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Abstract

Berkson errors are commonplace in empirical microeconomics. In consumer

demand this form of measurement error occurs when the price an individ-

ual pays is measured by the (weighted) average price paid by individuals in
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a group (e.g., a county), rather than the true transaction price. We show

the importance of Berkson errors for demand estimation with nonseparable

unobserved heterogeneity. We develop a consistent estimator using external

information on the true price distribution. Examining gasoline demand in the

U.S., we document substantial within-market price variability. Accounting for

Berkson errors is quantitatively important. Imposing the Slutsky shape con-

straint reduces sensitivity to Berkson errors.
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Keywords: consumer demand, nonseparable models, quantile regression,

measurement error, gasoline demand, Berkson errors.



1 Introduction

Datasets that are commonly used in microeconometric work often suffer from a partic-

ular type of measurement error in the covariates: Instead of observing the true covariate

a household faces, the researcher observes a group-level (weighted) average, such as a re-

gional average (e.g. in a county). The resulting errors in the covariate are called Berkson

errors. Berkson measurement errors occur frequently in applied econometric analyses in

which information on relevant covariates is not collected directly from households in a

survey, but is taken from an alternative data source and assigned to households based

on their location or other characteristics. While covariates assigned in this way will of-

ten be highly correlated with the true covariates, they will not be identical as long as

there is some variability in the covariate within the specified group. For example, in the

gasoline demand application discussed in Sections 5-6 of this paper, counties experience

within-county price variability of up to 10 percent around the mean, and within-county

variation accounts for a substantial share of the overall variation in prices. Furthermore,

the amount of within-county price variability differs substantially across regions of the

U.S., as shown in Figure 1 below.

[FIGURE 1 ABOUT HERE]

Textbook analysis of this kind of econometric model often focuses on the case when

the model is linear in the covariate and the error is additive. In this case, Berkson errors

do not lead to a bias. This is sometimes taken to mean that Berkson errors are unlikely

to cause significant bias in applied analysis, compared to say classical measurement error.

However, these results no longer hold when the model is nonlinear. In nonlinear models,

Berkson errors are not innocuous and require careful treatment.

In this paper we consider estimation of a demand model with nonseparable unobserved

heterogeneity with Berkson errors. Consider the demand function with nonseparable

unobserved heterogeneity

Q = G(P, Y, U) (1)

where Q is the quantity demanded, P the price, Y household income, and U unobserved
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heterogeneity. Suppose now that we do not observe the true price at which a transaction

took place, which we refer to as P ?. Instead, we observe a county average price P that

is related to P ? by

P ? = P + ε, (2)

where ε is an unobserved random variable, independent of P . With these Berkson errors

(Berkson, 1950), the demand model becomes

Q = G(P + ε, Y, U). (3)

Importantly, Berkson errors in variables are different from classical errors in variables,

where P = P ? + ε, with ε independent of P ?.

In this paper, we argue that understanding the role of Berkson measurement errors in

demand estimation is of growing relevance. The focus on understanding heterogeneity in

responses motivates researchers to investigate behavior at different points in the distri-

bution of unobserved heterogeneity, see e.g. Browning and Carro (2007). Moreover, re-

searchers are increasingly interested in nonlinear models with non-separable unoberserved

heterogeneity, see e.g. references in Cameron and Trivedi (2005); Blundell et al. (2012,

2017). Better data and increased computational power facilitate the study of models

that do not impose linearity restrictions and, instead, allow flexible functional forms with

a high degree of potential nonlinearity.1 Accordingly, nonlinear models are increasingly

important in applications.

This paper develops a method for estimating a nonseparable demand model in the

presence of Berkson errors, using a Maximum Likelihood Estimator (MLE) of quantiles

of demand conditional on price and income. The standard quantile approach is incon-

sistent when prices are subject to Berkson errors. The maximum likelihood procedure

we propose estimates all quantiles simultaneously, and a monotonicity constraint is used

1See Wang (2003, 2004) for estimation of Berkson error models in nonlinear mod-

els using a Minimum Distance estimator. Schennach (2016) reviews recent advances in

estimation of nonlinear models with measurement error.
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to ensure that the estimated quantiles do not cross. This estimator enables us to con-

trast the resulting estimates to results obtained assuming the absence of Berkson errors.

Our estimation procedure accounts for spatial differences in the extent of Berkson error

across locations, a feature which we find to be quantitatively important in our empirical

application.

Delaigle et al. (2006) show the demand function is unidentified nonparametrically un-

less either the distribution of the Berkson error is known or can be estimated consistently

from auxiliary data. Alternatively identification can be delivered if there is an instrument

that is related to the true price in a suitable way (Schennach, 2013). We choose to follow

the first of these approaches and use auxiliary data from external sources to inform us

about the distribution of the Berkson error. We then assess the sensitivity to Berkson

errors across different levels of the Berkson error variance. Finally, we note there is a

potential for prices to be endogenous. To address this we develop a test for the exogeneity

of covariates in the presence of Berkson errors.

We motivate and illustrate our analysis with an application to gasoline demand.

Household travel surveys frequently assign gasoline prices from external sources based on

the location of the household, leading to the presence of Berkson errors. A long-standing

body of work has documented the importance of allowing for potential non-linearities in

household gasoline demand (Hausman and Newey (1995); Yatchew and No (2001); Blun-

dell et al. (2012)). The role of unobserved heterogeneity motivates a quantile modelling

approach (Blundell et al. (2017); Hoderlein and Vanhems (2018)). These considerations

suggest that nonlinearity plays an important role in this appliciation, highlighting the

importance of Berkson errors in applied research and the need to treat them carefully.

We find that accounting for Berkson errors is quantitatively important. For example,

Deadweight Loss measures derived from our estimates differ substantially when we allow

for Berkson errors. In previous work we have investigated the role of shape restrictions

in semiparametric or nonparametric estimation settings (Blundell et al. (2012, 2017)). In

a setting with Berkson errors, we find that imposing shape restrictions, in the form of

the Slutsky inequality, reduces the sensitivity of the estimates to the presence of Berkson
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errors.

The paper proceeds as follows. In the next section, we introduce Berkson errors and

outline the demand model. Section 3 develops the MLE estimator. Section 4 presents the

exogeneity test. In Section 5, we describe household gasoline data, and also document ex-

ternal evidence on the distribution of current local gasoline prices. The estimation results

for the gasoline demand responses to prices and for deadweight loss welfare measures are

presented in Section 6. Section 7 concludes.

2 Berkson Errors and the Demand Model

We begin this section by providing examples of where Berkson errors occur in applied

microeconometric work. We then focus on Berkson errors in demand analysis; we outline

the nonseparable demand model in the absence of Berkson errors, and then introduce

Berkson errors into the model.

2.1 Examples of Berkson Errors

Berkson errors occur commonly in applied econometric work. Our application is to

prices in consumer demand. Here we describe three additional examples where Berkson

errors are likely to be relevant.

A common case is a situation where the researcher does not observe the true value of

the variable of interest, but instead only observes an indicator for the group the individual

belongs to. The researcher then assigns a ‘typical value’ from an external dataset, often

the group average. This group will often be a geographic identifier or a time period. For

example, relevant covariates may not be surveyed or measured at the level of the house-

hold, but are instead approximated by a regional average from an external source. For

example, Schennach (2013) documents the bias which may result from ignoring Berkson

errors in a nonlinear setting, using the effect of air pollution on respiratory health as

application.

Another case is the situation where implementing a treatment exposes individuals to
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unobserved heterogeneity in the treatment intensity. In this setting, the intensity of a

treatment varies randomly and in unobserved manner across treated units. This could be

due to variability in the technology delivering the intervention, or due to differences in the

staff implementing the treatment. For example, the dose of a drug delivered might vary

slightly across patients, the amount of fertilizer spread on plots might vary randomly,

or the support provided to unemployed workers might vary with the caseworker. For

the latter case, Schiprowski (2019) documents significant variation in the effectiveness

of caseworker meetings for unemployed workers, depending on the productivity of the

caseworker; at the same time, details of the caseworker assigned to the unemployed are

typically not observed by researchers.

A third case is a situation where individuals are uncertain about a relevant quantity

and provide an optimal prediction (Hyslop and Imbens, 2001). For example, respondents

in a survey are asked about a quantity they are uncertain about, and provide the best

estimate of this quantity given their information set. When respondents provide an

optimal prediction, the resulting prediction error is uncorrelated to the reported value.

Phelps (1972) develops a model where firms infer productivity from a noisy signal as

well as characteristics of the individual, and form an optimal prediction by a weighted

average of the signal and the expected value given the characteristics. Due to the optimal

prediction any deviation from the true value will be unrelated to the prediction made by

the uncertain individual.

Survey data frequently asks respondents to provide details on variables where respon-

dents may be uncertain about the exact values. For example, Chan and Stevens (2004)

investigate how pension accumulations affect retirement decisions. Since data on pen-

sions is self-reported in their data, the authors consider the possibility that the pension

measure may be a noisy measure of the truth, predicted by the survey respondent, leading

to Berkson error.

In another setting, Hastings et al. (2009) study benefits from attending higher achiev-

ing schools. They use Bayes’ rule to infer a parental preference parameter from a model

of demand for schools, and in turn estimate models which allow the benefits of attendance
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to vary with this parental preference parameter. The measurement error in the estimated

parental preference parameter then exhibits Berkson errors.

In all these cases, the variable used in the analysis differs from the variable which is

relevant for the outcome in a way described by the Berkson error framework. This un-

derscores the wide relevance of these kinds of measurement error for applied econometric

work.

2.2 The Demand Model and the Presence of Berkson Errors

In the absence of Berkson errors, the demand function with nonseparable unobserved

heterogeneity is set out in equation (1) in Section 1. We make the following assumptions.

Assumption 1. (i) ε is statistically independent of (P, Y ). (ii) U is statistically inde-

pendent of (ε, P, Y ).

Assumption 2. G(P, Y, U) is monotone increasing in its third argument.

Without further loss of generality, we assume that U ∼ U[0, 1].2 In Section 4 we

consider the possibility that P is endogenous and, therefore, not independent of U .

Under these assumptions, the α quantile of Q conditional on (P, Y ) is

Qα = G(P, Y, α) ≡ Gα(P, Y ).

That is, the the conditional α quantile of Q recovers the demand function G, evaluated

at U = α.

With Berkson errors, the demand model becomes equation (3). The function G is

unidentified nonparametrically unless either the distribution of ε is known or can be

estimated consistently from auxiliary data (Delaigle et al. (2006)) or, alternatively, there

is an instrument Z that is related to the true price P ? in a suitable way (Schennach

2The assumption of scalar unobserved heterogeneity (U) is restrictive but necessary

to achieve point identification and to do welfare analysis. Hausman and Newey (2017)

and Dette et al. (2016) discuss models with multi-dimensional unobserved heterogeneity.
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(2013)). In this work we follow the first of these approaches, and use auxiliary data to

inform us about the distribution of the Berkson error.

3 Estimation

3.1 A Maximum Likelihood Estimator

In this section we develop the Maximum Likelihood Estimation approach. The model

is

Q = G(P + ε, Y, U); U ∼ U[0, 1].

Therefore,

P (Q ≤ z|P, Y ) = P (G(P + ε, Y, U) ≤ z|P, Y ) = P (U ≤ G−1(P + ε, Y, z)|P, Y ) (4)

=

∫
G−1(P + ε, Y, z)fε(ε)dε

= EεG
−1(P + ε, Y, z),

where G−1(·, ·, z) is the inverse of G in the third argument, and fε(ε) is the probability

density function of the Berkson error.

The left-hand term of equation (4), P (Q ≤ z|P, Y ), is identified by the sampling

process. G−1 and G are identified nonparametrically if and only if G−1 is determined

uniquely by

P (Q ≤ z|P, Y ) = EεG
−1(P + ε, Y, z).

This requires knowledge of fε(ε); Delaigle et al. (2006) present a similar identification

result for a conditional mean model.3

3Note that the identification condition can be formulated as a version of the complete-

ness condition of Nonparametric Instrumental Variables (NPIV) models. See Newey and

Powell (2003).
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The truncated series

G−1(P + ε, Y,Q) ≈
J∑
j=1

θjΨj(P + ε, Y,Q) (5)

provides a flexible parametric approximation to G−1. In the truncated series, J is the

(fixed) truncation point, the Ψj ’s are basis functions and the θj ’s are Fourier coefficients.

Section 5.1 provides details about the choice and number of basis functions used in

our empirical application. The data {Qi, Pi, Yi : i = 1, ..., n} are a random sample of n

households. The log-likelihood function for estimating parameter vector θ is the logarithm

of the probability density of the data. This is:

logL(θ) =
n∑
i=1

log
Jn∑
j=1

θj

∫
∂Ψj(Pi + ε, Yi, z)

∂z

∣∣∣∣
z=Qi

f̂ε(ε)dε,

where f̂ε(ε) is the density estimate described in Section 5.2. Maximum likelihood esti-

mation of θ consists of maximizing logL(θ) subject to the following constraints: first,

that G−1 is non-decreasing in its third argument, and second, 0 ≤ G−1 ≤ 1. The max-

imum likelihood procedure estimates all quantiles simultaneously, and by imposing the

monotonicity constraint above ensures that the estimated quantiles do not cross. For the

presentation of the results, we numerically invert the estimated function Ĝ−1 to obtain

the corresponding demand function Ĝ.

3.2 Shape Restrictions

In some of the estimates we also impose the Slutsky shape restriction from consumer

theory. Assuming quantity, income and prices for household i are measured in logs, and

Si reflects the budget share of household i, the Slutsky constraint, evaluated at (Pi, Yi, Ui)

can be written as

∂Q

∂P
(Pi, Yi, Ui) +

∂Q

∂Y
(Pi, Yi, Ui) Si ≤ 0.
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From U = G−1(P, Y,Q), we re-write the price and income effect in terms of G−1, so that

the Slutsky condition for household i is4

∂G−1

∂P
(Pi, Yi, Qi) +

∂G−1

∂Y
(Pi, Yi, Qi) Si ≥ 0. (6)

The estimation then proceeds by maximizing the log-likehood as before, adding the con-

straint (6) for a set of households in the data.

4 An Exogeneity Test

A common concern in demand estimation is the possible endogeneity of the price

variable, where local prices are correlated with consumer preferences (see Blundell et al.

(2012, 2017)). If a variable W is available as an instrument for the price, the researcher

can test for the presence of endogeneity. In a nonparametric or flexible parametric model,

such a test is likely to have better power properties than a comparison of the exogenous

estimate with an instrumental variables (IV) estimate. We therefore develop an exogene-

ity test, which takes account of the presence of Berkson errors. In this section we state

the test statistic. The corresponding derivations and asymptotic approximation to its

distribution are in Appendix A.2.

Assume that the instrument, W , satisfies

P (U ≤ τ |W,Y ) = τ .

Let G−1
EX denote the inverse demand function G−1, described in Section 3, under the null

4Starting from U = G−1(p, y,Q) and differentiating, we obtain ∂Q
∂p

= − ∂G−1/∂p
∂G−1/∂Q

, and

∂Q
∂y

= − ∂G−1/∂y
∂G−1/∂Q

. Combining these two equations with the Slutsky equation above, we

obtain equation (6).

9



hypothesis H0 that P is exogenous. Under H0

Pr
[
G−1
EX(P + ε, Y,Q) ≤ τ |W = w, Y = y

]
= E

∫
I
[
G−1
EX(P + ε, Y,Q) ≤ τ |W = w, Y = y

]
fε(ε)dε = τ (7)

for any (y, w) in the support of (Y,W ).5 The exogeneity test statistic is based on a sample

analog of this relation. Let fYW denote the probability density function of (Y,W ). Let K

be a probability density function that is supported on [−1, 1] and symmetrical around 0.

Let {hn : n = 1, 2, ...} be a sequence of positive numbers that converges to 0 as n→∞.

K is called a kernel function and {hn} is called a sequence of bandwidths. Denote the

data by {Qi, Pi, Yi,Wi : i = 1, . . . , n}. Let f̂YW be a kernel nonparametric estimator of

fYW :

f̂YW (y, w) =
1

nh2n

n∑
i=1

K

(
Wi − w
hn

)
K

(
Yi − y
hn

)
.

Let Ĝ−1
EX denote the MLE of G−1

EX . Define

Sn(y, w) =
1

nh2

n∑
i=1

{∫
I
[
Ĝ−1
EX(Pi + ε, Yi, Qi) ≤ τ

]
f̂ε(ε)dεK

(
Wi − w
hn

)
K

(
Yi − y
hn

)}
.

Sn(y, w)/f̂YW (y, w) is a sample analog of the integral expression in (7). The test statistic

is

Tn = nh2n

∫ [
Sn(y, w)− τ f̂YW (y, w)

]2
dwdy.

The asymptotic distribution of Tn is non-standard, but the quantiles of the asymptotic

approximation can be constructed with any desired accuracy by Monte Carlo simulation.

5Given the assumptions made on the specification of the inverse demand function, this

is a joint test of exogeneity and parametric restrictions on G−1. In the case of rejection it

may be useful therefore to investigate the sensitivity of the test result to a more flexible

specification. In our application we do not reject exogeneity (see Section 6.3).
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Details are presented in Appendix A.2.

5 Data on Demand and Prices

5.1 The household gasoline demand

The data are from the 2001 National Household Travel Survey (NHTS), which surveys

the civilian noninstitutionalized population in the United States. This is a household

level survey conducted by telephone, and complemented by travel diaries and odometer

readings.6 These data provide information on the travel behavior of selected households.

We focus on annual mileage by vehicles owned by the household.

In order to minimize heterogeneity in the sample, the following restrictions are im-

posed: We restrict attention to households with a white respondent, two or more adults,

and at least one child under age 16. We drop households in the most rural areas, where

farming activities are likely to be particularly important. We also omit households in

Hawaii due to its different geographic situation compared to the continental states. House-

holds without any drivers or where key variables are not observed are excluded, and we

restrict attention to gasoline-based vehicles (excluding diesel, natural gas, or electricity

based vehicles).7 The sample we use is the same as in Blundell et al. (2017).

A key aspect of the data is that although odometer readings and fuel efficiencies are

recorded, price information is not collected at the household level, reflecting the expense in

collecting purchase diaries and the resulting burden for respondents (EIA (2003); Leckey

and Schipper (2011)). Instead, in the NHTS gasoline prices are assigned the fuel cost

in the local area, based on the location of the household (EIA, 2003). In Section 5.2 we

document that households face substantial price variability within local markets, and we

use this information to assess the extent of Berkson errors.

6See ORNL (2004) and Blundell et al. (2012) for further detail on the survey.

7We require gasoline demand of at least one gallon, and we drop one outlier observation

where the reported gasoline share is larger than 1.
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The resulting sample contains 3,640 observations. Table 1 presents summary statis-

tics.

[TABLE 1 ABOUT HERE]

The reported means of our key variables correspond to about 1,250 gallons of gasoline

per year, a gasoline price of $1.33, and household income of about $63,000. For reference,

Table 2 presents baseline estimates of price and income elasticities from a log-log model

of gasoline demand.

[TABLE 2 ABOUT HERE]

In the mean regression model, we find a price elasticity of -0.83 and an income elasticity

of 0.34, similar to the elasticities reported in other studies of gasoline demand (see further

Blundell et al. (2017)). Looking across quantiles, we find the lower quantile households

to be more sensitive to changes in prices and income.

In the estimation below, the function G−1 is specified as a product of three Chebyshev

polynomials, one each for P , Y , and Q. We use cubic polynomials in price and income,

and a 7th-degree polynomial in quantity. The use of Chebyshev polynomials to approxi-

mate functions is well established in approximation theory (e.g., Judd (1998)). Appendix

Table A.2 shows the sensitivity of our empirical results to increasing the degrees of the

polynomials. We do not decrease their degrees because this would produce a more restric-

tive model. The high-degree polynomial in quantity enables us to estimate differences

in the demand function across quantiles of the distribution of unobserved heterogeneity.8

When we impose the Slutsky constraint, using the observed data points in the sample,

we restrict attention to those data points broadly in the areas of the data which we are

focusing our analysis on below.9

8We also trim the top and bottom 1 percent of the quantity distribution.

9For this purpose, we add restrictions for data points between the 10th and the 90th

percentile of the unconditional demand data, 0.2 to 0.36 in the log price dimension, and

household income between 20,000 and 90,000 USD.
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5.2 Dispersion in local gasoline prices

In this subsection, we present evidence on the within-market dispersion of gasoline

prices. To gain insight into this, we draw on data collected by Yilmazkuday (2017),

containing daily gas prices for virtually all gas stations in the U.S. during a one-month

period (July 2015) from MapQuest (http://gasprices.mapquest.com).10 Since these

data are based on fleet transaction data, they are likely to be highly accurate. Together

with the almost universal coverage of gas stations in these data, this dataset is very well

suited for our purpose (see Yilmazkuday (2017) for further detail on these data).11

To provide a description of the within-market price variability, Figure 2 shows a

histogram of the gas prices (measured in logs), after removing county fixed effects and

day fixed effects.

[FIGURE 2 ABOUT HERE]

This histogram shows that there is substantial within-market price variability. Within

the same county (and having accounted for day effects), prices vary frequently by up to

10 percent in either direction. The histogram also suggests that a normal approximation

of the within-market dispersion broadly captures the shape of the distribution.

To show the variability across counties in the price dispersion, we compute the within-

county price dispersion for each county in the US. The resulting map is shown in Figure 1

above. As is evident from the map, price dispersion varies across the United States. For

example, price variability is particularly high in California, but also in other states, such

as Oklahoma, South Dakota or Nevada. Figure 3 shows the histogram of this within-

county price dispersion.

10We have also collected data on local gas price variability from www.gasbuddy.com

for a set of seven examplary counties in the US. The within-county variability from these

GasBuddy prices is very similar to the estimate from the MapQuest data that we describe

in this section; we focus on the MapQuest data due to its almost universal coverage.

11We exclude Alaska and Hawaii from the subsequent analysis to focus on the contigu-

ous United States. Gas stations are assigned to counties based on their zip code.
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[FIGURE 3 ABOUT HERE]

Across all counties, the mean value (unweighted) of the within-market dispersion

is 0.0339 (with first and third quartile taking values of 0.022 and 0.042). Comparing

this value to the reported standard deviation of 0.057 in the NHTS price variable (see

Table 1) shows that a significant amount of price variability occurs within local markets,

suggesting that the Berkson error is an important feature of the price variation in this

sample. In our empirical analysis, we use a normal distribution for the Berkson error, and

allow the standard deviation to vary by U.S. state. To specify the standard deviation,

we use a weighted average across the counties in each state (see Figure 1). This accounts

for the substantial differences in the amount of Berkson errors across different parts of

the U.S., and incorporates the spatial pattern of Berkson errors into our estimation.

Appendix Table A.3 presents results where we do not impose normality on the Berkson

error distribution, instead using a kernel estimate of the empirical distribution of the

Berkson errors, and as before allowing the distribution to vary by state.

5.3 Gasoline price cost shifter

To examine the exogeneity of prices we require a variable which is correlated with

gasoline prices, but uncorrelated with the unobservable type of the household. Building

on earlier work (Blundell et al., 2012), we use transportation cost as a cost shifter. This

reflects that the cost of transporting the fuel from the supply source is an important

determinant of prices.

We measure transportation cost with the distance between one of the major oil plat-

forms in the Gulf of Mexico and the state capital. The U.S. Gulf Coast region accounts

for the majority of total U.S. refinery net production of finished motor gasoline and for

almost two-thirds of U.S. crude oil imports. It is also the starting point for most major

gasoline pipelines. We therefore expect that transportation cost increases with distance

to the Gulf of Mexico (see Blundell et al., 2012, for further details and references). Ap-

pendix Figure A.1 shows the systematic and positive relationship between state-level

average prices and the distance to the Gulf of Mexico.
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6 Empirical Results

6.1 Demand estimates

[FIGURE 4 ABOUT HERE]

Figure 4 shows the ML estimates for the median, for the middle income group

($57,500). Figure 5 compares the estimates across the quartiles of the distribution of

the unobserved heterogeneity, for the same income group.

[FIGURE 5 ABOUT HERE]

The round markers show the MLE estimates without taking account of Berkson errors;

the upside down triangular markers show the MLE with Berkson error. As can be seen

from the Figure, accounting for Berkson errors accentuates the variability in the demand

estimates, and leads to relevant differences in the estimated price responsiveness. For the

median, for example, shifting the price across the full range shown in the figure (from 0.20

to 0.36) leads to a fall in estimated (log) demand by 0.11 assuming the absence of Berkson

errors, compared to 0.21 in the presence of Berkson errors. Note the non-monotonicity

in the unconstrained demand curve estimates, which is an artifact of random sampling

variation (see further Blundell et al. (2012, 2017)). This non-monotonicity appears to

accentuate the sensitivity to the Berkson errors in this empirical example.

The square markers in Figures 4 and 5 show the estimates when we impose Slutsky

negativity. Although there is still a difference in the slope, the two sets of estimates

are now much more similar. Looking across the different quantiles, we note a consistent

finding that imposing the Slutsky inequality restriction removes non-monotonicity and

delivers a smoother estimated demand curve much less sensitive to Berkson errors. This

may be because the shape restriction reduces the nonlinearity in the estimates, so that

they are less sensitive to Berkson errors (Schennach, 2016).

Figure 6 compares the estimated effect at the median across the income distribution,

comparing $72,500, $57,500, and $42,500, representing upper, middle and lower income

households, respectively. These results highlight the importance of the Slutsky restriction
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in achieving monotonicity. In this way, these results not only provide demand function

estimates that are consistent with consumer theory, but in addition attenuate sensitivity

to Berkson errors. However, although the mitigation of sensitivity to Berkson errors

through imposing the Slutsky restriction is a clear empirical finding of our analysis, we

do not claim that it is a theoretical necessity.

[FIGURE 6 ABOUT HERE]

Figure 7 compares the estimates for different magnitudes of the Berkson error, varying

the standard deviation with factor 1.2 and factor 0.8, respectively. For small standard

deviations (panel (b)), the presence of Berkson error makes very little difference to the

demand estimates. However for larger standard deviation of the Berkson errors (panel

(c)), the differences become quantitatively very important. This is especially pronounced

for the unconstrained estimates.

[FIGURE 7 ABOUT HERE]

6.2 Estimating the welfare loss of gasoline taxation

The estimates of the demand function can be used to estimate welfare measures such

as deadweight loss (DWL). We consider a hypothetical tax change which moves the price

from p0 to p1 in a discrete fashion (see Blundell et al. (2017)). Let e(p) denote the

expenditure function at price p and a reference utility level. The DWL of this price

change is then given by

L(p0, p1) = e(p1)− e(p0)− (p1 − p0) Hα

[
p1, e(p1)

]
,

where Hα(p, y) is the Marshallian demand function. L(p0, p1) is computed by replacing

e and H with consistent estimates. The estimator of e, ê, is constructed by numerical

solution of the differential equation

dê(t)

dt
= Ĥα [p(t), ê(t)]

dp(t)

dt
,
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where [p(t), ê(t)] (0 ≤ t ≤ 1) is a price-(estimated) expenditure path.

Deadweight Loss (DWL) estimates are reported in Table 3.

[TABLE 3 ABOUT HERE]

Looking at the unconstrained estimates, the table shows the strong quantitative dif-

ference in the DWL figures between the estimates with Berkson error (columns (1)-(2))

versus those without (columns (3)-(4)). In many cases, the estimates with Berkson errors

but not the Slutsky restriction are more than twice as large as those assuming absence

of Berkson errors.

Regarding the constrained estimates, however, the DWL figures are now much closer

together and often of similar order of magnitude. This underlines a key point from

the demand curve estimates in the previous subsection, the Slutsky constrained demand

estimates reduce sensitivity to the presence of Berkson errors.

We have also computed DWL estimates where we do not assume that Berkson errors

are normally distributed, and instead use a kernel estimator of the empirical distribution

of Berkson errors, allowing these distributions to vary by state. These results are very

similar to our baseline results and are shown in Appendix Table A.3. Appendix Table A.2

shows the sensitivity of the DWL estimates to increasing the degrees of the polynomials

used to approximate G−1. The main conclusions of this paper are unchanged.

6.3 Exogeneity test

In this section we report the empirical results for the endogeneity test. We use Silver-

man’s rule of thumb for the bandwidth parameter hn. To simplify the computation, we

implement the univariate version of the test and specify a common standard deviation of

the Berkson error distribution across the U.S.12 For this purpose, we stratify the sample

along the income dimension in three groups: a low-income group of households (house-

hold income between $35,000 and $50,000), a middle-income group of households (be-

12We set the standard deviation to 0.033, which is the (unweighted) mean across coun-

ties in the U.S., see further Section 5.2 above.
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tween $50,000 and $65,000), and an upper-income group of households (between $65,000

and $80,000). The test is then performed for each income group. The results are shown

in Table 5.

We find we do not reject exogeneity for any of the three income groups. This con-

clusion remains unchanged when we consider moderate variation in the extent of the

Berkson error, multiplying the standard error of the Berkson error by a factor of 0.8

and 1.2, respectively, as shown in the table. The critical values shown in the table do

not take account of the fact that we perform the test three times (for each of the three

income groups). One possibility for adjusting the size for a joint 0.05 level test would be

a Bonferroni adjustment. The adjusted p-value for a joint 0.05 level test of exogeneity is

1−(0.95)(1/3) = 0.01695, at each of the three income groups. Using this more conservative

cutoff would strengthen our conclusion. Based on these results, endogeneity is unlikely

to be a first-order issue for our estimates.

[TABLE 4 ABOUT HERE]

7 Conclusions

It has long been understood that in a mean regression model with a linear effect of

a covariate with Berkson errors and an additive error term, the coefficients in an OLS

regression are unbiased. Recent advances in methods, data, as well as computational

capacity, together with a desire for understanding the effect of heterogeneity in the studied

population, have led to a growing interest in nonlinear models. In nonlinear models, the

role of Berkson errors is much less well understood, and ignoring these errors in general

leads to a bias in the estimates. This motivates our interest in investigating the effect of

Berkson errors, and methods for addressing their presence in the data. We conduct this

analysis in the context of a quantile regression model, where the covariates enter through

a flexible parametric specification, allowing for potential nonlinearity in the effects. Our

application of interest is a gasoline demand model with unobserved heterogeneity, where

the price is measured with Berkson error.
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The presence of Berkson errors is a frequent feature of economic data. It occurs, for

example, when the covariate is measured as a regionally aggregated average, masking

within-region variability. The data generating process features the covariate which in-

cludes the Berkson error but its error-free value is unobserved by the researcher. This

naturally raises the question how much difference recognizing the presence of Berkson

error may make.

We derive a maximum likelihood estimator, which enables us to carry out consistent

estimation in the presence of Berkson errors with a known density. The paper also

develops a test for exogeneity of the Berkson covariate in the presence of an instrument.

We apply the method to the demand for gasoline in the U.S. We examine demand

curves in which we impose the Slutsky inequality constraint and those that do not.

The unconstrained estimated demand function display non-monotonicity in the price of

gasoline. This estimated demand function is substantially affected by Berkson errors.

The estimates which do not take account of the Berkson errors understate the variability

in the price effect. These results show that accounting for Berkson error can have a

substantial effect on the estimated demand function in a standard demand application.

In turn, these estimates result in differences in DWL estimates for given price changes.

In a number of cases, the DWL estimates recognizing the presence of Berkson errors are

more than twice as large as estimates assuming the absence of Berkson errors. Thus,

Berkson errors can have quantitatively large effects.

In our application, the estimated demand function is weakly non-monotonic in the

price. As Blundell et al. (2012, 2017) explain, this can be due to the effects of random

sampling errors on the estimate. We overcome this problem by imposing the Slutsky

constraint on the structural demand function estimates, as a way of adding structure to

the estimation problem. When the Slutsky restriction is imposed, the estimated demand

function is well-behaved and the effects of Berkson errors are somewhat attenuated. These

results illustrate that in a setting where measurement error increases the uncertainty of

the estimates, shape restrictions such as the Slutsky constraint can be particularly useful

for providing additional structure to improve the estimation.
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Figure 1: Within-market variability in gas prices across counties
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No data

Note: Map shows county-level standard-deviation in (log) gasoline prices (after removing
county effects and day fixed effects). Based on station-level data from Yilmazkuday
(2017), see Section 5.2 below for details.
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Table 1: Sample descriptives

Mean St. dev.

Log gasoline demand 7.127 0.646

Log price 0.286 0.057

Log income 11.054 0.580

Observations 3640

Note: Table presents mean and standard deviations. See text for details.
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Table 2: Log-log model estimates

α = 0.25 α = 0.50 α = 0.75 OLS

(1) (2) (3) (4)

log(p) -1.00 -0.72 -0.60 -0.83

[0.22] [0.19] [0.22] [0.18]

log(y) 0.41 0.33 0.23 0.34

[0.02] [0.02] [0.02] [0.02]

Constant 2.58 3.74 5.15 3.62

[0.25] [0.21] [0.25] [0.20]

N 3640 3640 3640 3640

Note: Dependent variable is log gasoline demand. See text for details.
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Figure 2: Within-market price distribution

Note: Histogram shows distribution of (log) gasoline prices, after removing county effects

and day fixed effects. See text for details.

26



Figure 3: Variability in price distribution across counties
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Note: Histogram shows distribution of county-level gas price dispersion, measured as

standard deviation of (log) gasoline prices (after removing county effects and day fixed

effects). See text for details.
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Figure 4: MLE estimates at the median (at middle income)
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Note: The figure shows MLE estimates at the median (τ = 0.50) for the middle income

group. Lines shown in red are estimates accounting for Berkson error, lines shown in blue

assume absence of Berkson error. The figure compares unconstrained estimates versus

Slutsky-constrained estimates (see legend). See text for details.
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Figure 5: MLE estimates across quartiles (at middle income)
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Note: The figure shows MLE estimates at the three quartiles (upper quartile, τ = 0.75,

median, τ = 0.50, and lower quartile, τ = 0.25) for the middle income group. Lines shown

in red are estimates accounting for Berkson error, lines shown in blue assume absence of

Berkson error. The figure compares unconstrained estimates versus Slutsky-constrained

estimates (see legend). See text for details.

30



Figure 6: MLE estimates across the income distribution (at τ = 0.50)

7.1

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

lo
g 

de
m

an
d

7

7.05

7.1

7.15

7.2

7.25

7.3

7.35

7.4

lo
g 

de
m

an
d

6.8

6.85

6.9

6.95

7

7.05

7.1

7.15

7.2

lo
g 

de
m

an
d

MLE, with Berkson
MLE, no Berkson
MLE (shape restricted), with Berkson
MLE (shape restricted), no Berkson

31



Note: The figure shows MLE estimates for the three income groups (top panel: ‘high’

income, corresponding to $72,500, middle panel: ‘medium’ income, corresponding to

$57,500, and bottom panel: ‘low’ income, corresponding to $42,500) at the median (τ =

0.50). Lines shown in red are estimates accounting for Berkson error, lines shown in blue

assume absence of Berkson error. The figure compares unconstrained estimates versus

Slutsky-constrained estimates (see legend). See text for details.
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Figure 7: Comparison of different magnitudes of the Berkson error
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Note: The figure compares the baseline estimates in panel (a) to estimates with different

standard deviation of the Berkson error. Panel (b) reduces the Berkson error standard

deviation by factor 0.8, and panel (c) increases it by factor 1.2. Estimates shown for

the median, at the middle income group. Lines shown in red are estimates accounting

for Berkson error, lines shown in blue assume absence of Berkson error. Round markers

indicate unconstrained estimates, square markers indicate Slutsky-constrained estimates.

See text for details.
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Table 3: DWL estimates

with Berkson errors without Berkson errors

DWL

per

DWL

per

DWL

per

DWL

per

income tax income tax income

(1) (2) (3) (4)

A. Upper quartile (τ=0.75)

high 0.155 7.82 0.054 3.00

unconstrained middle 0.146 8.80 0.055 3.59

low 0.116 8.70 0.043 3.34

high 0.116 6.18 0.094 5.14

constrained middle 0.140 8.52 0.093 5.92

low 0.165 11.65 0.065 5.03

B. Median (τ=0.50)

high 0.130 4.70 0.061 2.40

unconstrained middle 0.117 4.96 0.062 2.80

low 0.101 5.17 0.052 2.80

high 0.130 4.82 0.096 3.66

constrained middle 0.139 5.90 0.092 4.04

low 0.133 6.62 0.069 3.66
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Table 3: DWL estimates (continued)

C. Lower quartile (τ=0.25)

high 0.087 2.20 0.077 2.03

unconstrained middle 0.067 1.98 0.074 2.24

low 0.064 2.28 0.069 2.50

high 0.139 3.51 0.102 2.64

constrained middle 0.118 3.48 0.094 2.80

low 0.087 3.07 0.083 2.96

Note: DWL shown corresponds to a price change from the 5th to the 95th percentile in

the data. Income level ‘high’ corresponds to $72,500, ‘medium’ to $57,500, and ‘low’ to

$42,500. ‘DWL per income’ is re-scaled by ×104 for readibility.
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Table 4: Exogeneity test

test statistic crit value (5%) p-value reject?

(a) HIGH INCOME (N=578)

baseline case 0.1575 0.4000 0.4490 no

reduced Berkson error, factor 0.8 0.1629 0.4000 0.4291 no

increased Berkson error, factor 1.2 0.1443 0.4000 0.5009 no

(b) MEDIUM INCOME (N=555)

baseline case 0.2257 0.4033 0.2459 no

reduced Berkson error, factor 0.8 0.1879 0.4033 0.3444 no

increased Berkson error, factor 1.2 0.2617 0.4033 0.1781 no

(c) LOW INCOME (N=580)

baseline case 0.1338 0.4042 0.5427 no

reduced Berkson error, factor 0.8 0.1490 0.4042 0.4799 no

increased Berkson error, factor 1.2 0.1777 0.4042 0.3768 no

Note: Income range ‘high’ refers to $65,000-$80,000, ‘medium’ to $50,000-$65,000, ‘low’

to $35,000-$50,000. Exogeneity test is conducted separately for each income range.

Bonferroni-adjusted p-value for a joint 0.05 level test of exogeneity is 0.01695. See text

for details.
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