EVALUATING THE IMPACT OF EDUCATION ON EARNINGS IN THE UK: MODELS, METHODS AND RESULTS FROM THE NCDS

Richard Blundell
Lorraine Dearden
Barbara Sianesi

THE INSTITUTE FOR FISCAL STUDIES
WP03/20
Evaluating the Impact of Education on Earnings in the UK: Models, Methods and Results from the NCDS

Richard Blundell‡, Lorraine Dearden♦ and Barbara Sianesi♦
August 2004
(First draft: May 2001)

‡ University College London and Institute for Fiscal Studies
♦ Institute for Fiscal Studies

Abstract
Regression, matching, control function and instrumental variables methods for recovering the impact of education on individual earnings are reviewed for single treatment and sequential multiple treatments with and without heterogeneous returns. The sensitivity of the estimates once applied to a common dataset is then explored. We show the importance of correcting for detailed test score and family background differences and of allowing for (observable) heterogeneity in returns. We find an average return of 27% for those completing higher education versus anything less. Compared to stopping at 16 without qualifications, we find an average return to O-levels of 18%, to A-levels of 24% and to higher education of 48%.

Keywords: Returns to education; Evaluation; Non-experimental methods; Heterogeneity; Selection; Multiple treatments; Matching; Propensity score, Instrument variables, Control function.

Acknowledgements: We would like to thank Bob Butcher, Paul Johnson, Hessel Oosterbeek, Jeff Smith and participants at the RSS Social Statistics Section meeting, the CEE Returns to Education conference and a seminar at PSI for comments on earlier drafts, the editor and the two anonymous referees for this journal for their constructive and detailed comments. We would also like to thank Mario Fiorini for research assistance. This research is jointly funded by the DfES Centre for the Economics of Education and the ESRC Centre for the Microeconomic Analysis of Public Policy at IFS. The usual disclaimer applies.
1. Introduction

With extensive data available over time and individuals on schooling and on earnings, the measurement of the causal effect of education on earnings is one area where we might expect agreement. However, the literature reveals a wide range of estimates. Many of the differences in estimates reflect genuine differences across the types of educational qualifications and the types of individuals being analysed. But other differences are a result of the statistical approach adopted to recover the impact of education on earnings. The aim of this paper is to provide an empirical and methodological comparison of different approaches. In so doing we provide a number of new contributions. First, four popular estimation methods – least squares, matching, control function and instrumental variables – are compared both from a methodological point of view within a common framework and in terms of the sensitivity of the resulting estimates when applied to a common dataset. Secondly, by contrasting the relative magnitude of the different estimates, we try to infer what kind of selection and outcome models underlie our data. The control function provides us with the basis for assessing the importance of residual selection on unobserved returns as well as unobserved individual heterogeneity. We also devote attention to matching, both in its links to simple least squares regression and in terms of the insights it can provide in the interpretation of the results. Thirdly, we use the uniquely rich data from the British cohort studies, in particular the National Child Development Survey (NCDS), to assess the importance of test score and family background information in generating reliable estimates. Finally, our focus on heterogeneity is not limited to individual (observed and unobserved) heterogeneity both in characteristics and in returns, but explicitly considers treatment heterogeneity in a multiple treatment framework distinguishing between discrete levels of educational qualifications.

We are not the first to consider these issues. Indeed, there is a growing literature that tries to understand the variety of estimates and point to the ‘correct’ causal estimate. The paper by Card (1999) is the most recent comprehensive study. Here we also draw on the study by Angrist (1998) who compares OLS, matching and IV estimators in models with heterogeneous treatment effects. As to the empirical literature on the impact of education on earnings in the UK, most studies use the repeated cross-section available in the Family Expenditure Survey, the General Household Survey or the Labour Force Survey. For example, Gosling, Machin and Meghir (2000), Schmitt (1995) and McIntosh (2002) focus on the changing returns over time and are unable to condition on test score and family background information. Harmon and Walker (1995) exploit the natural experiment of a change in the minimum school-leaving age to circumvent the need to observe ability and family background variables. Dearden (1999a and
1999b) and Blundell, Dearden, Goodman and Reed (2000) both use the British NCDS cohort data, although not focusing on a systematic analysis of the type discussed in this paper. Overall, for the UK, most authors choose to adopt qualification-based measures of educational attainment rather than years of education.

We begin our analysis using a single treatment specification focusing on the impact of a specific educational level – such as undertaking higher education. We then consider a multiple treatment model, which distinguishes the impact of many different education levels, thus allowing the attainment of different educational qualifications to have separate effects on earnings. In general, the multiple treatment model would seem a more attractive framework since we will typically be interested in a wide range of education levels with potentially very different returns. We also highlight the distinction between heterogeneous and homogeneous returns, that is whether the response coefficient on the education variable(s) in the earnings equation is allowed to differ across individuals. Observable heterogeneity is straightforward to account for and in our application we extend the least squares, control function and instrumental variables estimators in this direction, thus providing a ‘bridge’ to the matching estimator. By contrast, to allow the heterogeneity to be unobservable to the econometrician, but acted upon by individuals, completely changes the interpretation and the properties of many common estimators. In addition, defining which average parameter is of interest becomes crucial. Section 2 outlines in detail our overall modelling framework and the more specialised models it embeds.

Even where there is agreement on the model specification, there are alternative statistical methods that can be adopted to estimate these models. With experimental data, the standard comparison of control and treatment group recovers an estimate of the average return for the treated under the assumption that the controls are unaffected by the treatment. Although experimental design is possible and growing in popularity in some studies of training, for large reforms to schooling and for measuring the impact of existing educational systems, non-experimental methods are essential. There are broadly two categories of non-experimental methods: those that attempt to control for the correlation between individual factors and schooling choices by way of an excluded instrument, and those that attempt to measure all individual factors that may be the cause of such dependence and then match on these observed variables. Whilst the feasibility of these alternative methods clearly hinges on the nature of the available data, their implementation and properties differ according to whether the model is one of homogeneous or heterogeneous response and whether schooling is represented through a single or a multiple measure. No given non-experimental estimator is uniformly superior to all others; the choice between the various estimation methods should be guided by the postulated
model for the outcome and selection processes and the corresponding parameter of interest to be recovered, as well as the richness and nature of the available data in the application at hand.

Our results argue for a cautious approach to the use of any estimator. These results are derived in Section 4 using the British NCDS data, a rich longitudinal cohort study of all people born in Britain in a week in March 1958. In particular, our results show the importance of test score and family background information in pinning down the effect of educational qualifications on earnings. When adopting a matching estimator, they point towards a careful choice of matching variables and highlight the difference in interpretation between measuring the impact of an educational qualification among those who received the qualification and those who did not. They also suggest the use of a control function approach to assess the validity of assumptions on selection where suitable exclusion restrictions can be found.

The estimates point to an average return of about 27% for those completing some form of higher education compared with anything less. Compared with leaving school at 16 without qualifications, we also find an average return to O levels of around 18%, to A levels of 24% and to higher education of 48%. This latter finding implies that the annualised rate of return is 9.5% compared with leaving school at 16 without qualifications. However, the distinction between those who leave school at the minimum school-leaving age with and without (O-level) qualifications makes it more difficult to estimate a unique rate of return to ‘years’ of education. In fact, when the baseline comparison is with leaving school at 16 irrespective of qualifications, the average return to a year of higher education falls to around 6.6%. If we instead annualise the returns to A levels (compared with leaving at 16 irrespective of qualifications), the average return per year of education is even lower, at 5.6%. In comparison with US studies, we thus find less evidence of a ‘linear’ relationship between years of schooling and earnings; educational stages seem to matter.

It may be worth pointing out that in line with most microeconometric literature, we uniquely focus on the private return to education, ignoring any potential externalities that may benefit the economy at large. In addition, the average individual ‘return’ to education we report here is only one component in a full analysis of the private returns to education, which would have to balance individual costs against a flow of such returns over the working life. Moreover, we say nothing about the riskiness of education returns, an important determinant of educational choices among less wealthy families.

The paper proceeds as follows. In Section 2, the single treatment and multiple treatment specifications are examined. Section 3 then compares the least squares, matching, control function and instrumental variables estimators for these specifications. The estimators are then
empirically contrasted in Section 4, focusing on men to avoid confounding issues arising from selection into employment. We first consider a simple single treatment model looking at the return from undertaking some form of higher education (college education). We then move on to look at the estimates from a multiple treatment model, which includes higher education as well as lower-level school qualifications and their equivalents. In Section 5, we highlight our main methodological conclusions.

2. The general modelling framework

The problem of measuring the impact of education on earnings falls quite neatly into the evaluation literature: the measurement of the causal impact of a generic ‘treatment’ on an outcome of interest (see, for example, Card (2001) and Heckman, LaLonde and Smith (1999)). In order to cover a fairly flexible representation of schooling, we will consider the multiple treatment case of a finite set of highest schooling levels attainable by any given individual. We write the exhaustive set of \(J+1 \) treatments (schooling levels) under examination as 0,1,...,\(J \) and denote the attainment by individual \(i \) of schooling level \(j \) as his or her highest level by \(S_i = j \). This specification is very flexible and can cover education outcomes that occur in some natural sequence – including completion of \(j \) years of schooling by individual \(i \).

One can think of a set of potential outcomes associated to each of the \(J+1 \) treatments: \(y^0_i, y^1_i, \ldots, y^J_i \), where \(y^j_i \) denotes the (log) earnings of individual \(i \) were \(i \) to receive schooling level \(j \).

The problem of estimating the returns to education can be phrased as the evaluation of the causal effect of one schooling level \(j \) relative to another (without loss of generality, let this be treatment 0) on the outcome considered, \(y^j_i \). In terms of the notation established above, interest will lie in recovering quantities of the form \(y^j_i - y^0_i \), averaged over some population of interest, such as the whole population or those who did actually achieve that level.

Each individual, however, receives only one of the treatments, and the remaining \(J \) potential outcomes are unobserved counterfactuals. At the core of the evaluation problem, including its application to the returns to education framework, is thus the attempt to estimate missing data. The observed outcome of individual \(i \) can be written as

\[
y_i = y^0_i + \sum_{j=1}^{J} (y^j_i - y^0_i)S_i.
\]

Equation (1) is extremely general; however, we require some further notation before we can discuss the various models and estimation methods that are the subject of this paper. We let potential outcomes depend on both observed covariates \(X_i \) and unobserved factors \(u^j_i \) in the
following general way:

\[y'_i^j = f_j(X_i, u'_i^j) \quad \text{for } j = 0,1,\ldots,J. \]

(2)

For this representation to be meaningful, the stable unit-treatment value assumption needs to be satisfied (SUTVA – Rubin (1980), and, for further discussions, Rubin (1986) and Holland (1986)). This assumption requires that an individual’s potential outcomes as well as the chosen education level are independent from the schooling choices of other individuals in the population, thus ruling out spillover or general equilibrium effects. Note also that implicit in (2) is the requirement that the observables \(X \) be exogenous in the sense that their potential values do not depend on treatment status, or, equivalently, that their potential values for the different treatment states coincide \(X_{ji} = X_i \) for \(j=0,1,\ldots,J \). Natural candidates for \(X \) that are not determined or affected by treatments \(S \) are time-constant factors, as well as pre-treatment characteristics.

Assuming additive separability between observables and unobservables, we can write

\[y'_i^j = m_j(X_i) + u'_i^j \]

with \(E[y'_i^j | X_i] = m_j(X_i) \), i.e. assuming that the observable regressors \(X \) are unrelated to the unobservables \(u \). We will maintain these exogeneity assumptions on the \(X \)s throughout.

Let the state-specific unobservable components of earnings be written as

\[u_i^j = \alpha_i + \epsilon_i + b_{ji} \quad \text{for } j = 0,1,\ldots,J \]

with \(\alpha \) representing some unobservable individual trait, such as ability or motivation, that affects earnings for any given level of schooling, \(b_{ji} \) measuring the individual-specific unobserved marginal return to schooling level \(j \) relative to level 0 in terms of the particular definition of earnings \(y_i \) (for convenience, let us normalise \(b_{0i} \) to 0) and \(\epsilon_i \) being the standard residual, possibly capturing measurement error in earnings as well (measurement error in the schooling variable \(S \) may also be important and will be touched upon later).

Given this general specification, equation (1) for observed earnings becomes

\[
y_i^j = m_0(X_i) + \sum_{j=1}^{J} (m_j(X_i) - m_0(X_i))S_{ji} + \sum_{j=1}^{J} (u_i^j - u_i^0)S_{ji} + \alpha_i + \epsilon_i \\
= m_0(X_i) + \sum_{j=1}^{J} b_{ji}S_{ji} + \sum_{j=1}^{J} b_{ji}S_{ji} + \alpha_i + \epsilon_i \\
= m_0(X_i) + \sum_{j=1}^{J} \beta_{ji}S_{ji} + \alpha_i + \epsilon_i
\]

(3)

with \(\beta_{ji} \equiv b_{ji}(X_i) + b_{ji} \).

In this set-up, \(\beta_{ji} \), the private return to schooling level \(j \) (relative to schooling level 0), is allowed to be heterogeneous across individuals in both observable and unobservable
dimensions; $b(X_i)$ represents the return for individuals with characteristics X_i and thus captures observable heterogeneity in returns; while b_{ji} represents the individual-specific unobserved return to schooling level j, conditional on X_i. Typically, we would assume the α_i and b_{ji} to have a finite population mean (denoted by α_0 and b_{j0} respectively) and variance.

With this general specification in place, we can now look at the differences between the homogeneous and heterogeneous returns models and within these models look at differences between single treatment, multiple treatment and one-factor models.

2.1 The homogeneous returns model

In the homogeneous returns framework, the rate of return to a given schooling level j is the same across individuals; that is, $\beta_{ji} = \beta_j$ for all individuals i. In the case of a finite set of schooling levels (specific discrete educational levels as in the application that will be used in our paper, or even finer with each level representing a year of education), the *multiple treatment model* (3) becomes

$$y_i = m_0(X_i) + \beta_1 S_{i1} + \beta_2 S_{i2} + \ldots + \beta_j S_{ij} + \alpha_i + \epsilon_i$$

where α_i represents differing relative levels of earnings across individuals for any given level of schooling and the β_js measure the impact of schooling level j relative to the base level. Although the returns to a given level are homogeneous across individuals, the different schooling levels are allowed to have different impacts on earnings.

This is not true in the popular *one-factor human capital model*, where it is assumed that education can always be aggregated into a single measure, say years of schooling, $S_i \in \{0, 1, \ldots, J\}$. In this specification,

$$y_i = m_0(X_i) + \beta S_i + \alpha_i + \epsilon_i$$

which can be obtained from our general set-up (3) with the various treatment levels as years of education (so that $S_i = \sum_{j=1}^J j S_{ij}$ with $S_{ij} = 1_{(S_{ij})}$) by assuming the linear relationship $\beta_{ji} = \beta_j = j\beta$ – that is, that the (homogeneous) return to j years of schooling is simply j times the return to one year of schooling – or, equivalently, $\beta_{j+1} - \beta_j = \beta$ for all $j = 0, 1, \ldots, J$ – that is, that each additional year of schooling has the same marginal return.

A final specification, which can be obtained from (3) by setting $J=1$, is the *single treatment model*, the aim of which is to recover the causal impact of a single type of schooling level $S_1 \in \{0, 1\}$ – for example, undertaking higher education or college compared to not doing so. In the homogeneous returns model, this single treatment specification can be expressed as
\[y_i = m_i(X_i) + \beta S_{it} + \alpha_i + \varepsilon_i \]

where \(\beta \) is the return to achieving the education level under consideration (relative to educational level 0 as chosen for \(S_{it}=0 \)).

Note that although in these homogeneous returns models \(\beta_i \) is constant across all individuals, \(\alpha_i \) is allowed to vary across \(i \) to capture the differing productivities (or abilities or earnings levels) across individuals with the same education levels. Since educational choices and thus attained educational levels are likely to differ according to productivity (or expected earnings levels more generally), the schooling variable \(S \) is very likely to be correlated with \(\alpha_i \) and this in turn will induce a bias in the simple least squares estimation of \(\beta \). In addition, if \(S \) is measured with error, there will be some attenuation bias. We will return to these estimation issues in more detail below.

2.2 The heterogeneous returns model

Despite the preponderance of the homogeneous returns model in the early literature, the recent focus has been on models allowing for heterogeneous returns (examples include Card (2001), Heckman, Smith and Clements (1997), Dearden (1999a and 1999b) and Blundell, Dearden, Goodman and Reed (2000)). Once the return is allowed to vary across individuals, the immediate question concerns the parameter of interest. Is it the average of the individual returns? If so, what average? Is it the average in the population whether or not the educational level under consideration is achieved – the average treatment effect (ATE) – or the average among those individuals actually observed to achieve the educational level – the average effect of treatment on the treated (ATT) – or the average among those who have not achieved that educational level – the average effect of treatment on the non-treated (ATNT)? In some cases, a policy change can be used to recover a local average treatment effect, measuring the return for an even smaller subgroup of individuals: those induced to take the educational level by the policy change. We discuss all these in greater detail in the next section.

In the general framework (3), the return to schooling level \(j \) is allowed to be heterogeneous across individuals in both observable and unobservable dimensions. It is straightforward to generalise models such as (4) or (5) to allow for the observable heterogeneity \(b_j(X_i) \). What is more difficult is how we deal with unobserved heterogeneity across individuals in the response parameter \(\beta \). This person-specific component of the return may be observed by the individual but is unobserved by the analyst.

Consider first the single treatment model. A general relationship between the level of education under examination and earnings is then written as
where b_i can be thought of as random coefficients representing the heterogeneous relationship between educational qualification S_{1i} and earnings, conditional on observables X_i ($b_0 \equiv E[b_i]$ denoting its population mean).

The parameter of interest will be some average of $b(X_i) + b_i$, with the average taken over the sub-population of interest; the resulting parameter will thus measure the average return to achieving education level S_1 for this group. Examples are the average effect of treatment on the treated, $\beta_{ATT} \equiv E[b(X_i) + b_i | S_u = 1]$, the average treatment effect in the population, $\beta_{ATE} \equiv E[b(X_i)] + b_0$, and the average effect on the non-treated, $\beta_{ATNT} \equiv E[b(X_i) + b_i | S_u = 0]$.

As we mentioned in the homogeneous models above, the dependence of the schooling level(s) on the unobserved ‘ability’ component α_i is critical in understanding the bias from the direct comparison of groups with and without education level S_1. A further key issue in determining the properties of standard econometric estimators in the heterogeneous effects model is whether or not schooling choices S_{1i} depend on the unobservable determinants of the individual’s marginal return from schooling b_i, conditional on observables X_i. If, given the information in X_i, there is some gain b_i still unobserved by the econometrician but known in advance (or predictable) by the individual when making his or her educational choices, then it would seem sensible to assume that choices will, in part at least, reflect the return to earnings of that choice. Since, however, b_i is likely to vary over time and will depend on the relative levels of demand and supply, the dependence of schooling choices on marginal returns is not clear-cut. Some persistence in returns is, however, likely, and so some correlation would seem plausible.

The discussion of heterogeneous returns extends easily to the multiple treatment model (4):

\[
y_i = m_0(X_i) + \beta_1 S_{1i} + \alpha_i + \epsilon_i
\]

In fact, the three basic specifications (6), (4) and (7) will form the main alternatives considered in the paper, the single discrete treatment case (6) being the baseline specification.

3. Estimation methods

The aim of this section is to investigate the properties of alternative non-experimental estimation methods for each of the model specifications considered above. We begin by considering a naive estimator in the general framework (3) of the returns to educational level j (relative to level 0) for individuals reaching this level: the simple difference between the observed average earnings of individuals with $S_{ji}=1$ and the observed average earnings of individuals with $S_{0i}=1$.

\[
y_i = m_0(X_i) + \beta_1 S_{1i} + \alpha_i + \epsilon_i
\]

\[
y_i = m_0(X_i) + (b(X_i) + b_i)S_{1i} + (b_i - b_0)S_{0i} + \alpha_i + \epsilon_i
\]
This observed difference in conditional means can be rewritten in terms of the average effect of treatment on the treated parameter (what we are after) and the bias potentially arising when the earnings of the observed group with $S_{0i}=1$ ($y_i^0 | S_{0i}=1$) are used to represent the counterfactual ($y_i^0 | S_{ji}=1$):

Naive estimator

$$\equiv E[y_i | S_{ji}=1] - E[y_i | S_{0i}=1] = E[y_i - y_i^0 | S_{ji}=1] - \{E[y_i^0 | S_{ji}=1] - E[y_i^0 | S_{0i}=1]\}$$

$$= \text{ATT} - \{\text{bias}\}.$$

The key issue is that since educational choices are likely to be the result of systematic decisions, the sample of individuals who make each choice will not be random. If this is ignored and individuals who make the choice are simply compared with those who did not, the estimates will suffer from bias.

Using experimental data, Heckman, Ichimura, Smith and Todd (1998) provide a very useful breakdown of this bias term:

$$\text{bias} \equiv E[y_i^0 | S_{ji}=1] - E[y_i^0 | S_{0i}=1] = B_1 + B_2 + B_3.$$

(8)

The first two components in (8) arise from differences in the distribution of observed characteristics X between the two groups: B_1 represents the bias component due to non-overlapping support of the observables and B_2 is the error part due to mis-weighting on the common support, as the resulting empirical distributions of observables are not necessarily the same even when restricted to the same support. The last component, B_3, is the true econometric selection bias resulting from ‘selection on unobservables’ – in our notation, α_i, b_{ji} and ϵ_i.

Of course, a properly designed randomised experiment would eliminate the bias discussed above, but pure education or schooling experiments are very rare. We must instead rely on non-experimental methods, each of which uses observed data together with some appropriate identifying assumptions to recover the missing counterfactual. Depending on the richness and nature of the available data and the postulated model for the outcome and selection processes, the researcher can thus choose from among the alternative methods the one most likely to avoid or correct the sources of bias outlined above. We now look at these methods in turn. The initial setting for the discussion of the three broad classes of alternative methods we consider -- instrumental variable, control function and matching -- will be based on biases that occur from the simple application of ordinary least squares to the different models described in the previous section.
3.1 Least squares

Consider the single treatment model examining the impact of a given educational level S_i. The model is to be estimated for a given population (defined, for instance, as all those individuals entering schooling at a particular date). In the heterogeneous case, specification (6) is

$$y_i = m_0(X_i) + b(X_i)S_i + b_iS_{ii} + \alpha_i + \epsilon_i.$$

There are several potential sources of bias in the least squares regression of log earnings on schooling to recover average treatment effects. The following borrows from the bias decomposition highlighted in (8):

3.1.1 Bias due to observables: mis-specification

First of all, note that to implement (6) parametrically, the functional forms for both (i) $E[y_i^0 \mid X_i] = m_0(X_i)$ and (ii) $E[y_i^1 - y_i^0 \mid X_i] = b(X_i)$ need to be specified. A standard least squares specification would generally control linearly for the set of observables $\{S_{ii}, X_i \equiv [X_{ii} \ldots X_{M_i}]'\}$ – that is, it would be of the form

$$y_i = \gamma'X_i + bS_{ii} + \eta_i$$

and thus suffer from two potential sources of bias from observables:

(i) **Mis-specification of the no-treatment outcome $m_0(X_i)$**. If the true model contains higher-order terms of the Xs, or interactions between the various Xs, the OLS estimate of b would in general be biased due to omitted variables.

(ii) **Heterogeneous returns $b(X_i)$**. Simple OLS constrains the returns to be homogeneous. If, by contrast, the effect of schooling varies according to some of the Xs, the OLS estimate of b will not in general recover the ATT. To illustrate this point, focus on one X variable and suppose the true model is $y_i = a + b_0 S_{ii} + b_s X_i S_{ii} + dX_i + \epsilon_i$. If one estimates the simple model above, which ignores $X_i S_{ii}$, the estimated coefficient on S_{ii} will have expectation $E(\hat{b}) = b_0 + b_s \phi$, with ϕ defined in $X_i S_{ii} = \pi + \tau X_i + \phi S_{ii} + \nu_i$. OLS will not in general recover the ATT $\equiv E(Y_1 - Y_0 \mid S_{i}=1) = b_0 + b_s E(X \mid S_{i}=1)$, since in general ϕ is different from $E(X \mid S_{i}=1)$:

$$\phi = E(X \mid S_{i}=1) \frac{V(X) - Cov(X, S_i)}{V(X) - Cov(X, S_i) V(S_i)^{-1}}.$$

These mis-specification issues are linked to the source of bias B_2 – not appropriately reweighting the observations to control fully for the difference in the distribution of X over the common region – as well as to source B_1 – lack of sufficient overlap in the two groups’ densities of X. The OLS approximation of the regression function $m_0(X_i)$ over the non-overlapping region
is purely based on the chosen (in our example, linear) functional form; in other words, for treated individuals outside the common support, the OLS identification of the counterfactual crucially relies on being based on the correctly specified model.

3.1.2 Bias due to unobservables

Gathering the unobservables together in equation (6), we have

$$y_i = m_o(X_i) + \beta_{ATE}(X_i)S_{i1} + e_i \quad \text{with} \quad e_i \equiv \alpha_i + (b_i - b_0)S_{i1} + \varepsilon_i$$ \hspace{1cm} (9)

$$y_i = m_o(X_i) + \beta_{ATT}(X_i)S_{i1} + w_i \quad \text{with} \quad w_i \equiv \alpha_i + (b_i - E[b_i | X_i, S_{i1} = 1])S_{i1} + \varepsilon_i$$ \hspace{1cm} (10)

where $\beta_{ATE}(X_i) \equiv b(X_i) + b_0$ and $\beta_{ATT}(X_i) \equiv b(X_i) + E[b_i | X_i, S_{i1} = 1]$.

Running a correctly specified OLS regression will produce a biased estimator of either parameter of interest if there is correlation between S_{i1} and the error term e_i or w_i, i.e. $E[e_i | X_i, S_{i1}]$ and $E[w_i | X_i, S_{i1}]$ may be non-zero. Such correlation may arise from different sources:

(i) **Ability bias.** This arises due to the likely correlation between the α_i intercept term (absolute advantage) and S_{i1}. If higher-ability or inherently more productive individuals tend to acquire more education, the two terms will be positively correlated, inducing an upward bias in the estimated average return β_{ATE} or β_{ATT}.

(ii) **Returns bias.** This occurs when the individual returns component b_i (comparative advantage) is itself correlated with the schooling decision S_{i1}. The direction of this bias is less clear and will depend on the average returns among the sub-population of those with schooling level $S_{i1}=1$. Indeed, if (a) ability bias is negligible (i.e. $E[\alpha_i | X_i, S_{i1}] = 0$), (b) the ability heterogeneity is unrelated to the unobserved return and (c) the returns bias is the only remaining bias present (i.e. $E[b_i | X_i, S_{i1} = 1] \neq b_0$), then (9) and (10) show how the least squares coefficient on S_{i1} will be biased for the average treatment effect β_{ATE} but will recover the average effect of treatment on the treated β_{ATT}.

(iii) **Measurement error bias.** One can think of ε_i as including measurement error in the schooling variable S_{i1}. Note that since the educational variable is a dummy or categorical variable, measurement error will be non-classical (in particular, it will vary with the level of education reported). Kane, Rouse and Staiger (1999) show that both OLS and instrumental variables estimates may be biased and that it is not possible to place any a-priori general restrictions on the direction or magnitude of the bias of either estimator. By contrast, in the case of a continuous variable affected by (classical) measurement error, OLS estimates of the return would be downward biased and instrumental variables
estimates consistent.

In the homogeneous returns model, the second source of bias is, by definition, absent. This is the case that is much discussed in the literature (especially in the one-factor ‘years of schooling’ model (5)), where the upward ability bias may be partially offset by the attenuation measurement-error bias; this trade-off was at the heart of the early studies on measuring gross private returns (for a review see in particular Griliches (1977) and Card (1999)).

Much of the practical discussion of the properties of least squares bias depends on the richness of other control variables that may be entered to capture the omitted factors. Indeed, the method of matching takes this further by trying to control directly and flexibly for all those variables at the root of selection bias.

3.2 Matching methods

The general matching method is a non-parametric approach to the problem of identifying the treatment impact on outcomes. To recover the average treatment effect on the treated, the matching method tries to mimic *ex post* an experiment by choosing a comparison group from among the non-treated such that the selected group is as similar as possible to the treatment group in terms of their observable characteristics. Under the matching assumption, all the outcome-relevant differences between treated and non-treated individuals are captured in their observable attributes, the only remaining difference between the two groups being their treatment status. In this case, the average outcome of the matched non-treated individuals constitutes the correct sample counterpart for the missing information on the outcomes the treated would have experienced, on average, had they not been treated.

The central issue in the matching method is choosing the appropriate matching variables. This is a knife-edge decision as there can be too many as well as too few to satisfy the identifying assumption for recovering a consistent estimate of the treatment effect. In some ways, this mirrors the issue of choosing an appropriate excluded instrument in the IV and control function approaches discussed below. However, instruments do not make appropriate matching variables and vice versa. Instruments should satisfy an exclusion condition in the outcome equation conditional on the treatment, whereas matching variables should affect both the outcome and treatment equations.

3.2.1 General matching methods

To illustrate the matching solution for the average impact of treatment on the treated in a more formal way, consider the *completely general* specification of the earnings outcomes (2) – i.e. the one not even requiring additive separability – in the single discrete treatment case ($J=1$). Among
the set of variables X in the earnings equations, we distinguish those affecting both potential non-treatment outcomes y^0 and schooling choices S from those affecting outcomes y^0 alone. We denote the former subset of X by \tilde{X}.

The solution to the missing counterfactual advanced by matching is based on a fundamental assumption of conditional independence between non-treatment outcomes and the schooling variable S_i:

$$\text{MM:A1} \quad y^0 \perp S_i \mid \tilde{X}_i.$$

This assumption of selection on observables requires that, conditional on an appropriate set of observed attributes, the distribution of the (counterfactual) outcome y^0 in the treated group is the same as the (observed) distribution of y^0 in the non-treated group. For each treated observation ($y_i : i \in \{S_i=1\}$), we can look for a non-treated (set of) observation(s) ($y_i : i \in \{S_i=0\}$) with the same \tilde{X} realisation. Under the matching assumption that the chosen group of matched comparisons (i.e. conditional on the \tilde{X}'s used to select them) does not differ from the treatment group by any variable that is systematically linked to the non-participation outcome y^0, this matched comparison group constitutes the required counterfactual.

As should be clear, the matching method avoids defining a specific form for the outcome equation, decision process or either unobservable term. Still, translated into the more specialised framework of equation (6), MM:A1 becomes: $(\alpha_i, \varepsilon_i) \perp S_i \mid \tilde{X}_i$. Note that the individual-specific return to education b_i is allowed to be correlated with the schooling decision S_{i1}, provided in this case $(\alpha_i, \varepsilon_i) \perp b_i \mid \tilde{X}_i$ also holds. In particular, individuals may decide to acquire schooling on the basis of their individual gain from it (unobserved by the analyst), as long as this individual gain is not correlated to their non-treatment outcome y^0 conditional on \tilde{X}.

For the matching procedure to have empirical content, it is also required that

$$\text{MM:A2} \quad P(S_{i1}=1 \mid \tilde{X}_i) < 1 \quad \text{for} \quad \tilde{X} \in C^*,$$

which prevents \tilde{X} from being a perfect predictor of treatment status, guaranteeing that all treated individuals have a counterpart in the non-treated population for the set of \tilde{X} values over which we seek to make a comparison. Depending on the sample in use, this can be quite a strong requirement (for example, when the education level under consideration is directed to a well-specified group). If there are regions where the support of \tilde{X} does not overlap for the treated and non-treated groups, matching has in fact to be performed over the common support region C^*; the estimated treatment effect has then to be redefined as the mean treatment effect for those treated falling within the common support.
Note that to identify the average treatment effect on the treated over C^*, this weaker version in terms of conditional mean independence, implied by MM:A1 and MM:A2, would actually suffice:

$$\text{MM:A1'} \quad E(y^0 | \bar{X}, S_i = 1) = E(y^0 | \bar{X}, S_i = 0) \quad \text{for} \quad \bar{X} \in C^*.$$

Based on these conditions, a subset of comparable observations is formed from the original sample, and with those a consistent estimator for the treatment impact on the treated (within the common support C^*) is, simply, the mean conditional difference in earnings over C^*, appropriately weighted by the distribution of \bar{X} in the treated group.

The preceding discussion has referred to the estimation of the average treatment effect on the treated. If we are also interested in using matching to recover an estimate of the effect of treatment on the non-treated, as we do in our application to the NCDS data, a symmetric procedure applies, where MM:A2 needs to be extended to $0 < P(S_i | X_i = 1 | \bar{X}_i)$ for $\bar{X} \in C^*$ and MM:A1 to include y^1. In terms of the framework of equation (6), the strengthened MM:A1 thus becomes $(\alpha, e_i, b_i) \perp S_i | \bar{X}_i$, highlighting how now possibly heterogeneous returns b_i are prevented from affecting educational choices by observably identical agents. Under these strengthened assumptions, the average treatment effect $E[y^1 - y^0]$ can then be simply calculated as a weighted average of the effect on the treated and the effect on the non-treated.

As to the potential sources of bias highlighted by the decomposition in (8), matching corrects for the first two, B_1 and B_2, through the process of choosing and reweighting observations within the common support. In fact, in the general non-parametric matching method, a quite general form of $m_0(X)$ and of interactions $b(X)S_i$ is allowed (note the use of X rather than \bar{X} – matching would balance also the variables affecting outcomes alone, since by construction they would not differ between treatment groups), avoiding the potential mis-specification bias highlighted for OLS. Arguing the importance of the remaining source of bias – the one due to unobservables – amounts to arguing the inadequacy of the conditional independence assumption (MM:A1) in the specific problem at hand, which should be done in relation to the richness of the available observables (i.e. the data \bar{X}) in connection with the selection and outcome processes.

Turning now to the implementation of matching estimators, consider the ATT (similar procedures obviously apply for the ATNT). Based on MM:A1’ but without invoking any functional form assumption, the ATT can be estimated by performing any type of non-parametric estimation of the conditional expectation function in the non-treated group, $E(y_i | S_{it} = 0, \bar{X}_i)$, and averaging it over the distribution of \bar{X} in the treated group (within the common support). Matching, like for instance stratification on \bar{X}, is one possible way of performing
such a non-parametric regression. The main idea of matching is to pair to each treated individual \(i \) some group of ‘comparable’ non-treated individuals and to then associate to the outcome \(y_i \) of treated \(i \) a matched outcome \(\hat{y}_i \) given by the (weighted) outcomes of his or her ‘neighbours’ in the comparison group.

The general form of the matching estimator for the average effect of treatment on the treated (within the common support) is then given by

\[
\hat{\beta}_{MM} = \hat{\beta}_{ATT} = \frac{1}{N^*_i} \sum_{i \in \{S_i = 1\} \cap C^*} \{y_i - \hat{y}_i\}
\]

where \(N^*_i \) is the number of treated individuals falling within the common support \(C^* \). In particular, \(1/N^*_i \sum \hat{y}_j \) is the estimate of the average no-treatment counterfactual for the treated, \(E(y^0 \mid S_i = 1) \).

The general form for the outcome to be paired to treated \(i \)’s outcome is

\[
\hat{y}_i = \sum_{j \in C^*(X_i)} W_{ij} y_j
\]

where

- \(C^*(\tilde{X}_i) \) defines treated observation \(i \)’s neighbours in the comparison group (where proximity is in terms of their characteristics to \(i \)’s characteristics \(X_i \)); and

- \(W_{ij} \) is the weight placed on non-treated observation \(j \) in forming a comparison with treated observation \(i \) (\(W_{ij} \in [0,1] \) with \(\sum_{j \in C^*(X_i)} W_{ij} = 1 \)).

Although the various matching estimators are all consistent; in finite samples they may produce different estimates as they differ in the way they construct the matched outcome \(\hat{y} \). Specifically, differences will depend on how they define the neighbourhood in the non-treated group for each treated observation, and, related to this, in how they choose the weights.

The traditional and most intuitive form of matching is nearest-neighbour (or one-to-one) matching, which associates to the outcome of treated unit \(i \) a ‘matched’ outcome given by the outcome of the most observably similar non-treated unit. A variant of nearest-neighbour matching is caliper matching (see Cochran and Rubin (1973) and, for a recent application, Dehejia and Wahba (1999)). The ‘caliper’ is used to exclude observations for which there is no close match, thus enforcing common support. A different class of matching estimators has recently been proposed by Heckman, Ichimura and Todd (1997 and 1998) and Heckman, Ichimura, Smith and Todd (1998). In kernel-based matching, the outcome \(y_i \) of treated unit \(i \) is matched to a weighted average of the outcomes of more (possibly all) non-treated units, where
the weight given to non-treated unit j is in proportion to the closeness of the characteristics of i and j. The weight in equation (11) above is set to

$$W_{ij} = \frac{K\left(\frac{\bar{x}_i - \bar{x}_j}{h}\right)}{\sum_{j \in C^i(X_i)} K\left(\frac{\bar{x}_i - \bar{x}_j}{h}\right)},$$

where $K(\cdot)$ is a non-negative, symmetric and unimodal function, such as the Gaussian kernel $K(u) \propto \exp(-u^2 / 2)$ or the Epanechnikov kernel $K(u) \propto (1 - u^2) \cdot 1(|u|<1)$.

3.2.2 High dimensionality and the propensity score

It is clear that when a wide range of X variables is in use, finding exact matches can be extremely difficult. One possibility to reduce the high dimensionality of the problem is to use some metric to combine all the matching variables into a scalar measuring the distance between any two observations. An attractive, unit-free metric is the Mahalanobis metric, which assigns weight to each co-ordinate of X in proportion to the inverse of the variance of that co-ordinate. The distance between observations i and j is thus defined as

$$d(i,j) = \sqrt{(\bar{x}_i - \bar{x}_j)^T V^{-1} (\bar{x}_i - \bar{x}_j)},$$

with V being the covariance matrix of X in the sample (see Abadie and Imbens (2002) and Zhao (2004) for alternative matching metrics).

Following Rosenbaum and Rubin (1983), distance can also be measured in terms of a balancing score $q(X)$, defined as a function of the observables such that $X \perp S_i \mid q(X)$. One such balancing score is the propensity score, the probability to receive treatment given the set of observed characteristics jointly affecting treatment status and outcomes:

$$p(X_i) = P(S_i = 1 \mid X_i).$$

By definition, treatment and non-treatment observations with the same value of the propensity score have the same distribution of the full vector of regressors X. Rosenbaum and Rubin have further shown that under MM:A1 and MM:A2 (i.e. when $(y^1, y^0) \perp S_i \mid X$ and $0 < p(X) < 1$), then $(y^1, y^0) \perp S_i \mid p(X)$. In other words, the conditional independence assumption remains valid if $p(X)$ – a scalar variable – is used for matching rather than the complete vector of X.

Propensity score matching thus reduces the high-dimensional non-parametric estimation problem to a one-dimensional one: the estimation of the mean outcome in the non-treated group as a function of the propensity score. Again, there are a number of ways to perform this one-dimensional non-parametric regression, such as stratification on the propensity score, weighting on the propensity score, or the matching estimators outlined above, where in the formulae for W_{ij} and $C^0(.)$ the vector X_i is simply replaced by the scalar $p_i = p(X_i)$.

It should however be noted that in empirical applications the propensity score first needs to
be estimated. Since a fully non-parametric estimation of the propensity score would be liable to suffer from the same curse of dimensionality as the standard matching estimator, the estimation task is generally accomplished parametrically, for example via a logit or probit specification. The validity of the chosen specification for the propensity score can then be tested against a non-parametric alternative. Propensity score matching thus becomes a semi-parametric approach to the evaluation problem (see Imbens (2004) for a review of fully non-parametric estimators based on MM:A1). The estimated propensity score is used only in a first step to correct (parametrically) for the selection bias (on observables) by selecting that subset of the non-treated group to act as comparison group or, more generally, by appropriately reweighing the non-treated. All that is required is in fact its ability to balance the relevant observables in the two matched groups (\(\bar{X} \perp S_i \mid \hat{P}(\bar{X}) \)). Simple parametric specifications for the propensity score have indeed often been found to be quite effective in achieving the required balancing (see e.g. Zhao (2004)). The second step, the estimation of the treatment effect, can then be accomplished in a fully non-parametric way, in particular without imposing any functional form restriction on how the treatment effect or the no-treatment outcome can vary according to \(\bar{X} \). The curse of dimensionality is thus sidestepped by parametrically estimating the propensity score only, while the specification of \(E[y^1 \mid X] \) and of \(E[y^0 \mid X] \) is left completely unrestricted.

The estimation of the standard errors of the treatment effects should ideally adjust for the additional sources of variability introduced by the estimation of the propensity score as well as by the matching process itself. For kernel-based matching, analytical asymptotic results have been derived by Heckman, Ichimura and Todd (1998), while for one-to-one matching, the common solution is to resort to bootstrapped confidence intervals. (For a comparison of the small-sample properties of different matching estimators, see Abadie and Imbens (2002), Angrist and Han (2004), Frölich (2004) and Zhao (2004)).

Before concluding this overview of the implementation of propensity score matching estimators, we briefly consider how the various types actually implement the common support requirement. Simple nearest-neighbour matching does not impose any a-priori common support restriction. In fact, the nearest neighbour could at times turn out to be quite apart. By contrast, its caliper variant, provided it is not too ‘tolerant’ (as perceived by the researcher), automatically uses the observations within the common support of the propensity score. As to kernel-based matching estimators, two factors automatically affect the imposition of common support: the choice of bandwidth (a small bandwidth amounts to being very strict in terms of the distance between a non-treated unit and the treated unit under consideration, de facto using – i.e. placing weight on – only those comparisons in a close neighbourhood of the treated unit’s propensity
score) and, to a lesser extent, the choice of kernel (for example, to smooth at a given \(p_i \), the Gaussian kernel uses all the non-treated units, i.e. \(C^0(p_i) = \{ j: S_{ij} = 0 \} \), while the Epanechnikov only those non-treated units whose propensity score falls within a fixed radius \(h \) from \(p_i \), i.e. \(C^0(p_i) = \{ j \in \{ S_{ij} = 0 \} : |p_i - p_j| < h \} \). Typically in kernel-based matching the common support is additionally imposed on treated individuals at the boundaries: those treated whose propensity score is larger than the largest propensity score in the non-treated pool are left unmatched. A more refined procedure is suggested by Heckman, Ichimura and Todd (1997), who ‘trim’ the common support region of those treated falling where the comparison group density, albeit strictly positive, is still considered too thin to produce reliable estimates.

In our empirical application, we use the publicly available Stata command developed by Leuven and Sianesi (2003) that performs various types of Mahalanobis-metric and propensity score matching, allows to impose common support in the ways described above as well as to test the resulting matching quality in terms of covariate balance in the matched groups.

3.2.3 The multiple treatment model

Rosenbaum and Rubin’s (1983) potential outcome approach for the case of a single treatment has recently been generalised to the case where a whole range of treatments are available by Imbens (2000) and Lechner (2001a). With assumptions MM:A1 and MM:A2 appropriately extended, all the required effects are identified. As with the single-treatment case, it is easy to show that a one-dimensional (generalised) propensity score can be derived, which ensures the balancing of the observables in the two groups being compared at a time.

3.2.4 Some drawbacks to matching

The most obvious criticism that may be directed to the matching approach is the fact that its identifying conditional independence assumption (MM:A1) is in general a very strong one. Despite the fact that compared with OLS, matching is implemented in a more flexible way (in particular not imposing linearity or a homogeneous additive treatment effect), both matching and OLS estimates depend on this same crucial assumption of selection on observables, and both are thus as good as the control variables \(X \) they use (cf. also Smith and Todd (2004)). As mentioned above, the plausibility of such an assumption should always be discussed on a case-by-case basis, with account being taken of the informational richness of the available dataset (\(\tilde{X} \)) in relation to a detailed understanding of the institutional set-up by which selection into the treatment takes place (see Sianesi (2004) for an example of such a discussion in the context of training programmes).
Furthermore, the common support requirement implicit in MM:A2 may at times prove quite restrictive. In the case of social experiments, randomisation generates a comparison group for each \tilde{X} in the population of the treated, so that the average effect on the treated can be estimated over the entire support of the treated. By contrast, under the conditional independence assumption, matching generates a comparison group, but only for those \tilde{X} values that satisfy MM:A2. In some cases, matching may not succeed in finding a non-treated observation with a similar propensity score for all of the participants. If MM:A2 fails for some subgroup(s) of the participants, the estimated treatment effect has then to be redefined as the mean treatment effect for those treated falling within the common support.

If the impact of treatment is homogeneous, at least within the treated group, no additional problem arises besides the loss of information. Note though that the setting is general enough to include the heterogeneous case. If the impact of participation differs across treated individuals, restricting to the common support may actually change the parameter being estimated; in other words, it is possible that the estimated impact does not represent the mean treatment effect on the treated. This is certainly a drawback of matching in respect to randomised experiments; when compared with standard parametric methods, though, it can be viewed as the price to pay for not resorting to the specification of a functional relationship that would allow one to extrapolate outside the common support. In fact, the absence of good overlap may in general cast doubt on the robustness of traditional methods relying on functional form (in the schooling context, see Heckman and Vytlacil (2000), Dearden, Ferri and Meghir (2002) and Black and Smith (2004)). Lechner (2001b) derives non-parametric bounds for the treatment effect to check the robustness of the results to the problem of a lack of common support.

3.3 Instrumental variable methods

The instrumental variable (IV) estimator seems a natural method to turn to in estimating returns – at least in the homogeneous returns model. The third source of bias in (8) – and the most difficult to avoid in the case of least squares and matching – arises from the correlation of observable schooling measures with the unobservables in the earnings regression. If an instrument can be found that is correlated with the true measure of schooling and uncorrelated with the unobservables in the outcome equation, then a consistent estimator of the returns is achievable in the homogeneous returns model but only in some special cases for the heterogeneous returns model. Even in the homogeneous returns model, though, finding a suitable instrument is no easy task, since it must satisfy the criteria of being correlated with the schooling choice while being correctly excluded from the earnings equation.
To investigate the properties of the IV estimator more formally, consider the general heterogeneous model (6), which also allows for \(b(X_i) \). Note that without loss of generality, this observably heterogeneous return \(b(X_i) \) can be assumed to be linear in the \(X \) variables, so that \(b(X_i) \) \(S_{ii} = b_X X_i S_{ii} \), where \(b_X \) is the vector of the additional returns for individuals with characteristics \(X \). Note again that in this framework, \(b_i \) captures the individual idiosyncratic gain (or loss) and has population mean of \(b_0 \). The model can thus be written as

\[
y_i = m_0(X_i) + b_X X_i S_{ii} + b_0 S_{ii} + e_i \quad \text{with} \quad e_i = \alpha_i + \varepsilon_i + (b_i - b_0) S_{ii}.
\] (12)

Define an instrumental variable \(Z_i \) and assume that it satisfies the orthogonality conditions:

\[\text{IV:A1} \quad E[\alpha_i | Z_i, X_i] = E[\alpha_i | X_i] = 0\]
\[\text{IV:A2} \quad E[\varepsilon_i | Z_i, X_i] = E[\varepsilon_i | X_i] = 0\]

With a valid instrument \(Z_i \), one may envisage two ways of applying the IV method to estimate model (12):

(i) **IV method (A)** uses the extended set of instruments \(Z_i \) and \(Z_i X_i \) to instrument \(S_{ii} \) and \(X_i S_{ii} \). It needs sufficient variation in the covariance of the interactions of \(X_i \) and \(S_{ii} \) and the interactions of \(X_i \) and \(Z_i \). Note, however, that this approach does not fully exploit the mean independence assumptions IV:A1 and IV:A2.

(ii) **IV method (B)**, by contrast, recognises that under the conditional mean independence assumptions, application of IV is equivalent to replacing \(S_{ii} \) with its prediction in both its linear and its interactions terms. To see this, assume

\[\text{IV:A3} \quad E[S_{ii} | Z_i, X_i] \text{ is a non-trivial function of } Z \text{ for any } X.\]

Taking the conditional expectation of (12) under assumptions IV:A1, A2 and A3 and noting that \(E[X_i S_{ii} | Z_i, X_i] = X_i E[S_{ii} | Z_i, X_i] \) yields

\[
E[y_i | Z_i, X_i] = m_0(X_i) + (b_X X_i + b_0)E[S_{ii} | Z_i, X_i] + E[(b_i - b_0) S_{ii} | Z_i, X_i].
\] (13)

Note first of all that in the absence of interactions \(b(X_i) \), the two IV methods are identical. Secondly, irrespective of the method chosen, there is nothing in assumptions IV:A1–A3 that makes the final term in (13) disappear. Since the error term \(e_i \) in (12) contains the interaction between the endogenous schooling dummy and the unobserved individual return, neither way of applying IV would produce consistent estimates. In fact, even assuming that the instrument is uncorrelated also with the unobservable return component would not help further on its own.

Two alternative paths can now be followed: considering some special cases based on further and stronger assumptions or redefining the parameter to be identified (specifically, as a local average treatment effect).

As to the first identifying strategy, one obvious possibility consists in assuming that returns
are homogeneous, at least conditional on \(X_i \), i.e. that \(b_i \) is constant for all \(i \) and equal to its average value, \(b_0 \). Consequently, the problematic last term in (13) is zero by definition and under IV:A1, A2 and A3, IV estimation can produce a consistent estimator of \(b(X_i) + b_0 \). Note, however, how, in general, the IV estimator needs to deal with the specification of \(m_0(X_i) \) and \(b(X_i) \) and, just like least squares, is thus subject to the potential mis-specification bias that the matching method avoids.

Special cases allowing for heterogeneous individual returns \(b_i \) and based on appropriate assumptions (for example, homoskedastic returns) have been highlighted by Wooldridge (1997) for the one-factor ‘years of schooling’ specification. We now, however, focus on the general heterogeneous returns model with a single binary treatment (6).

3.3.1 IV in the heterogeneous single treatment model

As seen above, assumptions IV:A1–A3 are not enough to ensure consistency in the general case of heterogeneous returns. Note that IV:A3 requires \(E[S_i | Z, X] = P[S_i = 1 | Z, X] \) to be a non-trivial function of \(Z \) for each \(X \) – in particular, it requires the instrument to take on at least two distinct values, say 0 and 1, which affect the schooling participation probability differently. Add now the additional property that for the treated, the instrument \(Z \) is not correlated with the individual-specific component of the return \(b_i \) (conditional on \(X \)). Formally:

IV:A4 \[E[b_i | Z_i, X_i, S_{ui} = 1] = E[b_i | X_i, S_{ui} = 1]. \]

Under IV:A1, A2, A3 and A4, taking expectations, we get

\[
E[y_i | Z_i, X_i] = m_0(X_i) + (b(X_i) + E[b_i | X_i, S_{ui} = 1]) P(S_{ui} = 1 | Z_i, X_i),
\]

from which we can recover the conditional effect of treatment on the treated:

\[
\hat{\beta}_{IV}(X) = \frac{E[y_i | X_i, Z_i = 1] - E[y_i | X_i, Z_i = 0]}{P(S_{ui} = 1 | X_i, Z_i = 1) - P(S_{ui} = 1 | X_i, Z_i = 0)} = b(X_i) + E[b_i | X_i, S_{ui} = 1] = E[y_i^1 - y_i^0 | X_i, S_{ui} = 1] = \hat{\beta}_{ATT}(X)
\]

Assumption IV:A4 is strong: while allowing for heterogeneous returns \(b_i \), it requires schooling decisions to be unrelated to these individual gains. In particular, since IV:A3 requires the schooling participation probability to depend on \(Z \), IV:A4 rules out that this probability depends on \(b_i \) as well.

Before turning to the issues that emerge when schooling choices are allowed to depend on \(b_i \), it is worth noting the issues of efficiency and of weak instruments. Efficiency concerns the imprecision induced in IV estimation when the instrument has a low correlation with the schooling variable. The weak instrument case is an extreme version of this where the sample
correlation is very weak and the true correlation is near to zero. In this case, IV will tend to the biased OLS estimator even in very large samples (see Bound, Jaeger and Baker (1995) and Staiger and Stock (1997)).

The local average treatment effect

In the general heterogeneous returns model with a single treatment (6), even when individuals do partly base their education choices on their individual-specific gain b_i, it is still possible to provide a potentially interesting interpretation of the IV estimator – although it does not estimate the average effect of treatment on the treated or the average treatment effect parameters. The interpretation of IV in this model specification was precisely the motivation for the local average treatment effect of Imbens and Angrist (1994).

Suppose there is a single discrete binary instrument $Z_i \in \{0,1\}$ – for example, a discrete change in some educational ruling that is positively correlated with the schooling level S_i in the population. There will be four subgroups of individuals: those who do not take the education level under consideration whatever the value of the instrument (the ‘never-takers’), those who always choose to acquire it (the ‘always-takers’) and those who are induced by the instrument to change their behaviour, either in a perverse way (the ‘defiers’) or in line with the instrument (the ‘compliers’). This last group is of particular interest: it is made up of those individuals who are seen with education level $S_i=1$ after the rule change ($Z_i=1$) but who would not have had this level of schooling in the absence of the rule change ($Z_i=0$). To be more precise, we define the events

\[
\begin{align*}
D_i &\equiv \{S_i \mid Z_i = 1\} \\
D_{0i} &\equiv \{S_i \mid Z_i = 0\}
\end{align*}
\]

and assume, in addition to the exclusion restrictions concerning the unobservables in the base state (IV:A1 and A2) and to the non-zero causal effect of Z on S_i (IV:A3 – i.e. the instrument must actually change the behaviour of some individuals):

\[
\text{LATE:A1} \quad \text{For all } i, \text{ either } [D_i \geq D_{0i}] \text{ or } [D_i \leq D_{0i}] \text{ (note that due to IV:A3, strict inequality must hold for at least some } i).
\]

This ‘monotonicity’ assumption requires the instrument to have the same directional effect on all those whose behaviour it changes, de facto ruling out the possibility of either defiers or compliers. Assume in particular that $D_i \geq D_{0i}$ (Z makes it more likely to take S_1 and there are no defiers); in this case, the standard IV estimator (14)

\[
\frac{E[y_i \mid X_i, Z_i = 1] - E[y_i \mid X_i, Z_i = 0]}{P[S_i = 1 \mid X_i, Z_i = 1] - P[S_i = 1 \mid X_i, Z_i = 0]}
\]
reduces to \(b(X_i) + E[h_i | X_i, D_i > D_0] = E[y_i^1 - y_i^0 | X_i, D_i > D_0] \). This provides a useful interpretation for IV: it estimates the average returns among those individuals (with characteristics \(X \)) who are induced to change behaviour because of a change in the instrument – the local average treatment effect (LATE).

More generally, the IV (two-stage-least-squares) estimator with regressors is a variance-weighted average of the LATEs conditional on the covariates. The IV estimator exploiting more than one instrument is an average of the various single-instrument LATE estimators with weights proportional to the effect of each instrument on the treatment dummy (see Angrist and Imbens (1995)).

LATE avoids invoking the strong assumption IV:A4. Indeed, as Angrist, Imbens and Rubin (1996) note, assumption IV:A4 would amount to assuming that the return is the same for always-takers and compliers – in other words, that it is the same for all the treated, which comprise these two groups. However, if one is not willing to make this assumption, which would identify the ATT parameter as in (14), then the only causal effect to be identified by IV is LATE, that is the effect for compliers.

3.3.2 Some drawbacks to IV

The first requirement of IV estimation is the availability of a suitable and credible instrument. Although ingenious instruments have often been put forward (from selected parental background variables, to birth order, to smoking behaviour when young, to distance to college, etc.), they have all been subject to some criticism, since it is hard to justify fully the untestable exclusion restriction they must satisfy. Policy reforms have also been used as instruments. For example, researchers have compared the outcomes among two groups that have a similar distribution of abilities but who, from some exogenous reform, experience different schooling outcomes (for example, see the papers by Angrist and Krueger (1991 and 1992), Butcher and Case (1994), Harmon and Walker (1995) and Meghir and Palme (2000)). As we have seen, in the homogeneous treatment effects model, this can be used to estimate the average treatment effect, but in the heterogeneous model where individuals act on their heterogeneous returns, it will estimate the average of returns among those induced to take more schooling by the reform – the local average treatment effect. The LATE discussion highlights the point that the IV estimate will typically vary depending on which instrument is used. Moreover, it could vary widely, when heterogeneity is important, according to the local average it recovers, since the compliers could be a group with very high (or very low) returns.

In any case, the lesson to be learned from the discussion of IV in the heterogeneous returns
model is that the nature of the incidence of the instrument within the distribution of returns b_i is critical in understanding the estimated coefficient, and may at times prove useful in bounding the returns in the population. A potentially promising approach in such a context (see, for example, Ichino and Winter-Ebmer (1999)) is to look for different instruments that are likely to affect different subgroups in the population, while having a theoretical framework to assess to which part of the returns distribution these complier groups belong. We provide some further discussion of this in relation to our application to the UK NCDS data in Section 4.2.

3.4 Control function methods

If individuals make educational choices on the basis of their unobserved characteristics, the error in the earnings equation will have a non-zero expectation (see equations (9) and (10)). In particular, if individuals who select into schooling have higher average unobserved ability and/or if individuals with higher unobserved idiosyncratic returns from schooling invest more in education, the residual in the earnings equation of high-education individuals will have a positive mean. The basis of the control function approach is to recover the average treatment effect by controlling directly for the correlation of the error term in the outcome equation with the schooling variable (e_i in equation (9)). For this, an explicit model of the schooling selection process is required. More precisely, the control function method augments the earnings regression with an additional equation determining educational choice.

3.4.1 The single treatment model

Suppose that in the heterogeneous single treatment model (6),

$$y_i = m_i(X_i) + (b(X_i) + b_0)S_{ii} + (b_i - b_0)S_{ii} + \alpha_i + \varepsilon_i$$

assignment to schooling S_{ii} is determined according to the binary response model

$$CF:A1 \quad S_{ii} = 1(m_i(Z_i, X_i) + v_i \geq 0)$$

where v_i is distributed independently of Z and X.

In addition to specifying this assignment rule, the control function approach requires that, conditional on some function of m_i, the unobservable heterogeneity in the outcome equation, α_i and b_{ii}, is distributed independently of the schooling variable S_{ii}. One way of achieving this, in the single treatment specification (6), is to assume that the unobserved productivity or ability term α_i and the unobserved individual residual return b_i relate to S_{ii} according to

$$CF:A2 \quad \alpha_i - \alpha_0 = r_\alpha v_i + \xi_{\alpha i} \quad \text{with } v_i \perp \xi_{\alpha i}$$

$$CF:A3 \quad b_i - b_0 = r_v v_i + \xi_{b i} \quad \text{with } v_i \perp \xi_{b i}.$$

Note that generally – and as we do in our application below – joint normality of the unobservables in the assignment and outcome equations is assumed, from which CF:A2 and
CF:A3 directly follow, with \(r_{\alpha v} = \rho_{\alpha v} \cdot \sigma_{\alpha} \) and \(r_{\beta v} = \rho_{\beta v} \cdot \sigma_{\beta} \).

Given CF:A1–A3, we can write the conditional means of the unobservables as

\[
\begin{align*}
E[(\alpha_i - \alpha_0) \mid Z_i, X_i, S_i = 1] &= r_{\alpha i} \lambda_{i} \cdot (X_i, Z_i) \\
E[(\alpha_i - \alpha_0) \mid Z_i, X_i, S_i = 0] &= r_{\alpha i} \lambda_{i} \cdot (X_i, Z_i) \\
E[(b_i - b_0) \mid Z_i, X_i, S_i = 1] &= r_{b i} \lambda_{i} \cdot (X_i, Z_i)
\end{align*}
\]

(15)

where \(\lambda_{i} \) and \(\lambda_{i} \) are the conditional mean terms or ‘control functions’ that fully account for the dependence of the unobservable determinants of the outcome variable \(y \) on the schooling assignment. Consequently, the outcome model can be written as

\[
y_i = \alpha_0 + m_0(X_i) + (b(X_i) + b_0)S_i + r_{\alpha v}(1 - S_i)\lambda_{i} + (r_{\alpha v} + r_{b v})S_i\lambda_{i} + \epsilon_i
\]

with \(E[\epsilon_i \mid X_i, S_i, (1 - S_i)\lambda_{i}, S_i\lambda_{i}] = 0 \).

If \(\lambda_{i} \) and \(\lambda_{i} \) were known, then the least squares estimation of the augmented log earnings regression, which includes the additional terms \((1 - S_i)\lambda_{i} \) and \(S_i\lambda_{i} \), would produce a consistent estimator of the average treatment effect \(b(X_i) + b_0 \) and thus of \(\beta_{ATE} = b_0 + E[b(X_i)] \). These additional control function terms thus eliminate the bias induced by the endogeneity of schooling.

The control function terms depend on the unknown reduced form \(m_s(\cdot) \) and the distribution of the unobservables. Under joint normality, the control functions take the form

\[
\lambda_{i} = -\frac{\phi(m_s(Z_i, X_i))}{1 - \Phi(m_s(Z_i, X_i))} \quad \text{and} \quad \lambda_{i} = \frac{\phi(m_s(Z_i, X_i))}{\Phi(m_s(Z_i, X_i))}
\]

and are the standard inverse Mills ratios from the normal selection model (Heckman, 1979). These can be consistently estimated from a first-stage binary response regression, analogous to the standard selection model. Once these terms are included in the outcome equation (6) and implicitly subtracted from its error term \((b_i - b_0)S_i + \alpha_i + \epsilon_i \), the purged disturbance will be orthogonal to all of the regressors in the new equation (see Heckman and Robb (1985)). For an early analysis of the heterogeneous one-factor ‘years of schooling’ model, see, for example, Garen (1984). In general, an exclusion restriction on \(Z \) will allow semi-parametric estimation of this model (see Powell (1994) for a review of semi-parametric selection model estimation).

It is interesting to observe that under the structure imposed on the model, the estimated \(r \) coefficients are informative on the presence and direction of the selection process (\(r_{\alpha v} \) for selection on unobserved ‘ability’ and \(r_{b v} \) for selection on unobserved returns). Specifically, if an exclusion restriction can be found and the control function assumptions invoked, then the null of no selection on the unobservables can be tested directly. In the framework above, this simply
amounts to a joint test of the null hypothesis that \(r_{\alpha} \) and \(r_{\beta} \) are zero.

Not only does the model readily estimate the average treatment effect for a random individual even when individuals select into education based on their unobserved individual gain from it (compare (15) with IV:A4), but the distributional assumptions made allow us to recover the other parameters of interest too:

\[
\beta_{\text{ATT}} = b_0 + E[b(X_i) | S_{ij} = 1] + r_{\beta}E[\lambda_i | S_{ij} = 1]
\]
\[
\beta_{\text{ATNT}} = b_0 + E[b(X_i) | S_{ij} = 0] + r_{\beta}E[\lambda_i | S_{ij} = 0]
\]

where \(\rho_{\beta} \) is identified from the difference of the coefficients on \(S_{ij} \lambda_i \) and on \((1 - S_{ij}) \lambda_i \). Note that in the special case where \(b_i \) is constant for all \(i \) or where individuals do not select on the basis of their unobserved gain (\(b_i \) and \(v_i \) are uncorrelated, so that \(r_{\beta} = 0 \)), the control function terms reduce to a single term \(r_{\alpha}[(1 - S_{ij}) \lambda_i + S_{ij} \lambda_i] \).

In summary, although in general an exclusion restriction is required (see also 3.4.3 below), the structure imposed by the control function approach yields a number of gains compared to IV. First, it allows one to recover the average treatment effect even when individuals select on the basis of unobserved heterogeneous returns; in such a context IV would by contrast be able to only recover a LATE for the specific and instrument-related sub-population of compliers.

Second, while IV only allows one to test the joint null hypothesis of no selection on either unobserved components of levels or gains, the control function structure allows one to test separately for the presence of selection on unobserved characteristics affecting the no-treatment outcome and for selection on unobserved heterogeneity in returns. These tests can be very informative in themselves. The former test can also give guidance as to the reliability of the conditional independence assumption on included covariates that underpins the matching specification. The latter test can also assist in the interpretation of IV estimates.

Finally, at times it may be important to allow for observably heterogeneous returns in addition to selection on unobservables. The available instruments may turn out to be too weak to predict all interactions properly. If \(X \)-heterogeneous returns are ignored, IV would again retrieve a local effect, while the control function would recover the ATE, ATT and ATNT, and would do so in a considerably more efficient way – at the obvious price of being much less robust than IV. These issues are further explored and discussed in our empirical application in Section 4.2.

3.4.2 The multiple treatment model

The extension to the multiple treatment case is reasonably straightforward. As in (7), write the exhaustive set of \(J \) treatments (schooling levels) under examination as \(S_{i1}, S_{i2}, \ldots, S_{iJ} \). Then
extend the control function assumptions to obtain (where now a bar rather than a zero subscript denotes means to avoid confusion)

\[E[(\alpha_i - \overline{\alpha}) | Z_i, X_i, S_{ji} = 1] = r_{uv} \lambda_{ji}(X_i, Z_i) \text{ for } j = 0, 1, \ldots, J \]

\[E[(b_{ji} - \overline{b}_j) | Z_i, X_i, S_{ji} = 1] = r_{hv} \lambda_{ji}(X_i, Z_i) \text{ for } j = 1, \ldots, J. \]

The heterogeneous returns model specification is then given by

\[y_i = \alpha + m_0(X_i) + \sum_{j=1}^J (b_j(X_i) + \overline{b}_j)S_{ji} + \sum_{j=0}^J r_j S_{ji} \lambda_{ji} + \omega_i \]

with \(S_{0i} = 1 - \sum_{j=1}^J S_{ji}, \ r_j = r_{uv} + r_{hv} \text{ for all } j \) (with \(r_{hv} = 0 \))

and \(E[\omega_i | X_i, S_{1i}, \ldots, S_{JI}, \lambda_{1i}, \ldots, \lambda_{JI}] = 0. \)

To avoid multicollinearity problems, the \(\lambda_{ji} \) terms will need to have independent variation, suggesting that at least \(J-1 \) excluded instruments will be required for identification. Typically, finding such a large set of ‘good’ excluded instruments is difficult. An alternative identification strategy is to link the \(\lambda_{ji} \) terms together. For example, if the schooling outcomes follow an ordered sequence, then it may be that a single ordered probit model could be used to generate all the \(\lambda_{ji} \) terms, but requiring only one instrument.

Within this multiple treatment structure, all of the treatment effects of interest can be obtained. For example, the generic average return to schooling level \(j \) compared with schooling level 0 (the return to which is normalised to zero) for those individuals with highest achieved schooling qualification \(k \) is

\[E[\beta_{ji} | X_i, S_{ki} = 1] = ATE_{j0}(X_i) + r_{hv} E[\lambda_{ki} | S_{ki} = 1] \]

\[= \{ b_j(X_i) + \overline{b}_j \} + r_{hv} E[\lambda_{ki} | S_{ki} = 1]. \]

3.4.3 Some drawbacks to the control function approach

In general, like the IV approach, the control function approach rests on an exclusion restriction. More precisely, although in a parametric specification identification can be achieved even if \(X=Z \) through functional form restrictions, in practice the estimator is found to perform poorly in the absence of an exclusion restriction.

In contrast to IV, the control function approach also requires a full specification of the assignment rule. These assumptions then allow the range of treatment effect parameters to be recovered even where there is heterogeneity in returns. The full relationship between control function and IV approaches for general simultaneous models is reviewed in Blundell and Powell (2003). In the multiple treatment model, a full set of assignment rules is required as well as the ability to construct a set of control functions – one for each treatment – that have independent
3.5 The relationship between OLS, matching, instrumental variables and control function methods

This final subsection outlines the relationship between the estimators we have considered. The emphasis of the matching approach is on the careful construction of a comparison group. The control function method aims at putting enough structure to completely model the selection decision, while IV focuses on the search for a source of independent variation affecting the schooling choices of a section of the population.

To simplify the discussion, assume that

(i) the issue of common support can be ignored (either by assuming that there is sufficient overlap in the distribution of X in the treated and non-treated subsamples, or by assuming that all estimators condition on observations falling within the common support);

(ii) there are no mis-specification issues as to the no-treatment outcome $m_0(x)$.

Of course when these conditions fail, matching always dominates OLS. To further consider the relationship between standard OLS and matching, assume for the moment also that MM:A1 holds (i.e. no selection on unobservables). As shown in Section 3.1, under these conditions and in contrast to matching, standard OLS will still not recover the ATT, although at times it might provide a close approximation, as shown by Angrist (1998). In particular, both matching and OLS produce weighted averages of the covariate-specific treatment effects $E(Y^1 - Y^0|X) = b(X)$, but the ways the two estimators weight these heterogeneous effects differ. Matching recovers the ATT by weighting the X-heterogeneous effects according to the proportion of treated at each value of X – that is, proportionally to the propensity score at X, $P(S_1=1 | X=x) = p(x)$:

$$ATT = E(Y^1 - Y^0 | S_1 = 1) = \frac{\sum x b(x) p(x) P(X = x)}{\sum x p(x) P(X = x)},$$

By contrast, simple OLS weights the X-heterogeneous effects proportionally to the variance of treatment status at X – that is, proportionally to $p(x)\,(1 - p(x))$:

$$\beta_{OLS} = \frac{\sum x b(x) p(x) (1 - p(x)) P(X = x)}{\sum x p(x) (1 - p(x)) P(X = x)}.$$

In general, then, simple OLS will not recover the ATT even under the CIA and the conditions stated above. It will nonetheless provide a close approximation to the ATT if there is no large heterogeneity in treatment impacts by X or, alternatively, if the values of the propensity score are smaller than 0.5 (hence p and $p(1-p)$ are positively correlated).
For the remainder of the discussion, assume further that:

(iii) the OLS, IV and control function estimators are properly specified, also in terms of \(b(X_i) \)
(a not-so-weak proviso, as we shall see in the empirical section below).

The three assumptions (i)–(iii) rule out the two sources of bias due to observables \(B_1 \) and \(B_2 \).

Note first of all that OLS and matching now coincide. Secondly, once we have thus brought all estimators onto an equal footing, matching (equal to OLS), IV and control function would produce the same estimates in the absence of selection on unobservables. In what follows, we therefore look at a situation characterised by bias due to unobservables only (\(B_3 \)).

To focus on the relative performance of matching compared with IV and control function estimators when the basic conditions for the applicability of the latter are met, let us further assume that the exclusion restriction \(E[\alpha_i | X_i, Z_i] = 0 \) for the instrument used by IV as well as the decomposition required by the control function estimator (including postulated structure between the error terms and exclusion restriction) is verified.

In the presence of ability bias, arising from the correlation between \(\alpha_i \) and \(S_{1i} \), both the IV and control function estimators should correctly recover the average effect of treatment on the treated (IV directly, the control function exploiting the assumed structure). The effect of treatment on the treated recovered by matching would, however, be upward biased (assuming more able individuals are more likely to choose \(S_{1i}=1 \)); the effect of treatment on the non-treated would be similarly upward biased, and thus so would the average treatment effect.

When selection into schooling is driven by individuals’ idiosyncratic gain, \(b_i \), the control function estimator would directly recover the average treatment effect, while IV would pick out an instrument-related margin (LATE), which could be much higher or much lower than the average effect for a random individual in the population. Provided the individual-specific gain is unrelated to ability \((\alpha_i) \), both the matching and control function estimators could recover an unbiased estimate of the average treatment effect on the treated. However, in contrast to the control function estimate, the effect of treatment on the non-treated – and thus the average treatment effect – obtained with matching would be upward biased (assuming that those with the higher gains select into education).

Finally, it is worth noting how we might use additional information on a credible exclusion restriction (conditional on the included conditioning variables \(\bar{X} \)). Together with the control function assumptions, this additional information can be used to ‘test’ the null hypothesis of no selection on unobservables. This relies on the truth of the exclusion restriction and would test for the significance of the additional control function terms conditional on the exogenous (\(\bar{X} \)) variables. We pursue this approach in our empirical analysis in the next section.
4. Education and earnings in Britain: results from the NCDS

4.1 Introduction

The availability of birth cohort data in Britain presents an ideal basis for examining the issues involved in estimating the returns to education. Here, we use data from the National Child Development Survey, which keeps detailed longitudinal records on all children born in a single week in March 1958. These data have been used extensively in the analysis of health, family and economic outcomes (see Fogelman (1983) and McCulloch and Joshi (2002), for example). The main surveys we use were undertaken in 1965, 1969, 1974, 1981 and 1991. These include: information on parents’ education and social class; financial problems in the family in 1969 and 1974; maths and reading ability at ages 7 and 11; school type and detailed qualifications; teachers’ assessments; and earnings, employment and training since leaving education. We use data from the waves up to the 1991 survey in which the individuals were aged 33. Summary statistics are presented in Appendix A.

We begin by looking at a simple single treatment model and consider the returns to college versus no college, which in the UK context is the return from undertaking some form of higher education (HE). We subsequently consider a sequence of multiple treatments starting with no (or extremely low-level) qualifications, O levels or vocational equivalent, A levels or vocational equivalent, or some type of HE qualification (see Appendix B for details of our educational classification).

The outcome of interest is individual wages at age 33 in 1991. In order to focus fully on the returns to education and to avoid issues associated with selection into employment, we restrict our attention to males. We do not expect substantive bias arising from measurement error in schooling due to the relative accuracy of the NCDS education measure. Contrary to standard cross-sectional datasets relying on recall information, individuals in the NCDS are followed since birth and throughout their schooling period, with exams files being collected from schools and interviews being carried out very close to the dates of completion of education. A US finding relevant to our single treatment analysis is by Kane, Rouse and Staiger (1999). Using the National Longitudinal Study of the High School Class of 1972, they find that self-reported schooling measures are fairly accurate – in fact, more accurate than transcript measures – in discriminating between those who have not attended college and those who have completed their degree. Abstracting from additional concerns potentially arising from (non-classical) measurement error allows us in the following application to devote full attention to the issues we have discussed at length in the methodological section: selection, heterogeneous returns, misspecification and comparability of groups.
4.2 Single treatment models: higher education

The estimated returns to undertaking some form of higher education are shown in Table 4.1. In this model, the ‘non-treated’ are a heterogeneous group made up of those leaving school with no formal qualifications, those stopping at O levels and those finishing with A levels.

Some comments on the choice and interpretation of the control variables X may be useful at this stage. As described in Section 2, the Xs need to be ‘attributes’ of the assignment rule and of the earnings process unaffected by the treatment itself. Suitable regressors are thus pre-treatment variables, as well as all time-invariant individual characteristics. All such variables that are thought to influence both the educational decision of interest and wage outcomes should ideally be included as regressors. Instrumental variables would not make good conditioning regressors. Finally, note that since our conditioning X variables, say X_0, are measured before (or at the time of) the educational choice, the treatment effects we estimate will include the effect of schooling on some subsequent X which would also affect measured outcomes (examples include on-the-job training, tenure, experience and type of occupation found). The treatment effect will thus consist of all channels through which education affects wages, both directly (for example, through productivity) and indirectly (via some of the Xs).

4.2.1 Selection on observables: OLS and matching

We begin by comparing the two methods that rely on the selection on observables assumptions – namely, OLS and matching. We focus on the standard form of OLS, the linear and common coefficient specification, of which non- (or semi-)parametric matching represents a flexible version. The choice of kernel-based matching over other types of matching estimators has been guided by indicators of the resulting balancing of X presented in summary form in Appendix C. (The results were, in any case, very close.) Our comparison of the two methods also includes an assessment of their sensitivity to the richness of the conditioning data. Given their common identifying assumption, the nature of the available observables is crucial for the credibility of the estimates. In particular, we compare estimates based on the detailed information in the NCDS with those obtained from the standard pre-treatment information in commonly available datasets. These are presented in Table 4.1.

Specification (i) in Table 4.1 gives the OLS estimate when we only use minimal controls (region and ethnicity). The corresponding matching estimate is shown in row (iv). We see that the estimated return to HE for men is around 40% for both estimators, with the matching point estimate very close to the one from OLS.

When we include a richer set of controls – ability measures at both 7 and 11, school type and
Table 4.1. The returns to higher education compared with less-than higher education

Average treatment effect (ATE), average effect of treatment on the treated (ATT) and average effect of treatment on the non-treated (ATNT), % wage gain

<table>
<thead>
<tr>
<th></th>
<th>ATT</th>
<th>ATE</th>
<th>ATNT</th>
</tr>
</thead>
<tbody>
<tr>
<td>OLS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(i) basic specification</td>
<td>39.8</td>
<td>39.8</td>
<td>39.8</td>
</tr>
<tr>
<td></td>
<td>(37.1; 42.5)</td>
<td>(37.1; 42.5)</td>
<td>(37.1; 42.5)</td>
</tr>
<tr>
<td>(ii) full specification</td>
<td>28.7</td>
<td>28.7</td>
<td>28.7</td>
</tr>
<tr>
<td></td>
<td>(25.7; 31.8)</td>
<td>(25.7; 31.8)</td>
<td>(25.7; 31.8)</td>
</tr>
<tr>
<td>(iii) fully interacted</td>
<td>26.5</td>
<td>30.8</td>
<td>32.5</td>
</tr>
<tr>
<td></td>
<td>(23.0; 30.1)</td>
<td>(27.6; 34.1)</td>
<td>(28.9; 36.2)</td>
</tr>
<tr>
<td>MATCHING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(iv) basic specification</td>
<td>40.1</td>
<td>40.1</td>
<td>40.2</td>
</tr>
<tr>
<td></td>
<td>(37.5; 43.1)</td>
<td>(37.5; 42.8)</td>
<td>(37.5; 42.8)</td>
</tr>
<tr>
<td>(v) full specification</td>
<td>26.8</td>
<td>31.3</td>
<td>33.1</td>
</tr>
<tr>
<td></td>
<td>(23.5; 31.1)</td>
<td>(28.7; 34.9)</td>
<td>(30.0; 36.7)</td>
</tr>
<tr>
<td>CONTROL FUNCTION (heterog. returns)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(vi) full specification</td>
<td>51.6</td>
<td>37.4</td>
<td>31.7</td>
</tr>
<tr>
<td></td>
<td>(27.9; 85.7)</td>
<td>(19.2; 61.9)</td>
<td>(14.0; 54.5)</td>
</tr>
<tr>
<td>(vii) fully interacted</td>
<td>29.4</td>
<td>22.0</td>
<td>19.1</td>
</tr>
<tr>
<td></td>
<td>(9.8; 47.9)</td>
<td>(1.6; 36.6)</td>
<td>(–10.7; 38.2)</td>
</tr>
<tr>
<td>INSTRUMENTAL VARIABLES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(viii) bad financial shock</td>
<td>117.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(41.9; 192.3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ix) parental interest</td>
<td>60.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(15.1; 106.1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x) presence of older siblings</td>
<td>5.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(–70.8; 60.4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 4.1:
Basic specification: ethnicity and region.
Full specification: ethnicity, region, standard family background information, tests at 7 and 11, school variables. Family background variables are mother’s and father’s education, age, father’s social class when the child was 16, mother’s employment status when the child was 16 and the number of siblings the child had at 16.
Control function: parental interest as instrument, for (vii) interacted with X in the first-step probit.
Sample size N = 3,639, except for matching: ATE (3,414), ATT (1,019) and ATNT (2,395).
Numbers in parentheses are the 95% confidence intervals are based on White-corrected robust standard errors for all specifications except for (iv), (v) and (vii), for which the bootstrapped 95% bias-corrected percentile confidence intervals (500 repetitions) are reported.

standard family background variables (specifications (ii) and (v)) – both these estimates fall to between 27 and 33%. In particular, the OLS coefficient – constrained to be homogeneous – shows a 28.7% average wage gain from taking some form of HE.

Matching is more informative, showing that the higher-educated enjoy a 26.8% average gain from having taken HE (ATT), while the estimated return for those who stopped (at any stage) before HE would have been 33.1% (ATNT).

As seen in Section 3.1, if there are heterogeneous returns to HE, standard OLS regression would, in general, produce biased estimates of the ATT. To check this issue, in specification (iii) we run a regression that models the (observably) heterogeneous returns b(Xi) in a flexible way, namely it allows all interactions between the Xs and the treatment indicator S1. These interactions XS1 – particularly in terms of later ability, family background and region – are in
fact significant (overall $F=1.80$, $p=0.0019$), and allowing for them makes the OLS estimates of the ATT, ATNT and ATE almost identical to the matching ones (compare (iii) with (v)).

This first set of results highlights several issues. At least in our application, the standard pre-education information available in common datasets would not have been enough to identify gains in a reliable way; in our case, generally unobserved ability and family background variables would have led to an upward bias of around 48%.

Secondly, allowing for an (observably) heterogeneous gain from HE via matching or fully interacted OLS can, in principle, provide additional information as to the average gains for the subgroups of treated and non-treated. The statistical significance of the interaction terms provides evidence of the presence of heterogeneous returns $b(X_i)$. Furthermore, such heterogeneity seems to be sizeable; both the interacted OLS and matching estimates of the ATT are significantly different from the corresponding ATNT ones. (The bootstrapped 95% bias-corrected percentile confidence interval for the -6.3 difference in matching estimates is $[-9.9; -2.6]$ and that for the -6.0 difference in interacted OLS estimates is $[-10.4; -2.1]$.) The results appear to imply that if those who did not continue to HE had instead undertaken it, they would have enjoyed a substantially higher benefit than the group who effectively went on to HE.

Before taking these results on the average effect on the non-treated at face value, important caveats need, however, to be considered, all of which point to a likely upward bias of this estimate. As seen in Section 3.2.1, identification of the ATNT requires more restrictive assumptions – in particular, no selection based on unobserved returns. If this assumption is violated, and assuming that those with the higher gains select into HE, the matching estimate of the ATNT would be upward biased. However, leaving selection on unobservables aside until the next subsection, it can easily be checked that matching does not perform well in balancing the Xs. Appendix C, column 3, shows that, in sharp contrast to the case of ATT, for the ATNT a test of the hypothesis that the Xs are well balanced in the two matched groups is rejected at any significance level (experimenting with a more flexible specification of the propensity score did not improve balancing, nor did it change the point estimate). Note that the non-treated group – a much larger group than the HE group of potential comparisons – also contains all those individuals who dropped out at 16 without any qualifications. To calculate the ATNT, these drop-outs need all to be matched to the most ‘similar’ HE individuals. By contrast, when estimating the ATT for those with HE, the matching algorithm was free not to use those no-qualifications individuals who were not the best matches for the HE individuals; indeed, in the one-to-one version of the estimator, individuals with A levels make up 53.6% of the matched comparisons, individuals with O levels 37% and individuals with no qualifications only 9.4%.
Considerable initial differences between these two groups would make it hard to obtain reasonably good matches. In fact, one can easily verify how test scores remain badly unbalanced – in particular, there are far fewer low-scoring matched HE individuals than there are no-HE treated. Matching did thus not succeed in choosing an HE subgroup that looked as ‘low performing’ as the full no-HE group; hence, we know that the ATNT from matching is upward biased just from considering the observables. (Note, incidentally, that since the average treatment effect is an average of the ATT and ATNT parameters, it will be affected by a poorly estimated ATNT.)

Fully interacted OLS produced very similar point estimates as well as confidence intervals to those produced by matching. However, a flexible but parametric method such as our fully interacted OLS would have hidden from the analyst the fact that observationally different individuals were de facto being compared on the basis of extrapolations purely based on the imposed functional form.

This discussion draws attention to how matching estimators can, by contrast, appropriately highlight the problem of common support and thus the actual comparability of groups of individuals (see also Heckman, LaLonde and Smith (1999)). Both matching and OLS deal with observables only; matching, however, also offers simple and effective ways of assessing \textit{ex post} the quality of a matched comparison group in terms of the observables of interest. Non- (or semi-)parametric methods such as matching thus force the researcher to compare only comparable individuals. If, on the other hand, treated and non-treated are too different in terms of the observables, the researcher needs to accept the fact that there simply is not enough information in the available data to achieve sufficiently close – and thus reliable – matches. This, in fact, turned out to be the case for our ATNT estimate.

As for the ATT, note that the matching and simple OLS estimates are very close (and in fact not significantly different). As we discussed in Section 3.5, in a given application one would expect little bias for ATT from simple OLS \textit{vis-à-vis} matching if there is:

(i) no common support problem;

(ii) little heterogeneity in treatment effects according to X or, alternatively, all the propensity scores are ‘small’ (in particular, less than 0.5, which would make the weighting scheme of OLS proportional to the one for the matching estimator of ATT – see Angrist (1998));

(iii) no serious mis-specification in the no-treatment outcome.

In fact, in our data, the common support restriction is not binding for the ATT (see Appendix C, column 6), and only around 10\% of the propensity scores in our sample are larger than 0.5. Hence if our specification of $m_0(X)$ is reasonably correct, we would expect matching and simple
OLS to produce comparable estimates of the ATT. Note, however, that matching dominates simple OLS a priori. Matching can quickly reveal the extent to which the treated and non-treated groups overlap in terms of pre-treatment variables, it offers easy diagnostic tools to assess the achieved balancing and it relieves the researcher from the choice of the specification of $m_0(X)$. For the ATT in our data, it just turned out that these issues did not pose any serious problem; a priori, however, one could not have known how informative the data were.

4.2.2 Selection on unobservables: control function and instrumental variables

Both the OLS and matching methods rely on the assumption of selection on observables. However rich our dataset may seem, this is a strong assumption. Instrumental variables and control function approaches attempt to control for selection on unobservables by exploiting some ‘exogenous’ variation in schooling by way of an excluded instrument. The choice of an appropriate instrument Z, like the choice of the appropriate conditioning set X for matching or OLS, boils down to an untestable prior judgement. In fact, although there might be widespread consensus in including test score variables as ability measures among the Xs or in viewing an exogenous change in some educational rule or qualification level for one group but not another as an appropriate instrument, ultimately the validity of the instrumental variable is untestable.

Our data contain a number of potential excluded variables that may determine assignment to schooling but, conditional on the Xs, be excluded from the earnings equation, in particular birth order, father’s, mother’s and parents’ interest in the child’s education at age 7 and adverse financial shocks hitting the child’s family at age 11 and 16. All of these ‘instruments’ are highly significant determinants of the choice to undertake higher education (conditional on the full set of controls X), with individual F-values ranging from 8.3 to 18. However, one could of course still argue that in addition to educational attainment, these ‘instruments’ could affect other individual traits (for example, motivation or self-esteem) that could in turn affect earnings. Note that in our X set we include ability (measured at 7 and 11) and standard family background controls; thus we require the instrument to be excluded from potential earnings for given ability, early school performance, family background and school type.

Interestingly the control function, using these excluded instruments, cannot reject the hypothesis of no selection bias on unobserved ability (ρ_{e}) conditional on the inclusion of the test score variables. A second informative result concerns the possibility of individuals selecting into higher education on the basis of their idiosyncratic gains. In the richest specification, in addition to selection on unobserved ability, we allow for selection on observable heterogeneity in returns via the interactions XS_1 as well as on unobservable heterogeneity in returns via a second control function term (an illustration with parental interest as the instrument is presented.
in row (vii) in Table 4.1). F-tests on the interaction terms indicate that there is indeed heterogeneity in returns according to X ($F=1.47$, $p=0.016$), while $\rho_{p}\rho_{v}$ is not statistically significant. In contrast, when we do not control for (potentially) observable heterogeneity in returns (e.g. row (vi)), we can reject the hypothesis of no selection on unobserved returns. When ρ_{p} is significant, it is thus picking up some mis-specification in terms of the Xs; once we control for heterogeneous returns in terms of our (rich) observables, from the control function specification there no longer appears to be any remaining selection on unobserved returns.

The control function estimates in Table 4.1 yield a point estimate of the ATNT substantially lower than the one of the ATT. We have already argued that the ATNT estimated by matching and interacted OLS should not be regarded as a reliable measure of what non-graduates would have gained from taking HE. The structure imposed by the control function seems, by contrast, to yield results that are more consistent with individual maximising behaviour, albeit much less precisely estimated.

If we have additional information in the form of an exclusion restriction we can utilise the instrumental variables estimator to construct an alternative check on the conditional independence assumption. Under the further assumption of no selection on unobserved individual gains, IV on the fully interacted model should recover the average effect of treatment on the treated.

To see how this works consider a factor M – say parental education – which is related to unobserved productivity and to the returns to HE, and which also enters the HE participation decision. In other words, M affects HE participation, the outcome y directly (conditional on X) and the returns from HE in terms of y.

(i) M is unobserved. Provided the instrument is uncorrelated with M given X (i.e. it satisfies exclusion restriction IV:A1 with respect to the unobservable M), IV identifies an instrument-determined local effect, LATE. If, however, the instrument is correlated with M, violating IV:A1, even LATE would not be consistently estimated.

(ii) M is observed and we condition on it linearly in both the participation and the outcome equations. Since we do not control for the interaction, IV is inconsistent: $M\cdot S_1$ is omitted from the outcome equation, giving rise to an omitted endogenous variable bias.

(iii) M is observed, we control for it linearly in the participation equation and interacted with S_1 in the outcome equation. Since there is now an additional $M\cdot S_1$ endogenous term in the outcome equation, we would need the additional instrument $M\cdot Z$. The potential problem in this case is that our instruments Z and $M\cdot Z$ may not predict the interactions S_1
and $M \cdot S_1$ very well, resulting in a loss of precision. The alternative of exploiting the schooling prediction both linearly and interacted with M may add some efficiency, but would still require the instrument Z to provide sufficient variation in \hat{S}_i and $M \cdot \hat{S}_i$ so as to allow b_0 and b_m to be independently identified. Either IV method would place strong demands on the instrument, particularly when there are many interaction terms.

Our previous findings that the return to HE does indeed depend on the Xs and that these Xs also impact on the schooling decision would require our IV estimation to control for these endogenous interaction terms as well, i.e. according to case (iii) outlined above. By allowing observable heterogeneity in returns in a fully interacted model with all the XS_i terms, however, the estimates (not shown) are extremely imprecise. This severe lack of precision points to the fact that while this IV estimation requires us to instrument every one of the endogenous XS_i terms, our corresponding instruments do not have enough power to predict all the interactions well, resulting in a poor performance of our interacted IV model. In fact, when we try to allow for X-heterogeneous returns, it is clear that our interacted instruments simply do not have enough power to identify our model (from the first-stage regressions and in particular from their ‘partial R-squared’ Shea (1997) measure of instrument relevance that takes intercorrelations among instruments into account). We also experimented with controlling for the interactions using IV method B, i.e. fully exploiting the conditional mean independence assumption and using the schooling prediction to replace both schooling and its interaction terms in the outcome equation (not reported). However, although this does shrink the confidence interval, there still remains insufficient variation in \hat{S}_i and $X_i \cdot \hat{S}_i$ to recover a precise and statistically significant estimate of the average effect on the treated.

However, from our control function results, we also know that if we do not allow for heterogeneity in returns in terms of our Xs, there will be selection on uncontrolled-for returns. As discussed in Section 3.3.1, in such a context of heterogeneous and acted-upon returns, our simple IV estimates should be interpreted as estimates of local average treatment effects: the average return to HE for those who go on to HE because of the change in the instrument. To this regard, we present results based on three different instruments likely to affect distinct subgroups of the population. Card (1999) provides us with the theoretical framework for gauging where in the returns distributions these groups are likely to belong.

In Card’s model of endogenous schooling, individuals invest in education until the marginal return to schooling is equal to their marginal cost and where both marginal returns and costs are allowed to depend on schooling and to be heterogeneous. The causal effect of education on
individual earnings (defined, for each individual, as the marginal return to schooling at that individual’s optimal schooling choice) is given in this model by
\[\beta_i = \theta b_i + (1 - \theta) r_i \] (17)

where \(b_i \) captures differences in individuals’ returns due to ability (comparative advantage), \(r_i \) reflects differences in the opportunity costs that individuals face (for example, taste for schooling, individual discount rates and liquidity constraints) and \(\theta \) is a constant in \([0,1]\).

Assume for simplicity that there are only two values for each heterogeneity parameter, \(b_H > b_L \) and \(r_H > r_L \); the population is thus made up of the four types \(\{LH, HH, LL, HL\} \). Then, from (17), we have the following (imperfect) ordering of the four returns:
\[\beta_{HH} > \{\beta_{LH}, \beta_{HL}\} > \beta_{LL} \]

We consider three alternative instruments, observed variables that affect schooling choices but are uncorrelated with the ability factors in the earnings function and in the individual marginal return (thus effectively having to affect only the individual marginal cost \(r_i \)). Along the lines if Ichino and Winter-Ebmer (1999), we ask who the switchers for each instrument are. All the IV estimates in Table 4.1 are highly imprecise. But we still might ask what kind of interpretation would lead to the ranking of estimated local average returns indicated by the point estimates.

Adverse financial shock experienced by the family when the child was 11 or 16

The rich dynasties LL and HL suffer limited liquidity constraints; they always go on to higher education irrespective of the shock. The poor dynasty LH is subject to liquidity constraints and in addition is of low ability; they never take higher education. By contrast, suffering a bad financial shock affects the schooling for individuals in group HH, the high-ability but liquidity-constrained individuals who choose to undertake higher education only in the absence of the shock. We therefore expect our IV estimate based on financial shock to reflect the highest returns in the population, \(\beta_{HH} (117\% - \text{row (viii)}) \).

Parental interest in the child’s education at age 7 (as perceived by the child’s teacher)

The rich HL and LL dynasties would undertake higher education independently of parental interest; similarly, the HH individuals, though poor, are of high ability and would go on to higher education quite irrespective of their parents’ interest in their education. By contrast, having parents very interested in one’s education causes an increase in schooling for the LH individuals: they are of low ability and liquidity constrained and would never continue to higher education unless they were pushed by their eager parents, who attach high value to education. The IV estimate based on parental interest would thus reflect some intermediate returns in the
population, β_{LL} (an insignificant 5.2% – row (x)).

Older siblings

The HL and HH dynasties have high ability and would continue into higher education independently of the presence of older siblings. The LH group is of low ability and severely liquidity constrained, and would thus never continue into higher education. By contrast, the rich but low-ability individuals LL would be the ones pushed by their rich family to get a degree only if they are the only (or the first-born) children in their family. Under this interpretation, the IV estimate based on the presence of older siblings would thus reflect the lowest returns in the population, β_{LL} (an insignificant 5.2% – row (x)).

By considering different instruments believed to affect subgroups in given ranges of returns, we can thus gauge some (albeit quite imprecisely estimated) information concerning the extent of variability in HE returns in the population; we cannot, by contrast, retrieve information on average treatment effects due to the lack of power of our instruments in predicting all the heterogeneous returns XS_i. By contrast, our control function with interactions model allows us to settle on the intermediate case, where all the XS_i interactions are included in the outcome equation and the XZ terms are exploited in the first-step probit, from which, however, still only two predictions ($\hat{\lambda}_i$ and $\hat{\lambda}_0$) need to be computed. All this is only possible by making stronger assumptions – in particular, we require the heterogeneity in b_i to be additive in the observables and unobservables. Placing a much heavier structure on the problem than does IV, the control function method thus allows one to recover the ATE, ATT and ATNT parameters directly (as opposed to the more local parameters arising from IV) and to do so in a considerably more efficient way – at the obvious price of being much less robust than IV.

4.2.3 Lessons and results from the single treatment estimates

In the NCDS, there appears to be some evidence suggesting that there are enough variables to be able to control directly for selection on unobservables – both unobservable individual traits and unobservable returns. In other words, we could not find any strong evidence that OLS and matching with the available set of Xs are subject to selection bias; nor do individuals seem to select into higher education on the basis of returns still unobserved by the econometrician. Connected to the latter point, we have found some evidence that interactions matter. More precisely, there is significant heterogeneity in returns to HE (especially in terms of parental education and region). In practice, though, the way the heterogeneous returns are weighted by matching and by simple OLS turned out to be proportional in this application, resulting in simple OLS to fortuitously recover the average effect on a treated individual (cf. Section 3.5).
Both matching and fully interacted OLS resulted in an estimate of the ATNT that is significantly higher than the estimate of the ATT. However, we argued that such methods were most likely to yield upward-biased estimates of the ATNT in this case.

4.3 Multiple treatment models

We now turn to a more disaggregated analysis that focuses on the sequential nature of educational qualifications. We separate the qualifications variable into those who dropped out of school with no qualifications, those who stopped education after completing O levels or equivalent, those who stopped after completing A levels or equivalent and those who completed O levels, A levels and higher education.

Since now we have four treatments, IV estimation would require at least three credible instruments. As to the control function approach, in the first stage one could exploit the sequential nature of the treatments and estimate an ordered probit model for the various levels of education based on one instrument only. This would, however, unduly rely on the (arbitrarily) imposed structure of the problem, since the model would be purely identified from the postulated treatment choice model. Instead in this section, we follow the conclusion of the previous discussion of the single treatment model and assume that there are enough variables to be able to control directly for selection through matching.

Our approach involves estimating the incremental return to each of the three qualifications by actual qualification. For those with no qualifications, we estimate the returns they would have got if they had undertaken each of the three qualifications (ATNT). For those with O-level qualifications, we estimate the return they obtained for taking that qualification (ATT) and the returns they would have obtained if they had progressed to A levels or HE (ATNT). For those with A levels, we estimate the returns they obtained for undertaking O- and A-level qualifications (ATT) and the returns they would have obtained if they had progressed to HE (ATNT). For those with HE, all estimates are ATTs.

Our matching estimator adapts the estimation of the propensity score to the case of multiple sequential treatments (see Sianesi (2002) for more details). Outcomes across each of the four groups, matched on the appropriate propensity score for the particular transition in question, are then compared. Again we let the choice between various types of matching estimators be guided by how well they balanced the observed characteristics (see Appendix C; in most cases Epanechnicov-kernel matching performed best, though dominated for some comparisons by Mahalanobis-metric matching).

The multiple treatment results are shown in Table 4.2, where the estimates are those obtained
Table 4.2. Incremental treatment effects by highest qualification achieved: matching and OLS estimates (% wage gain)

<table>
<thead>
<tr>
<th>Educational group ↓</th>
<th>O-level versus None</th>
<th>A-level versus O-level</th>
<th>A-level versus None</th>
<th>HE versus A-level</th>
<th>HE versus O-level</th>
<th>HE versus None</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>624</td>
</tr>
<tr>
<td></td>
<td>13.2</td>
<td>5.5</td>
<td>18.7</td>
<td>24.8</td>
<td>30.3</td>
<td>43.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(9.1; 17.3)</td>
<td>(0.1; 10.1)</td>
<td>(13.6; 23.2)</td>
<td>(17.7; 31.6)</td>
<td>(23.2; 36.3)</td>
<td>(36.8; 49.7)</td>
<td></td>
</tr>
<tr>
<td>O-level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>963</td>
</tr>
<tr>
<td></td>
<td>17.8</td>
<td>5.9</td>
<td>23.7</td>
<td>24.6</td>
<td>30.5</td>
<td>48.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(12.9; 22.1)</td>
<td>(2.3; 9.9)</td>
<td>(19.1; 29.4)</td>
<td>(20.5; 29.3)</td>
<td>(26.6; 34.4)</td>
<td>(43.4; 53.3)</td>
<td></td>
</tr>
<tr>
<td>A-level</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>911</td>
</tr>
<tr>
<td></td>
<td>18.1</td>
<td>5.7</td>
<td>23.8</td>
<td>25.6</td>
<td>31.3</td>
<td>49.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(13.2; 22.6)</td>
<td>(2.0; 9.8)</td>
<td>(18.5; 28.7)</td>
<td>(21.7; 30.2)</td>
<td>(27.5; 35.5)</td>
<td>(43.5; 54.0)</td>
<td></td>
</tr>
<tr>
<td>HE</td>
<td>21.6</td>
<td>8.0</td>
<td>29.6</td>
<td>21.7</td>
<td>29.7</td>
<td>51.3</td>
<td>871</td>
</tr>
<tr>
<td></td>
<td>(14.1; 29.6)</td>
<td>(3.9; 12.6)</td>
<td>(22.0; 37.5)</td>
<td>(17.4; 25.6)</td>
<td>(25.8; 33.7)</td>
<td>(43.8; 58.7)</td>
<td></td>
</tr>
<tr>
<td>any: ATE</td>
<td>18.0</td>
<td>6.3</td>
<td>24.2</td>
<td>24.2</td>
<td>30.5</td>
<td>48.4</td>
<td>3,251</td>
</tr>
<tr>
<td></td>
<td>(13.3; 22.4)</td>
<td>(2.9; 10.1)</td>
<td>(19.7; 28.7)</td>
<td>(20.6; 28.2)</td>
<td>(27.1; 34.2)</td>
<td>(43.2; 52.7)</td>
<td></td>
</tr>
<tr>
<td>OLS</td>
<td>14.8</td>
<td>6.4</td>
<td>21.2</td>
<td>23.5</td>
<td>29.9</td>
<td>44.7</td>
<td>3,639</td>
</tr>
<tr>
<td></td>
<td>(11.2; 18.4)</td>
<td>(3.1; 9.7)</td>
<td>(17.3; 25.1)</td>
<td>(20.0; 27.1)</td>
<td>(26.5; 33.4)</td>
<td>(40.1; 48.9)</td>
<td></td>
</tr>
<tr>
<td>Basic</td>
<td>21.1</td>
<td>9.0</td>
<td>30.0</td>
<td>28.9</td>
<td>37.9</td>
<td>59.0</td>
<td>3,639</td>
</tr>
<tr>
<td></td>
<td>(17.4; 24.7)</td>
<td>(5.6; 12.4)</td>
<td>(26.2; 33.8)</td>
<td>(25.6; 32.3)</td>
<td>(34.7; 41.1)</td>
<td>(55.3; 62.6)</td>
<td></td>
</tr>
</tbody>
</table>

Notes to Table 4.2:
Controlling for ethnicity, region, standard family background information, tests at 7 and at 11, school variables.
OLS basic: controlling for ethnicity and region only.
Matching estimates: based on ‘best’ specification, always imposing common support at the boundaries. Common support is also imposed throughout all transitions. See Appendix C for the share of the treated group falling outside of the common support in each comparison.
Numbers in parentheses are: 95% bias-corrected percentile confidence intervals obtained by bootstrapping for the matching estimates (500 repetitions); for OLS, 95% confidence intervals based on robust standard errors.
In bold: most reliable effects (based on balancing of the Xs between the groups – see Appendix C). In italics: least reliable effects.
from the ‘best’ specification (i.e. the one resulting in the ‘best’ balancing of our Xs in the matched subsamples) and after imposing the common support. Indeed, in estimating the effects and in calculating the probabilities for the average treatment effects, common support was imposed also in terms of only including individuals who are matched for every possible transition (so that we can make comparisons across the same sets of individuals). On the basis of the balancing of the observables within the matched samples, (summarised in Appendix C) we have highlighted the most (and the least) reliable results in Table 4.2.

As was the case in the single treatment model, our first result is that controlling for ability and school type is important and reduces the return to education at all levels (compare the two OLS specifications; to save space, only the results for the full set of controls X are presented for matching). Nevertheless, the findings show significant overall returns to educational qualifications at each stage of the educational process, even after correcting for detailed background variables and ability differences, as well as allowing for (observed) heterogeneity in the education response parameters.

OLS and the average treatment effect obtained via matching are rather close, although OLS estimates are typically on the lower side. Matching shows an average wage return of 18% from obtaining O levels compared with leaving school with no qualifications, a further 6% return from completing A levels and a further 24% wage premium for then achieving higher education. Compared with leaving school at 16 without qualifications, then, the average return to O levels is 18% and to A levels is 24%, which doubles to 48% for HE. On an annualised basis, given that most individuals complete HE at 21, the average return is therefore 9.5%. If, by contrast, we just make the comparison with those who left at 16 regardless of qualifications, the average total return would fall to 33.3% (result not shown), or 6.6% per annum. Similarly, the return per annum for A levels (the achievement of which generally takes place at 18) compared with leaving at 16 without qualifications would be 12%, but only 3% if compared with stopping with O levels at 16. A more adequate yearly measure is probably the one obtained when the baseline comparison is with leaving school at 16 irrespective of qualifications, which points to a 5.6% yearly return to completing A levels.

The set of results just discussed highlights the potential shortcomings of the one-factor ‘years of schooling’ model (5) when applied to the UK educational system, in which individuals with the same number of years of schooling have quite different educational outcomes (no qualifications or O levels) and in which, irrespective of the comparison state chosen, imposing equality of yearly returns across educational stages proves too restrictive.

From the disaggregated results in Table 4.2, it appears that for the O levels and A levels
groups, (observable) heterogeneity in impacts does not seem to be a particularly important feature of the data, so that the point estimates for the two groups are extremely close and basically coincide with the corresponding estimates of the average treatment effects. By contrast, noteworthy new information arises for the (baseline) group of individuals who left school without any qualifications. For this group, the average returns to each educational investment (O levels, A levels and HE) compared with none would have been consistently the lowest among all educational groups (cf. Appendix D), which might contribute to explaining their decision not to take any formal qualifications. Nonetheless, if we focus on the returns to O levels by educational group (first column), our disaggregated analysis shows that at that stage, even if those who do acquire some qualification at 16 have the greatest returns from this initial investment, those who drop out at 16 without any qualifications would still have had a hefty average pay-off of over 13% from obtaining O levels or equivalent before leaving education. Note that this result is obtained after controlling for detailed ability and family background. Furthermore, work by Harmon and Walker based on a natural experiment is consistent with this finding. In their original paper (1995) exploiting changes in the minimum school-leaving age in the UK, they find a 15–16% return to schooling, while in later work (Chevalier, Harmon and Walker, 2002) they show that for men born ±5 years around our NCDS cohort, the impact of the reform was solely in terms of a movement from no to low qualifications.

Individuals undertaking some form of higher education are the second educational group to show considerable heterogeneity in returns, which thus visibly differ from the average treatment effects. In particular, at 51.3%, they enjoy the highest overall return to HE (vis-à-vis no qualifications). The disaggregated results show that this higher average effect of HE for the HE treated actually stems from HE individuals enjoying a higher return from their initial O-level investment (21.6% compared with 13–18% for the other groups). In fact, their incremental return from A levels to HE is lower than for those who did not undertake HE.

The results arising from comparing HE graduates with individuals without any qualifications (average returns to HE compared with no qualifications for the HE group, as well as returns derived from such an estimate) have, however, to be viewed with great care. As summarised in Appendix C, the HE and no-qualifications groups are radically different groups. In particular, 20% of the HE group are simply not comparable to anyone in the no-qualifications group and are dropped from the matching analysis. But even once we perform matching restricted to the common support, the remaining HE treated are still so different from the no-qualifications group that the relevant observables characterising them cannot be adequately controlled for. A considerable degree of imbalance in the Xs remains even in the ‘best’ matching specification (in
particular, joint balancing of the control variables is rejected at any significance level – see Appendix C), revealing how the data simply do not contain enough information for non-parametric identification. Interestingly, when the no-qualifications group is viewed as the treated group to be matched to the larger pool of potential HE comparisons, we obtain a better (though still not acceptable) balancing.

In general, we have found that the larger the educational gap between the two groups being compared, the harder it becomes to balance their characteristics \(X \) adequately, this difficulty being further worsened when the potential comparison group is smaller than the treated group. While an OLS specification would have hidden the fundamental non-comparability of these groups, a carefully performed matching estimation could once again highlight the issue of their true comparability and hence the issue of the reliability of the results concerning them.

5. Summary and conclusions

The aim of this paper has been to review alternative methods and models for the estimation of the effect of education on earnings, and to apply these to a high-quality common data source. We have highlighted the importance of the model specification – in particular, the distinction between single treatment and multiple treatment models – as well as the importance of allowing for heterogeneous returns – that is, returns that vary across individuals for the same educational qualification. We have considered four main estimation methods which rely on different identifying assumptions – least squares, instrumental variable methods, control function methods and propensity score matching methods. The properties of the estimators were analysed, distinguishing between a single treatment model and a model where there is a sequence of possible treatments. We argued that the sequential multiple treatment model is well suited to the education returns formulation, since educational qualification levels in formal schooling tend to be cumulative.

With heterogeneous returns, defining the ‘parameter of interest’ is central. We distinguished four of them: the effect of treatment on the treated, the average treatment effect, the impact of treatment on the non-treated and the local average treatment effect. In the homogeneous effects model, these would all be equal, but in the heterogeneous effects model, they can differ substantially. Which one is of interest depends on the policy question.

Our application aimed to estimate the wage returns to different educational investments using the NCDS 1958 birth cohort study for Britain. We argue that this dataset is ideally suited for evaluating the impact of education on earnings. There are extensive and commonly administered ability tests at early ages, as well as accurately measured family background and school type
variables, all ideal for methods relying on the assumption of selection on observables, notably least squares and matching.

This application has highlighted the following key points:

1) Correcting for detailed background variables and ability differences is important and reduces the return to education at all levels; the basic pre-education information available in common datasets would not have been enough to identify gains in an unbiased way.

2) The overall returns to educational qualifications at each stage of the educational process remain sizeable and significant, even after allowing for heterogeneity in the education response parameters. In particular, we estimate an average return of about 27% for those completing some form of higher education versus anything less. Compared with leaving school at 16 without qualifications, we find that in the population the average return to O levels is around 18%, to A levels 24% and to higher education 48%.

3) We find evidence of heterogeneity in the returns to higher education in terms of observables. Furthermore, when we do not allow for such observable heterogeneity in returns, the control function specification points to significant selection on unobserved returns. When we do allow for these interactions, from the control function specification there no longer appears to be any remaining selection on unobserved returns.

4) Given the above finding that interactions do matter, an IV approach aimed at recovering the average return for the treated calls for a fully interacted IV model, which cannot be estimated precisely with our data. Instead, we recover instrument-related local average treatment effects. We exploit three instruments to glean some information as to the extent of variability in returns in the population.

5) Overall, matching on detailed early test scores and family background variables appears to perform well for the average return for the treated in our application to the NCDS data.
References

Garen, J. (1984), ‘The returns to schooling: a selectivity bias approach with a continuous choice
Economics, 15, 283–304.

Appendix A. Summary statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Std dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real log hourly wage 1991</td>
<td>2.040</td>
<td>(0.433)</td>
</tr>
<tr>
<td>Qualifications:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O levels or equivalent</td>
<td>0.821</td>
<td>(0.383)</td>
</tr>
<tr>
<td>A levels or equivalent</td>
<td>0.548</td>
<td>(0.498)</td>
</tr>
<tr>
<td>Higher education</td>
<td>0.283</td>
<td>(0.451)</td>
</tr>
<tr>
<td>White</td>
<td>0.969</td>
<td>(0.173)</td>
</tr>
<tr>
<td>Maths ability at 7:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th quintile (highest)</td>
<td>0.212</td>
<td>(0.408)</td>
</tr>
<tr>
<td>4th quintile</td>
<td>0.190</td>
<td>(0.392)</td>
</tr>
<tr>
<td>3rd quintile</td>
<td>0.185</td>
<td>(0.389)</td>
</tr>
<tr>
<td>2nd quintile</td>
<td>0.158</td>
<td>(0.365)</td>
</tr>
<tr>
<td>1st quintile (lowest)</td>
<td>0.141</td>
<td>(0.348)</td>
</tr>
<tr>
<td>Reading ability at 7:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability at 7 missing</td>
<td>0.115</td>
<td>(0.319)</td>
</tr>
<tr>
<td>Maths ability at 11:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5th quintile (highest)</td>
<td>0.199</td>
<td>(0.399)</td>
</tr>
<tr>
<td>4th quintile</td>
<td>0.179</td>
<td>(0.384)</td>
</tr>
<tr>
<td>3rd quintile</td>
<td>0.157</td>
<td>(0.364)</td>
</tr>
<tr>
<td>2nd quintile</td>
<td>0.152</td>
<td>(0.359)</td>
</tr>
<tr>
<td>1st quintile (lowest)</td>
<td>0.122</td>
<td>(0.328)</td>
</tr>
<tr>
<td>Reading ability at 11:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability at 11 missing</td>
<td>0.191</td>
<td>(0.393)</td>
</tr>
<tr>
<td>Comprehensive school 1974</td>
<td>0.468</td>
<td>(0.499)</td>
</tr>
<tr>
<td>Secondary modern school 1974</td>
<td>0.162</td>
<td>(0.368)</td>
</tr>
<tr>
<td>Grammar school 1974</td>
<td>0.099</td>
<td>(0.299)</td>
</tr>
<tr>
<td>Private school 1974</td>
<td>0.052</td>
<td>(0.222)</td>
</tr>
<tr>
<td>Other school 1974</td>
<td>0.018</td>
<td>(0.134)</td>
</tr>
<tr>
<td>Missing school information</td>
<td>0.201</td>
<td>(0.401)</td>
</tr>
<tr>
<td>Father’s years of education</td>
<td>7.270</td>
<td>(4.827)</td>
</tr>
<tr>
<td>Father’s education missing</td>
<td>0.172</td>
<td>(0.377)</td>
</tr>
<tr>
<td>Mother’s years of education</td>
<td>7.342</td>
<td>(4.606)</td>
</tr>
</tbody>
</table>

Sample sizes in the NCDS

<table>
<thead>
<tr>
<th>Sweep</th>
<th>Year</th>
<th>Age</th>
<th>No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1958</td>
<td>0</td>
<td>17,419</td>
</tr>
<tr>
<td>1</td>
<td>1965</td>
<td>7</td>
<td>15,496</td>
</tr>
<tr>
<td>2</td>
<td>1969</td>
<td>11</td>
<td>18,285</td>
</tr>
<tr>
<td>3</td>
<td>1974</td>
<td>16</td>
<td>14,761</td>
</tr>
<tr>
<td>4</td>
<td>1981</td>
<td>23</td>
<td>12,538</td>
</tr>
<tr>
<td>5</td>
<td>1991</td>
<td>33</td>
<td>11,363</td>
</tr>
</tbody>
</table>

Number of observations

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,639</td>
</tr>
</tbody>
</table>
Appendix B. Classification of educational qualifications

The British educational system
Progression at school beyond the minimum leaving age of 16 is based on a series of nationally assessed examinations. The wide range of academic and vocational qualifications have been classified into equivalent National Vocational Qualification (NVQ) levels, ranging from level 1 to level 5.

Until 1986, students at 16 had to decide whether to go for the lower-level Certificates of Secondary Education (CSE) option or for the more academically demanding Ordinary level (O level) route (the top grade (grade 1) achieved on a CSE was considered equivalent to O level grade C). While most CSE students tended to leave school at the minimum, students who took O levels were much more likely to stay on in school. (In 1986 CSEs and O levels were replaced by General Certificates of Secondary Education, GCSEs). Those staying on in school can then take Advanced Levels (A levels) at the end of secondary school (age 18). A levels are still the primary route into higher education.

No qualifications
Also includes very low-level qualifications at NVQ level 1 or less, i.e. CSE grade 2 to 5 qualifications, other business qualifications, other qualifications not specified and Royal Society of Arts (RSA) level 1 qualifications.

O levels or equivalent
O levels or CSE grade 1 (generally obtained by the age of 16 if undertaken at school), but also a range of vocational equivalents to these academic school-based qualifications: RSA level 2 and 3; City and Guild operative/craft/intermediate/ordinary/part1; Joint Industry Board/NJC or other craft/technician certificate.

A levels or equivalent
At least one A level, but also a range of vocationally equivalent qualifications: City and Guild advanced/final/part2 or 3/full technological certificate (FTC); insignia award in technology (CGIA); Ordinary National Certificate/Diploma (ONC/OND), SNC/SND; TEC/BEC or SCOTEC/SCOTBEC certificate or diploma.

Higher education
Higher National Certificate/Diploma (HNC/HND), SHNC/SHND; TEC/BEC or SCOTEC/SCOTBEC higher or higher national certificate or diploma; professional qualification; nursing qualification including NNEB; polytechnic qualification; university certificate or diploma; first degree; postgraduate diploma; higher degree.

Adjustments to guarantee the sequential nature of the educational variable
Our multiple treatment estimation method requires sequential educational outcomes; it is thus essential that those who have an A level or equivalent qualification or HE qualification also have the preceding lower qualifications. This is almost universally true of people who have undertaken an academic route and we impose this in our model. It is, however, not necessarily true for individuals who have undertaken vocational routes; if this is the case, we downgrade their qualification by one level to maintain our sequential structure. Specifically: if someone has a first degree or a postgraduate qualification, we assume they have all the lower qualifications; if someone has one of the other (i.e. vocational) HE qualifications but not an A-level or equivalent qualification, we downgrade their qualification to A level or equivalent and assign them all the lower qualifications; if someone has an A-level qualification but no O-level qualification, we assign them an O-level qualification; if they have any other A-level equivalent but no O-level equivalent, we downgrade them by one.
Appendix C. Covariate balancing indicators before and after matching (best specification)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>N_1</th>
<th>Comparison</th>
<th>N_0</th>
<th>Probit pseudo R^2 Before</th>
<th>Probit pseudo R^2 After</th>
<th>$P>\chi^2$</th>
<th>Median bias Before</th>
<th>Median bias After</th>
<th>% lost to common support After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td></td>
<td>Before</td>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>HE</td>
<td>1,030</td>
<td>no-HE</td>
<td>2,609</td>
<td>0.209</td>
<td>0.006</td>
<td>0.9963</td>
<td>9.1</td>
<td>1.4</td>
<td>0.0</td>
</tr>
<tr>
<td>no-HE</td>
<td>2,609</td>
<td>HE</td>
<td>1,030</td>
<td>0.209</td>
<td>0.037</td>
<td>0.0000</td>
<td>9.1</td>
<td>3.4</td>
<td>0.8</td>
</tr>
<tr>
<td>none</td>
<td>651</td>
<td>O-level</td>
<td>993</td>
<td>0.150</td>
<td>0.005</td>
<td>1.0000</td>
<td>9.0</td>
<td>1.1</td>
<td>0.0</td>
</tr>
<tr>
<td>A-level</td>
<td>965</td>
<td>none</td>
<td>651</td>
<td>0.248</td>
<td>0.012</td>
<td>0.9985</td>
<td>13.4</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>HE</td>
<td>1,030</td>
<td>O-level</td>
<td>993</td>
<td>0.512</td>
<td>0.091</td>
<td>0.0000</td>
<td>15.1</td>
<td>6.0</td>
<td>5.5</td>
</tr>
<tr>
<td>none</td>
<td>993</td>
<td>A-level</td>
<td>651</td>
<td>0.150</td>
<td>0.016</td>
<td>0.9491</td>
<td>9.0</td>
<td>2.7</td>
<td>1.2</td>
</tr>
<tr>
<td>A-level</td>
<td>965</td>
<td>HE</td>
<td>1,030</td>
<td>0.045</td>
<td>0.002</td>
<td>1.0000</td>
<td>6.5</td>
<td>0.6</td>
<td>1.3</td>
</tr>
<tr>
<td>O-level</td>
<td>993</td>
<td>none</td>
<td>651</td>
<td>0.248</td>
<td>0.041</td>
<td>0.0005</td>
<td>13.4</td>
<td>4.1</td>
<td>7.7</td>
</tr>
<tr>
<td>A-level</td>
<td>965</td>
<td>O-level</td>
<td>993</td>
<td>0.045</td>
<td>0.002</td>
<td>1.0000</td>
<td>6.5</td>
<td>0.7</td>
<td>1.1</td>
</tr>
<tr>
<td>HE</td>
<td>1,030</td>
<td>none</td>
<td>651</td>
<td>0.512</td>
<td>0.162</td>
<td>0.0000</td>
<td>15.1</td>
<td>10.3</td>
<td>20.2</td>
</tr>
<tr>
<td>O-level</td>
<td>993</td>
<td>A-level</td>
<td>965</td>
<td>0.227</td>
<td>0.022</td>
<td>0.1906</td>
<td>11.4</td>
<td>2.9</td>
<td>5.9</td>
</tr>
<tr>
<td>A-level</td>
<td>965</td>
<td>none</td>
<td>651</td>
<td>0.127</td>
<td>0.005</td>
<td>1.0000</td>
<td>7.6</td>
<td>1.4</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Notes:

1. Pseudo R^2 from probit estimation of the conditional treatment probability, giving an indication of how well the 52 regressors X explain the relevant educational choice.

2. Pseudo R^2 from a probit of D on X on the matched samples, to be compared with (1).

3. P-value of the likelihood-ratio test after matching, testing the hypothesis that the regressors are jointly insignificant, i.e. well balanced in the two matched groups.

4. Median absolute standardised bias before and after matching, median taken over all the 52 regressors. Following Rosenbaum and Rubin (1985), for a given covariate X, the standardised difference before matching is the difference of the sample means in the full treated and non-treated subsamples as a percentage of the square root of the average of the sample variances in the full treated and non-treated groups. The standardised difference after matching is the difference of the sample means in the matched treated (i.e. falling within the common support) and matched non-treated subsamples as a percentage of the square root of the average of the sample variances in the full treated and non-treated groups.

$$B_{before}(X) = 100 \frac{\bar{X}_1 - \bar{X}_0}{\sqrt{(V_1(X) + V_0(X))/2}} \quad B_{after}(X) = 100 \frac{\bar{X}_{1M} - \bar{X}_{0M}}{\sqrt{(V_1(X) + V_0(X))/2}}$$

Note that the standardisation allows comparisons between variables X and for a given variable X, comparisons before and after matching.

5. Share of the treated group falling outside of the common support, imposed at the boundaries and, in the multiple treatment case, across all transitions.
Appendix D. Difference in returns for the no-qualifications group

Difference in returns to O-levels, A-levels and HE versus none for the no-qualifications group compared to a) those who stopped at O-levels, b) those who stopped at A-levels, c) those who obtained HE and d) the average treatment effect (i.e. across all four educational groups)

<table>
<thead>
<tr>
<th></th>
<th>Difference</th>
<th>95% conf interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Returns to O-level vs none:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) for none vs for O-level</td>
<td>-4.5**</td>
<td>[-9.3; -0.6]</td>
</tr>
<tr>
<td>b) for none vs for A-level</td>
<td>-4.9**</td>
<td>[-10.0; -0.2]</td>
</tr>
<tr>
<td>c) for none vs for HE</td>
<td>-8.4**</td>
<td>[-16.6; -0.2]</td>
</tr>
<tr>
<td>d) for none vs for all (ATE)</td>
<td>-4.7***</td>
<td>[-9.2; -1.4]</td>
</tr>
<tr>
<td>Returns to A-level vs none:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) for none vs for O-level</td>
<td>-5.0**</td>
<td>[-9.9; -1.2]</td>
</tr>
<tr>
<td>b) for none vs for A-level</td>
<td>-5.1**</td>
<td>[-11.4; -0.4]</td>
</tr>
<tr>
<td>c) for none vs for HE</td>
<td>-10.9***</td>
<td>[-20.8; -3.8]</td>
</tr>
<tr>
<td>d) for none vs for all (ATE)</td>
<td>-5.5***</td>
<td>[-10.3; -1.8]</td>
</tr>
<tr>
<td>Returns to HE vs none:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a) for none vs for O-level</td>
<td>-4.7**</td>
<td>[-11.0; -0.3]</td>
</tr>
<tr>
<td>b) for none vs for A-level</td>
<td>-5.9*</td>
<td>[-13.0; 0.1]</td>
</tr>
<tr>
<td>c) for none vs for HE</td>
<td>-7.8*</td>
<td>[-17.2; 1.1]</td>
</tr>
<tr>
<td>d) for none vs for all (ATE)</td>
<td>-4.9*</td>
<td>[-10.4; 0.1]</td>
</tr>
</tbody>
</table>

Notes:
95% bias-corrected percentile confidence intervals obtained by bootstrapping;
***: significant at the 1% level, ** at 5%, * at 10%.