that there are seasonal patters in winds.
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Figure 8: Seasonality in NE Winds

we concede that there is monthly variation in vog levels due to seasonal patterns in the trade winds,

we cannot conceive of any other omitted variables that exhibit similar monthly variation that also

impact ER admissions for pulmonary-related reasons. Also and importantly, the OLS specifications

that we estimate include a comprehensive set of controls for seasonality including one specification

with month/year dummies whose results are reported in Table A3. Our OLS estimates are robust

to comprehensive controls for seasonality. Because of measurement error those estimates provide

a lower bound on the relation. As such, we view the main effect of inclusion of month dummies

in the first stage to be weakening the instruments without controlling for important confounded

omitted variables and we thus proceed with the parsimonious specification without the seasonal

controls in what follows.

We now estimate the model in equation (3) using IV and present the results in Table 8. In

column 1, we see that the IV estimate of the impact of PM2.5 on the level of pulmonary-related

admissions is 0.418 and is significant at the 1% level. The corresponding OLS estimate in Table

5 was 0.015 and, so the effects are now about 28 times higher. Moving on to the corresponding
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effects of PM2.5 in column 5, we see that the point estimate is 0.553, whereas the analogous OLS

estimate was 0.030, which is about 18 times larger. Accordingly, a one standard deviation increase

in PM10 results in 2.6 additional hospitalizations per day; the corresponding number for PM2.5 is

1.82. Finally, looking at the impacts on the log of admissions in columns 3 and 7, we see that a one

µg/m3 increase in PM10 and PM2.5 is associated with a 5.7% and a 7.0% increase in admissions,

respectively. If we scale these numbers up by the respective standard deviations in PM10 and PM2.5,

we obtain that, respectively, a one standard deviation increase in particulate pollution results in a

35.6% and a 23.1% increase in admissions.

Importantly, the results from Table 8 are robust to the inclusion of quarterly dummies (as well

as day of the week and year dummies) in the second stage, although the estimates are attenuated

by this. For example, the estimate of the impact of PM10 on pulmonary related admissions in the

first column of 0.418 becomes 0.211 (p < 0.10) when quarterly dummies are included. Similarly,

the corresponding estimate for PM2.5 of 0.553 in the fifth column becomes 0.282 (p < 0.01) when

the quarterly dummies are included. These results are not reported but are available upon request.

We now turn to the IV estimates with charges (per day) as the outcome which are reported in

the even numbered columns. We see that a one µg/m3 increase in PM10 and PM2.5 is associated

with $331.38 and $337.01 additional charges, respectively. So, a one standard deviation increase in

PM10 and PM2.5 results in $2067.81 and $1112.13 additional charges, respectively. Turning to the

effects on log charges, we see that a one µg/m3 increase in PM10 and PM2.5 results in a, respective,

8.2% and a 6.7% increase in charges. If we, once again, scale these numbers up by their standard

deviations, we obtain that a one standard deviation increase in PM10 and PM2.5 results in a 51.2%

and 21.1% increase in charges.

Our suspicion is that the substantially larger estimates that we obtain using IV are due to the

presence of measurement error in our pollution variables. The only plausible omitted variable that

could bias OLS downwards is avoidance behaviour. However, using volcanic emissions (or a proxy

of it in our case) does not correct for this bias since avoidance behaviour is a direct consequence

of the vog that is produced by Kı̄lauea which clearly violates the exclusion restriction required

for IV. Moreover, even if it were a viable instrument, the discrepancy between the OLS and IV
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results implies an implausible degree of avoidance. This leaves us with measurement error as the

only source of a downward bias in the OLS estimates, although it does suggest that there is lot

of measurement error in our pollution variables. However, in the appendix, we show that we find

zero effects of pollution on fractures suggesting that little avoidance behaviour is taking place.

Many readers may be surprised by the implications that these estimates have for the amount

of measurement error in our particulate measurements. However, it is important to bear in mind

how particulate pollution is measured. Specifically, PM2.5 (PM10) is the mass per cubic meter of

particles passing through the inlet of a small size-selective sampler with a transmission efficiency

of 50% at an aerodynamic diameter of 2.5 (10) micrometres which leaves plenty of scope for

variations in measurement. The spatial misalignment between point of measurement and exposure

location is also recognized as another important source of measurement error. The epidemiological

literature suggests that these two factors (imprecision and spatial misalignment) may produce

severe measurement error (see footnote 1). Furthermore, measurement error issues are exacerbated

in fixed effects estimators.

Finally, in the appendix, we conduct a series of additional exercises using our IV estimator.

First, we estimate the impact of particulates on our placebo outcome, fractures. We do not find

evidence of any effects. Next, we estimate the IV model using a more granular first stage. We

show that using a more granular first stage moves the estimates towards the OLS estimates because

the proliferation of instruments raises the first stage R2. Finally, we estimate the model excluding

months in which Kona weather is most common. The results are robust to this further suggesting

that our IV results are not simply picking up a possible effect of Kona weather on ER admissions.

4.3 Mechanisms

The IV results just presented seem to indicate that there is a direct effect of particulate pollution

on pulmonary-related health outcomes in the short-term. While this result cannot be driven by

omitted variables stemming from industrial pollution or traffic, one possible confounder is SO2

pollution on the island of O‘ahu that is correlated with either PM10 or PM2.5. In Tables 9 and 10,

we conduct a series of exercises to investigate if our estimates of the effects of particulates on ER
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admissions are contaminated by SO2 that has migrated from the island of Hawai‘i to O‘ahu.

In Table 9, we estimate a version of the first stage in equation (2) except that in lieu of either

PM2.5 or PM10, we use SO2 levels on O‘ahu as the dependent variable. Whereas the estimation of

the first stage in Table 7 demonstrates the degree to which volcanic emissions creates particulate

pollution on O‘ahu, Table 9 indicates the degree to which the volcanic emission on the island of

Hawai‘i (as proxied by SO2 levels on south Hawai‘i) are associated with SO2 levels on O‘ahu. The

basic idea of this exercise is to test if it really is volcanic emission of SO2 on the island of Hawai‘i

that get converted to particulates on O‘ahu that is driving our results.

We estimate all four specifications from Table 9 and we do not find evidence that the volcanic

emissions from Kı̄lauea are raising SO2 levels on O‘ahu. The coefficient on SO2 is never significant

and always has the incorrect sign. In contrast, the coefficient estimates on SO2 in Table 7 are

all positive and highly significant indicating a strong relationship between volcanic emissions from

Kı̄lauea and particulate levels on O‘ahu. Next, the interactions between wind direction and SO2

are marginally significant in the first two columns. However, as shown by the estimates of the

coefficient on NE, this is likely driven by the fact that wind direction is strongly associated with

SO2 levels. Finally, the F -test of joint significance of the coefficients on SO2 and the interaction

term all fail to reject the null that the terms involving SO2 are zero.

In Table 10, we estimate “kitchen sink” regressions restricted to the island of O‘ahu via OLS.

Specifically, we regress pulmonary admissions and charges onto a vector that includes PM10, PM2.5,

and SO2. In both estimations, SO2 is never significant, whereas both particulate measures signifi-

cantly impact admissions in the first column and PM10 has a highly significant impact on charges

in the second column. Finally, the F -test of the joint significance of the two particulate measures

resoundingly rejects the null that both coefficients are zero.

4.4 Results by Age

Next, in Table 11, we investigate the effects of pollutants by the age of the person admitted.

More precisely, we run the regressions using as outcomes the number of admissions in different age

groups. The idea is to see whether there are disproportionate effects for vulnerable populations
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such as the very young and the very old. Because the different bins contain different numbers of

ages, these estimates will vary, in part, for purely mechanical reasons. So, to gain a better idea of

whether the effects of pollution are higher for a given group, we report

(Effect)/(# of ages in bin)× 1000

to adjust for this. Higher numbers indicate larger effects.

We see that younger people are indeed disproportionately affected by particulate pollution. The

adjusted estimates are the largest for the 0-1 age bin for both PM10 and PM2.5. The next highest

for both measures is for the 2-5 bin. So, it appears that it is the very young who are the most

vulnerable to particulate pollution.

4.5 Comparison with the Literature

We conclude this section with a discussion of how our results compare to the existing literature.

In terms of studies focused primarily on particulates, most quasi-experimental approaches have

focused on long-term exposure to large changes in particulate pollution. By comparing similar

areas located on opposite sides of the Huai river, Chen et al. (2013) find ambient concentrations

of particulates are about 55% higher in the north and life expectancies are about 5.5 years lower

due to increased cardiorespiratory mortality. A similar study examined the decision to ban the

sale of coal in Dublin, Ireland in 1990. By comparing six years before and six years after the

coal ban, Clancy et al. (2002) found that black smoke concentrations in Dublin decreased by 70%,

non-trauma deaths declined by 6%, respiratory deaths by 16%, and cardiovascular deaths by 10%.

Jayachandran (2009) uses data from the 2000 Indonesian census to infer the impact of particulate

pollution from large-scale forest fires that occurred in 1997 on infant mortality. Jayachandran

(2009) finds that pollution led to 15,600 “missing children,” or 1.2 percent of the affected birth

cohort. The effect size is much larger in poorer areas.

It has proven much more difficult to estimate the effect of relatively small reductions in partic-

ulates on short-term outcomes such as illness and hospitalization. Thus, there are very few studies
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that we are aware of that allow us to directly compare our results.21 Those that do exist tend to

find smaller effects. Ghosh and Mukherji (2014) explore the impact of air pollution on children in

urban India. Their pollution measures vary fortnightly and they do not use a quasi-experimental

source of pollution variation; their identification strategy relies on using month and city fixed effects

along with other controls. Ghosh and Mukherji (2014) find that a one standard deviation increase

in PM2.5 is associated with a 6.01 probability points increase in the likelihood of a cough, and a 1

standard deviation increase in PM10 is associated with a 14.74 probability points increase in the

probability of a cough. The study closest to our own is probably Ward (2015), which finds strong

evidence for the detrimental effect of particulate pollution for the respiratory health of children in

Ontario, Canada. Ward (2015) finds that a one standard deviation change in particulate pollution

is correlated with a 4% increase in respiratory admissions. This occurs in an area where particulate

levels are well below U.S. EPA standards.

As mentioned earlier, one of the major confounding issues in identifying the short-term effect

of particulates on health is that most major pollutants are highly correlated.22 In fact, many

studies that look at the effect of particulates alongside other pollutants find that particulates

have no effect on health outcomes. For example, Neidell (2004) finds no effect of particulate

pollution on hospitalizations for asthma among children but other pollutants have large effects on

emergency room admissions. The correlation coefficient between PM10 and carbon monoxide in

the Neidell (2004) sample is 0.52 and the coefficient between PM10 and nitrogen dioxide is 0.7. The

corresponding numbers in our sample are 0.0118 and 0.0267. As another example, the correlation

between carbon monoxide and particulate matter in Bharadwaj et al. (2017) typically exceeds

0.9 and, in their own words (p. 507): “It is worth mentioning that an important caveat here is

that while we estimate the impacts of carbon monoxide exposure, CO is emitted along with other

pollutants and we are unable to separately identify the impacts of CO versus PM10 versus PM2.5,

21Chang et al. (2016) explore short-term variation in particulate matter at levels below EPA standards but focus
on worker productivity and not health outcomes.

22The correlation coefficient between PM2.5 and nitrogen dioxide in the Ghosh and Mukherji (2014) study of
Indian cities is 0.51. In the words of Pope III and Dockery (2006): “Highly related to understanding the role
of various characteristics and constituents of PM is understanding the relative importance of various sources and
related copollutants. For example, PM exposure to pollution from the burning of coal typically includes substantial
secondary sulphates and coexposure to SO2. PM exposure to pollution from traffic sources often includes substantial
secondary nitrates and coexposure to nitrogen dioxide and CO.”
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etc.” Thus, one of the reasons we may be one of the few studies to observe both statistically and

economically significant effects of particulates is that we have an instrument that affects only one

pollutant. Kı̄lauea volcano does not emit carbon monoxide or nitrogen dioxide (which creates ozone

in the presence of sunlight).

Within the context of our finding a causal link between short-term variation in particulate pol-

lution and ER hospitalizations, it is interesting to note that of the six main “criteria” pollutants

regulated by the EPA (carbon monoxide, nitrogen dioxide, ozone, sulphur dioxide, lead, and par-

ticulate pollution), particulate pollution and lead are the only pollutants without hourly air quality

standards. In terms of temporal frequency, the standards for particulate pollution are the least

restrictive (for example, the primary standard for PM2.5 is an annual mean of 12.0 µg/m3 whereas

the primary standard for carbon monoxide is 35ppm over a one hour period). This is reflective

of the conventional wisdom and the standard finding in the literature that sustained long-term

exposure to particulate pollution is damaging but there is little evidence of adverse consequences

due to short-term increases in particulates. Our results appear to suggest otherwise.

One important issue with extrapolating our findings to other contexts is whether or not the vog

from Kı̄lauea is comparable to the particulate pollution found in most cities. We consulted with a

number of atmospheric scientists, meteorologists, volcanologists, and medical experts to establish

the main differences between vog from Kı̄lauea and smog.23 Vog from Kı̄lauea and smog are similar

in that both contain large amounts of sulfate aerosols. Vog should not be confused with volcanic

ash (fragments of rock and minerals created during volcanic eruptions). One of the main differences

between Kı̄lauea vog and smog is that smog typically contains nitrogen oxide compounds and high

ozone levels (one of the issues compounding the identification of particulate pollution in most cities)

and the size of the sulfate aerosols may be different. Although the particles in Kı̄lauea vog and

smog are both sulfate aerosols, it is believed that the sulphates in the vog may be more acidic

compared to typical smog, but this has yet to be confirmed on a consistent basis. The acidity

of the sulphates depends on the degree to which they have been neutralized by ammonium gas.

23The information in this paragraph and the next is based on personal communication with Steven Businger,
Steven Howell, Andre Pattantyus, C. Arden Pope III, John Porter, and Elizabeth Tam, as well on research published
in Mather et al. (2012) and Businger et al. (2015).
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Ammonium gas typically comes from human and animal activity (such as breathing) and from the

use of fertilizers. EPA guidelines for particulate pollution are calculated for sulfate aerosols post-

neutralization with ammonium, which may explain why we are observing effects when emissions

are below EPA guidelines but this is complicated by the fact that the EPA standard is based on

long-term exposure.

Overall, smog that is primarily composed of sulfate aerosols (such as that found near coal-fired

power plants) is very similar to Kı̄lauea vog. That said, this does not mean that vog in Hawai‘i

can be directly compared to smog in the coal regions of eastern Pennsylvania, for example. There

are differences based on particle size, shape, chemistry, and absorption of copollutants. However,

this caveat applies to any study of smog pollution; the smog in Pennsylvania can not be directly

compared to smog in New York or California. There are differences in the physical and chemical

properties of particulate pollution across regions and sources. At this point in time, we do not

know how these differences affect health outcomes. In a comprehensive review, Pope III and

Dockery (2006) state on pp. 730-1 that, “One of the biggest gaps in our knowledge relates to

what specific air pollutants, combination of pollutants, sources of pollutants, and characteristics

of pollutants are most responsible for the observed health effects. Although the literature provides

little evidence that a single major or trace component of PM is responsible for the observed health

effects, various general characteristics may affect the relative toxicity of PM pollution.” Thus,

in terms of external validity, we feel most confident extrapolating our results to settings where

smog is primarily composed of sulfate aerosols (e.g. areas near coal-fired power plants in eastern

Pennsylvania) but less so to settings where smog is primarily ozone or other pollutants (e.g. Los

Angeles). In fact, our results reinforce the call by Pope and Dockery to focus on the characteristics

of pollutants. Major advances in public health could be made if we can correctly identify what are

the most dangerous forms of particulate pollution.
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5 Conclusions

We have used variation in air quality induced by volcanic eruptions to test for the impact of SO2

and particulate matter on emergency room admissions and costs in the state of Hawai‘i. Air

quality conditions in Hawai‘i are typically ranked the highest in the nation except when Kı̄lauea is

erupting and winds are coming from the south. We observe a strong statistical correlation between

volcanic emissions and air quality in Hawai‘i. The relationship is strongest post-2008, when there

has been an elevated level of daily emissions. Relying on the assumption that air quality in Hawai‘i

is randomly determined, we find strong evidence that particulate pollution increases pulmonary-

related hospitalization.

Our IV results suggest that a one standard deviation increase in particulate pollution leads to

a 23-36% increase in expenditures on emergency room visits for pulmonary-related outcomes. We

do not find strong effects for pure SO2 pollution or for cardiovascular outcomes. We also find no

effect of volcanic pollution on fractures, our placebo outcome. The effects of particulate pollution

on pulmonary-related admissions are the most concentrated among the very young (children under

the age of five).

A number of caveats need to be borne in mind when interpreting our regression estimates from

a welfare perspective. As discussed earlier, avoidance behaviour likely implies that our regression

estimates of the admissions and costs associated with PM2.5 are biased downwards. Furthermore,

we have restricted our attention to ER admissions. Anecdotal evidence suggests that vog causes

considerable health impacts that do not necessitate a trip to the emergency room.24 A full ac-

counting of the different ways that volcanic pollution affects health in Hawai‘i is beyond the scope

of this analysis but our estimates certainly suggest that the full cost is quite large.

University of Hawai’i at Mānoa, UHERO, and IZA
University of Hawai’i at Mānoa and UHERO
University College London, São Paulo School of Economics, Institute for Fiscal Studies and CeMMAP

24“Vog - volcanic smog - kills plants, casts a haze over Hawai‘i”, USA Today, May 2, 2008.
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Pulmonary Outcomes

Admissions Charges

SO2 0.028 -47.61
(0.060) (64.99)

PM10 0.018∗ 31.97∗∗∗

(0.011) (11.60)
PM2.5 0.050∗∗ 35.29

(0.023) (27.13)
F -Test 9.63 9.70

[0.0001] [0.0001]
NT 4684 4941
∗ significant at the 10% level; ∗∗ significant at the 5% level; ∗∗∗ significant at the 1% level
Notes: All estimations include region, day, month, and year dummies. Newey-West stan-
dard errors are reported in parentheses. The F -Test is a test of the joint significance of
PM10 and PM2.5. Its p-value is reported in brackets

Table 11: Effects of Particulates on Pulmonary Admissions by Age of the Patient
PM10

Effect
# of ages in bin

× 1000 PM2.5
Effect

# of ages in bin
× 1000

0-1 0.005∗∗∗ 2.50 0.007∗∗∗ 3.50
(0.002) (0.002)

2-5 0.003∗∗ 0.75 0.007∗∗∗ 1.75
(0.001) (0.002)

6-10 0.001 0.20 0.000 0.00
(0.001) (0.001)

11-18 0.001 0.13 0.004∗∗∗ 0.50
(0.001) (0.001)

19-50 0.006∗∗∗ 0.19 0.011∗∗∗ 0.34
(0.002) (0.003)

51-65 0.000 0.00 0.006∗∗∗ 0.40
(0.001) (0.002)

65+ 0.002 - 0.006∗∗∗ -
(0.001) (0.002)

∗ significant at the 10% level; ∗∗ significant at the 5% level; ∗∗∗ significant at the 1% level
Notes: All estimates come from a separate OLS regression that includes region, month, and year dummies.
Newey-West standard errors are reported in parentheses. Each cell corresponds to a separate regression.
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