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Abstract

We develop a new method for identifying and estimating counterfactuals in nonparametric models

with nonseparable multidimensional unobserved heterogeneity. The method can be used when

the value of a vector of interdependent variables depends in an unspecified way on vectors of

observable regressors and unobservable variables. For changes in the values of the observable re-

gressors, we identify the new values of the interdependent variables when values of the unobserved

variables stay fixed. No functional form restrictions are imposed on the response function, other

than invertibility on the vector of unobserved variables. The regressors can be either discrete

or continuously distributed. Identification is constructive, leading to an estimator that is easily

computed. The estimator possesses an asymptotically normal distribution. We apply the method

using UK Kantar homescan data to estimate the heterogeneous responses to changes in prices

and total expenditure of households that were observed making different choices on one budget.

We find significant differences in their responses.
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1 Introduction

Suppose that we observe an individual making a choice on an observed choice set and we would like

to know what that specific individual would have chosen if faced with a different choice set. It is

reasonable to assume that the individual has unobserved tastes that determine his/her choices and

that these unobserved tastes are heterogenous across individuals. Suppose we have such data on

individuals but we do now know how the unobserved tastes enter into the decision of individuals. In

this paper we develop a method that uses such data to obtain an estimate for the individual’s choice

under a different choice set when his/her unobserved tastes stay fixed.

As an example, we can consider different price regimes on product categories together with

samples of households for which we observe some of their characteristics together with how much

they spent on the product categories. Based on this sample, our method allows to predict the demand

response of one or more of those households to a counterfactual increase in the prices of one or more

product categories, without making any restrictions on the households’demand function other than

an invertibility assumption.

The method we develop can be used not only for studying counterfactuals as the specific ones

described above, but more generally for estimating nonseparable models with multidimensional unob-

servables and with no functional restrictions on the function of interest other than invertibility. Since

these models can be interpreted as reduced form functions generated from systems of simultaneous

equations, the methods contribute as well to the literature on structural estimation of nonseparable

simultaneous equation models, by providing a method that does not require restrictions that have

been imposed in previous works.

Interest in nonseparable models has been receiving increasing interest. These models allow

much more flexibility in the way unobservable variables enter into the model. They also allow one

to benefit from restrictions of economic theory that might be lost with additional specifications.

For example, in a consumer demand model, economic theory implies that the demand function

of any individual satisfies the Slutsky conditions. These conditions are not necessarily satisfied by

demand models where unobservables enter additively unless strong additional conditions are imposed

(McElroy (1987), Brown and Walker (1989), Lewbel (2001)).

When the nonseparable unobservable is a scalar, there exist methods, as the ones in Matzkin

(2003), for estimation of individual counterfactuals leaving the value of the unobservable fixed, with-

out imposing functional restrictions. Assuming that unobserved heterogeneity is a scalar is rarely

appropriate, however, for models where responses are interrelated. In the consumption example, an
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individual unobserved taste for fresh foods will have an effect on the individual’s expenditure share

on prepared foods. This effect would be separate from the effect that the individual’s unobserved

taste for prepared foods may have on such expenditure. In models of demand and supply, the

observed quantities and prices, which are determined by equilibrium conditions, depend on unob-

servable characteristics of both the demand and the supply equations as well as possibly on unob-

served market conditions affecting both. Employing an approach where the unobserved variables

are aggregated into one for each equation would impose unrealistic conditions that could generate

inconsistent estimators for counterfactuals. Existent nonparametric methods that allow for mul-

tidimensional unobservables require restrictions and specifications that may not be satisfied. The

objective of this paper is to propose a nonparametric method that avoids such restrictions and allows

for multidimensional unobservables.

Our identification results are constructive. They lead to easily computed, natural estimators of

the unknown functions of interest, which impose no restrictions even when the regressors are discrete.

We develop the new nonparametric estimators and analyze their asymptotic properties. These are

in turn used to carry out inference on individual responses to counterfactual changes in the values of

regressors, when the values of the nonseparable unobservable variables stays fixed. We also present

methods to improve the practical performance of the estimators in a number of relevant scenarios,

such as when the number of observable individual characteristics is large.

Our method is based on two main assumptions, invertibility of the response function in the

unobservables and a restriction on the conditional density of the vector of unobserved variables,

given observable external variables that do not enter into the response function. In the consumer

example, the external variables could be observable characteristics of the individual consumer. In

a demand and supply example, the external variables may be characteristics of the consumers and

firms or of the market. Our assumptions allow us to define a mapping between the derivative of

the conditional density of the observable variables and the derivative of the conditional density of

the unobservable variables, where the derivatives are with respect to the external variables. Only

when responses correspond to the true value of the unobservable variables, both these derivatives

equal zero. Finding such zeros in the distribution of observable variables allow us to trace responses

corresponding to any fixed value of the vector of unobservable variables. The process also provides

a way of testing the assumed restrictions on the conditional density of the vector of unobserved

variables. External variables have been used, of course, in other models as well. For example, Berry,

Levinsohn and Pakes (2004) model unobserved individual heterogeneity as functions of observed

and unobserved consumer characteristics, while Cunha, Heckman and Schennach (2010) show how
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proxies can be used in identification of latent factors.

We apply our method to estimate the counterfactual expenditure responses to changes in prices

and total expenditure of three households observed to have chosen three different expenditure shares

when faced with a common vector of prices and total expenditure. We use the Kantar homescan

consumer panel data from the UK, which in addition to expenditures on different food items includes

an extensive set of observed household attributes, behaviours and attitudes. We use the latter to

construct the external variables we use in our method. We find that the responses of the three

individuals are significantly different. By comparing the results to those obtained using the same

data to estimate an Almost Ideal demand model, we further demonstrate the benefit of our method.

The remainder of the paper is as follows. In the next section, we compare our method to existent

related literature. Section 3 presents the main assumptions and identification results. Section 4

discusses how to extend the results to cases where the observed regressors are endogenous, to cases

where interest lies on the structural equations in simultaneous equations models, and to cases where

only partial identification is possible. Section 5 applies the general theory to consumer demand

as considered in the empirical application. Section 6 develops the estimators and their asymptotic

properties. Section 7 provides several results that are useful for implementing in practice the new

methods. Section 8 presents the empirical application, and Section 9 concludes.

2 Relation to the literature

The methods developed in this paper can be interpreted as providing a nonparametric multivariate

version of univariate nonseparable models, such as those developed in Matzkin (2003). In the basic

univariate model, the value of a dependent variable is determined by a function whose arguments are

a vector of regressors and a nonadditive unobservable variable. The function is strictly monotone

in the unobservable variable but it is otherwise unknown. The unobservable variable is distributed

independently, or conditionally so, of the vector of regressors, with an unknown continuous dis-

tribution. An example would be one where the observable dependent variable corresponds to a

consumer’s expenditure on a single good, the regressors are the price of the good and the income of

the consumer, and the unobservable variable represents the individual’s taste for the good. Under

the strict monotonicity and independence assumptions above, the change in the individual’s expen-

diture of the good as a response to a change in the values of the price and the consumer’s income,

when the individual’s unobserved taste does not change, is identified. With additional restrictions,

the individual’s taste itself is identified. One such additional restriction fixes the conditional distri-

bution of the unobservable to be Uniform on (0, 1). In such case, the nonparametric function is the
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conditional quantile function of the dependent variable given the regressors, and the change in the

value of the function when the value of the regressors change while the value of the unobservable

stays fixed is the quantile treatment effect of Lehman (1974), see Imbens and Newey (2009). Ap-

plications of these methods include estimation of the demand for food in Blundell, Kristensen and

Matzkin (2014), estimation of the demand for gasoline in Blundell, Horowitz and Parey (2017), and

estimation of individual consumer surplus by Hoderlein and Vanhems (2017). The nonseparable

approach with scalar unobserved heterogeneity has been extended in several directions including tri-

angular models with endogenous regressors (Chesher, 2003, Imbens and Newey, 2009), Torgovitsky

(2015), D’Haultfoeuille and Février (2015)), models with fixed effects (Altonji and Matzkin (2005)),

and nonlinear difference-in-difference type models (Athey and Imbens (2006)).

In this paper, we are concerned with a multivariate version of the above model where instead of a

scalar dependent variable, one is interested in a vector of interdependent variables. In such case, any

unobserved variable that may affect one of the dependent variables will potentially affect the values

of all of them. We are then interested in a vector function such that each of its coordinate functions

depends on the whole vector of regressors and a whole vector of unobservable variables. Unlike

nonparametric nonseparable triangular models, which can be identified using a sequence of univariate

models each depending on only one additional unobserved variable, in our model all unobservables

affect all dependent variables. Only under strong restrictions our model is observationally equivalent

to either unidimensional or triangular models (Blundell and Matzkin (2014)).

Extending the univariate conditional quantile method, Carlier, Chernozhukov, and Galichon

(2016) and Chernozhukov, Galichon, Henry, and Pass (2020) developed identification and estimation

results for nonseparable invertible models where a vector of dependent variables is determined by

an unknown vector function of observable and unobservable variables. Their methods are based

on extensions of results used in optimal transport theory (Brenier (1991), McCann (1995), Villani

(2003)) and follow results by Ekeland, Galichon and Henry (2012) and Galichon and Henry (2012)

on multivariate quantiles. Their results require fully specifying the distribution of the vector of

unobservables, and imposing the restriction that the vector function is the gradient of a convex

function. The method we develop in this paper does not require these conditions. In particular,

we do not assume that the covariances between the unobservable variables are known. Neither

do we impose symmetry of the matrix of cross-partial derivatives, which gradients of differentiable

functions do.

Our method is based on a transformation of variables equation, as used in Matzkin (2008) for

developing identification results for systems of simultaneous equations. The transformation of vari-
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ables equation allows establishing identification at particular values of the function of interest even

when such function is not identified at some other values or uniqueness of solutions to moment con-

ditions is not guaranteed. Identification results for simultaneous equations following this approach

have been discussed and/or developed, among others, in Matzkin (2007, 2008, 2013, 2015) and Berry

and Haile (2014, 2016, 2018)1. Of these, only Matzkin (2015) developed estimation methods, and

none of these papers apply their methods in an empirical study. All the constructive identification

results presented in these papers require an additive structure between unobservables and functions

of observable variables, which are distributed independently of the unobservables and are individually

assigned to each coordinate of the unobservables. Identification of counterfactuals using the system

of reduced form functions generated from these systems of simultaneous equations would require first

imposing such restrictions. The method that we develop in this paper for identifying counterfactu-

als avoids such restrictions. Moreover, unlike Matzkin (2015), our method can be used to estimate

counterfactuals due to discrete changes in regressors, when the values of the unobservables stay fixed.

Besides developing a new method for identification of the values of the dependent variables when

the values of the observable conditioning variables change while the values of the unobservables stay

fixed, we also provide new results for identification of derivatives of structural functions under such

changes. The new results avoid the additive structures and statistical independence assumed in the

previous constructive methods that are based on a transformation of variables equation, and can

be used when the regressors are discrete. The methods also avoid completeness assumptions, which

are usually required to identify structural functions in systems with simultaneity using conditional

model conditions. The latter include Ai and Chen (2003), Newey and Powell (2003), Hall and

Horowitz (2005), Blundell, Chen, and Kristensen (2007), and Darolles, Fan, Florens, and Renault

(2011) for models with additive unobservable terms, and Chernozhukov and Hansen (2005), Cher-

nozhukov, Imbens and Newey (2007), Horowitz and Lee (2007), Chen and Pouzo (2012), and Chen,

Chernozhukov, Lee, and Newey (2014) for models with nonadditive unobservable terms.

Models with nonadditive unobservables have been considered since at least Hurwicz (1950), and

unobserved heterogeneity were key elements in Heckman (1974), McFadden (1974), Heckman and

Willis (1977), Lancaster (1979), and others that followed. A commonly used specification with

nonadditive unobservables is a linear random coefficient model (Hildreth and Huock (1968), Swamy

(1970)). The literature extending these models is very large. They include Beran and Hall (1992),

Beran and Millar (1994), Beran, Feuerverger and Hall (1996), Feuerverger and Vardi (2000), Fos-

ter and Hahn (2000), and Hoderlein, Klemelae, and Mammen (2010)) for linear models, Masten

1Berry and Haile (2014) also develop results using the moment based method in Newey and Powell (2003).
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(2018) and Hoderlein, Holzmann, and Meister (2017) for simultaneous equations, Hausman and

Wise (1978), Ichimura and Thompson (1998), Bajari, Fox, Kim, and Ryan (2012), and Gautier and

Kitamura (2013)) for discrete choice models, Berry, Levinsohn and Pakes (2004), Berry and Haile

(2009), Chiappori, Komunjer, Kristensen (2009), and Fox and Gandhi (2011)) for differentiated prod-

ucts models, and many other papers and models. Nonparametric extensions of random coefficient

structures include Matzkin (2003, Appendix A), Briesch, Chintagunta, and Matzkin (2007), Hoder-

lein, Nesheim, and Simoni (2016), and Lewbel and Pendakur (2017). All these methods impose

structures that our method does not impose. Our method can, however, incorporate extensions

allowing features of the models in those papers.

Our application to consumer demand requires invertibility of demand on unobserved variables,

which has been studied in several papers. Berry, Gandhi and Haile (2013) provided conditions

directly on demand function. We provide conditions on the utility functions, based on Brown and

Matzkin (1998), Beckert (2006), and Beckert and Blundell (2008).

An alternative approach to study nonparametric heterogeneous consumer demand, first studied

by McFadden and Richter (1991) and McFadden (2005), is based on restrictions on the distribution

of demand generated from heterogeneous consumers. (See Matzkin (2007), and Hoderlein and

Stoye (2015)) for specific cases.) Kitamura and Stoye (2018) developed a method based on these

restrictions, which does not require a particular structure on the way unobserved tastes enter into

preferences. Their method assumes a distribution of demand on a finite set of budgets sets is

given, and uses revealed preference conditions to partition the set of budgets into subsets that are

rationalizable. Unlike our method, it cannot be used to identify the demand of a specific consumer

and to exploit revealed preference conditions on any given individual.

3 Framework and main results

We present in this section our model, assumptions and main results. We let Y = (Y1, ..., YdY )′ be a

vector of response variables of an individual satisfying

Y = m (X, ε) , (1)

where X = (X1, ..., XdX )′ and ε = (ε1, ..., εdε)
′ are vectors of, respectively, observable and unobserv-

able variables. The function m (x, e) is unknown to us and so is the distribution of the unobserved

random variable ε. We impose no parametric restrictions on these two objects.

The observed individual could, for example, be a consumer with Y containing the quantities

consumed of a set of different goods, X the prices of the goods and the individual’s income, and ε
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representing the consumer’s unobserved tastes/preferences. In this case m (X, ε) is the individual’s

demand function. Given data of (Y,X), we are then interested in identifying counterfactual demand

responses.

In the first scenario under consideration, we observe a particular individual choosing Y = y when

X = x. We then wish to identify the counterfactual response in Y to a change in X while the value of

the individual’s ε stays constant. That is, with e being the unknown value of the given individual’s ε

and x′ being the counterfactual value of X, the current response satisfies y = m (x, e) and we wish to

identify the ”new” response y′ = m (x′, e). In the demand example, this corresponds to identifying

the change in demand of a given individual in response to price and/or income changes, while keeping

the individual’s tastes unchanged.

In the second scenario, we wish to identify the full mapping (x, e) 7→ m (x, e) together with the

distribution of ε. Similarly to the univariate case, this will require stronger conditions compared to

the first scenario.

With X denoting the support of X, our first assumption guarantees that the unobserved value

of ε corresponding to an observed choice y of Y when X = x is unique:

Assumption 1 For any given x ∈ X , the function e 7→ m (x, e) is thrice continuously differentiable

with inverse r (y, x). That is,

Y = m (X, ε)⇔ ε = r (Y,X) .

Assumption 1, or variations of it, are commonly met in the literature on nonseparable models with

either univariate or multidimensional unobservables. Note that Assumption 1 implicitly restricts the

unobserved variables, ε, to be of the same dimension as Y , dY = dε. (Our model can be incorporated

into one with a larger dimension of unobservables, such as in Matzkin (2003, Appendix A), Matzkin

(2012) or Lewbel and Pendakur (2017).) Our identification results stated in this section only require

m (x, e) to be differentiable, but when analyzing the properties of the estimators developed later

we will require it to be thrice differentiable. For simplicity, we maintain the stronger smoothness

condition throughout.

The counterfactual under the first scenario described above takes a particular form under As-

sumption 1: Recall that, in terms of the function m, the counterfactual is the difference between the

two choices, m (x′, e)−m (x, e). We denote this by ∆̃y (x, x′) . Since y = m (x, e) and, by Assumption

1, e = r (y, x),

∆̃y

(
x, x′

)
:= m

(
x′, r (y, x)

)
− y. (2)
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Under the second scenario, we wish to identify the counterfactual changes as indexed by ε = e taking

the form

∆e

(
x, x′

)
= m

(
x′, e

)
−m (x, e) .

Importantly, the computation of this last quantity require us to identify the unobserved value e of

ε for the given individual of interest. In contrast, ∆̃y (x, x′) does not involve this component and so

can be identified under weaker restrictions.

If m and r were known, one could calculate ∆̃y (x, x′) and ∆e (x, x′). However, these functions are

unknown. In the univariate case, where dY = dε = 1, Matzkin (2003) showed that if ε is distributed

independently of X with a strictly increasing distribution, the counterfactual ∆̃y (x, x′) is identified

without additional restrictions either on the function r or on the distribution of ε. This is in contrast

to the case where the focus is on the identification of the function m (x, e) , and in particular on

identifying how this value varies as a function of e, in which case additional restrictions are needed.

Moving beyond the scalar case, so that Y and ε are multivariate, is far from trivial. Even when

the distribution of ε is fully specified, the function m and the counterfactual ∆̃y (x, x′) may not be

identified (Benkard and Berry (2006))2. One of our aims in this paper is to provide a pointwise

method to identify ∆̃y (x, x′) without imposing either functional restrictions on the function m (x, ε) ,

other than invertibility, or specifying the distribution of ε. To achieve this goal, we make use of

additional dZ observed variables, that we collect in a vector Z with support Z ⊆ RdZ . The variables

in Z are external in the sense that they do not enter the model explicitly as given in eq. (1). At the

same time, we will assume that Z is related to ε, so that we can employ observations on Z to obtain

the ”most likely” value of ε corresponding to a value of Z. Given a specific value z of Z, we find such

value of ε by solving the ”score function,”

∂ log fε|Z (e|z)
∂z

= 0 or equivalently
∂fε|Z (e|z)

∂z
= 0 (3)

where we have assumed that the density of ε conditional on Z exists and is differentiable with respect

to z.

In the consumer demand example, where ε represents a vector of tastes, Z may be a vector of

observable socioeconomic characteristics. Then, the value e satisfying the equation for a particular

vector of socioeconomic characteristics z is the vector of tastes that is interpreted as the most likely

for consumers with such vector of socioeconomic characteristics. Variables that are usually used

2Consider the example in Benkard and Berry (2006), where ε = (ε1, ε2)′ possesses a standard Normal distri-

bution N(0, I) and where the first and second rows of a 2 × 2 matrix A(x) are, respectively, (cos(x), sin(x)) and

(− sin(x), cos(x)) . The models Y = ε and Y = A(x)ε generate identical conditional distributions of Y given X but

very different counterfactuals when the value of x varies.
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as either proxies or measurements of unobservable variables are good candidates for Z; our score

condition is consistent with either of these interpretations. A more detailed discussion of the role of

Z in relationship to ε is provided in Section 4.4.

Equation (3) can be considered as implicitly defining one or more values of e, for given z, or

implicitly defining one or more values of z, for given e. To consider the possibilities of multiple

solutions, we introduce the associated solution mappings,

Λ (z) :=

{
e ∈ E :

∂fε|Z (e|z)
∂z

= 0

}
, (4)

and

Λ∗ (e) :=

{
z ∈ Z :

∂fε|Z (e|z)
∂z

= 0

}
. (5)

For our first result in this section, we will assume that, at least for the value e of ε satisfying

y = m (x, e) for specific observed values y of Y and x of X, both Λ∗ (e) is a singleton and, for

z = Λ∗ (e) , Λ (z) is a singleton. In other words, we will first assume that both Λ and Λ∗ are one-to-

one functions, with each being the inverse of the other. Our second result will assume only that Λ

is a function. We state these assumptions below. Let Y denote the support of Y and Z denote the

support of Z.

Assumption 2 (i) For any given z ∈ Z, Λ (z) is a singleton; (ii) for any given e, Λ∗ (e) is a singleton.

Assumption 2(i) is a single mode restriction: For each z, there exists a unique solution e to (3).

Note that (i) allows Z to possess a dimension larger than that of ε. Assumption 2(ii) impose further

restrictions on the mode of ε|Z = z requiring that a given mode is only achieved for one single value

of z. Assumption 2(i) and (ii) together imply that Λ (z) is one-to-one and so restrict the dimensions

of Z and ε to be equal. We note, however, that Z can be a vector of indices that aggregate the

effect of a larger vector, through indices that can be estimated in a first step. (See Section 7.2) The

following assumption restricts the stochastic relationship between ε and X:

.

Assumption 3 ε is such that ε| (X,Z)
d
= ε|Z where ε|Z has a continuous distribution characterized

by a density fε|Z (e|z) , which is twice continuously differentiable with respect to (z, e).
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Assumption 3 restricts ε and Z to be continuous, while X can follow any distribution, including

a fully discrete one. We consider the case where Z is discrete in Appendix C. The assumption

specifies that X is exogenous, given Z. However, this is not a critical condition for our results to

go through: In Section 4.1, we show how our identification argument is easily modified to allow for

endogenous regressors.

Assumptions 1 and 3 imply that Y | (X,Z) = (x, z) is continuously distributed with density

fY |X,Z(y|x, z) = fε|Z (r (y, x) |z)
∣∣∣∣∂r (y, x)

∂y

∣∣∣∣ , (6)

where |∂r (y, x) /∂y| denotes the absolute value of the Jacobian determinant of r (y, x) with respect

to y. This equation establishes a relationship between the conditional density of the observed vector

Y at Y = y and the conditional density of the unobserved vector ε when the value of ε is the one

satisfying y = m (x, ε) . Importantly, because of the external nature of Z, the Jacobian determinant

does not depend on Z. Taking logs on both sides of this equation and differentiating each with

respect to z, gives

∂ log fY |X,Z(y|x, z)
∂z

=
∂ log fε|Z (r (y, x) |z)

∂z
. (7)

This expression implies that, given y and x, the value z∗ of Z such that ∂ log fY |X,Z(y|x, z∗)/∂z =

0 is also the value of Z such that ∂ log fε|Z (r (y, x) |z∗) /∂z = 0. Since r (y, x) is the value e of ε

satisfying y = m (x, e) , the value z∗ of Z at which

∂ log fY |X,Z(y|x, z∗)
∂z

= 0 (8)

is, by Assumption 2, the value of Z at which such e is most likely. The value z∗ is unique due to

Assumption 2(ii). When the value of X changes from x to x′, while the value e of ε stays fixed, the

response y′ such that y′ = m (x′, e) must be such that

e = r (y, x) = r
(
y′, x′

)
.

But then, y′ must also satisfy

∂ log fε|Z (r (y′, x′) |z∗)
∂z

=
∂ log fε|Z (e|z∗)

∂z
=
∂ log fε|Z (r (y, x) |z∗)

∂z
= 0.

By (7), y′ is then the solution to

∂ log fY |X,Z(y′|x′, z∗)
∂z

= 0 (9)
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where x′ is given and z∗ is the solution to (8). The value y′ is also unique due to Assumption 2(i).

These arguments provide a way to constructively identify y′ given y, when it is known that for

some unknown function m and for some unobservable value, e, of the vector ε, y = m (x, e) and

y′ = m (x′, e): First, find z∗ such that eq. (8) is satisfied. Next, given z∗, find y′ such that eq. (9)

holds. We state this result in the next theorem:

Theorem 1 Suppose that Assumptions 1-3 are satisfied. For any y ∈ Y and x, x′ ∈ X , let e and y′

be such that y = m (x, e) and y′ = m (x′, e). Then, y′ is point identified by eqs. (8)-(9) and therefore

∆̃y (x, x′) = y′ − y is also point identified.

In Theorem 1, Assumption 2 makes it possible to establish the existence of a unique z∗ that

would make the value e of ε the most likely for an observed pair (y, x) . Such uniqueness would in

general not be possible if Z had different dimension than that of ε. However, as long as for a value

z of Z, the value of ε satisfying (3) is unique, that is, when Assumption 2(i) holds, we can still trace

out the values of Y across different values of X making sure that the value e of ε stays fixed and

satisfies y′ = m (x′, e) . We establish such result next, and provide its proof in the Appendix. In

Subsection 7.2, we consider further the case where the dimension of Z is larger than that of ε, by

obtaining an estimator for Λ that satisfies Assumption 2.

Theorem 2 Suppose that Assumptions 1, 2(i) and 3 are satisfied. For any x, x′ ∈ X and z ∈ Z,

the value of m (x,Λ(z)) is point identified and therefore ∆Λ(z) (x, x′) = m (x′,Λ(z)) −m (x,Λ(z)) is

also point identified.

Theorem 2 provides a weaker identification result since Λ (z) is not identified. Thus, without

further restrictions, it does not allow us to identify the particular individual in the population whose

counterfactual response we are measuring. However, in some situations, we might be interested in

the value of ε, or on the response of the vector function m (x, ·) to changes in the value of ε for any

given x. These can be identified if Λ is specified, as assumed next.

Assumption 4 Λ : Z → E is known and onto E .
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One can interpret Assumption 4 as a normalization analogous to setting E [ε|X] = 0 in an additive

regression model, Y = m (X) + ε. In such models, the effect of a change in the value a regressor is

identified irrespective of the specific value one imposes on E [ε|X] as long as it is constant. But the

value of the constant term, and therefore the value of the function for any value of the unobservable,

cannot be identified without specifying the value of the conditional expectation of the unobservable.

Assumption 4 plays this role in our nonseparable model. Under this assumption, the following result

follows immediately from our previous results.

Theorem 3 Suppose that Assumptions 1-4 are satisfied. Then m (x, e) is point identified and there-

fore ∆e (x, x′) is also point identified for any given x, x′ ∈ X and any e ∈ E.

4 Extensions and Discussion

In this section, we extend the results in several directions and provide additional interpretations of

our assumptions. We first consider the case where the vector of unobservables ε in not distributed

independently of X, conditional on Z. We describe how to deal with this situation using a triangular

structure. We next consider the case where interest lies on the identification of the derivatives of

the structural equations generating the response function. We show how our result can be used to

guarantee that the value of ε stays constant when identifying those derivatives across different values

of X. In the following subsection, we provide results that relax the assumptions made in Section 3

requiring that Λ (z) and Λ∗ (z) be singletons. We establish partial identification results for the cases

where Λ (z) and Λ∗ (z) are set-valued. In the last subsection, we discuss further the interpretation

and properties of our external variables.

4.1 Endogenous regressors

Assumption 3 restricts the regressors X to be (conditionally) exogenous. We here remove this

assumption by extending our model so that it takes the form of a triangular system. We then use

the so–called control function approach to show identification as in Imbens and Newey (2009) and

Blundell and Matzkin (2014).

We assume that X = (X1,W1) where X1 and W1 are vectors of endogenous and exogenous

variables, respectively. We then assume that the endogenous variables satisfy

X1 = π (W, η)

13



where W = (W1,W2) ∈ W with W2 being another observed vector and η ∈ T is an unobserved

error component which is independent of W conditional on Z. However, we allow for η and ε to be

dependent in which case X1 is endogenous. The idea is now to use (a transformation of) η as control

variable for the endogenous component. To this end, for any given t ∈ T , define

Λ (z, t) :=

{
e ∈ E :

∂fε|Z,η (e|z, t)
∂z

= 0

}
, (10)

and

Λ∗ (e, t) :=

{
z ∈ Z :

∂fε|Z,η (e|z, t)
∂z

= 0

}
. (11)

We then replace Assumptions 2–3 with:

Assumption 2* (i) For any given (z, t) ∈ Z×T , Λ (z, t) is a singleton; (ii) for any given e, Λ∗ (e, t)

is a singleton.

Assumption 3* (i) The function π (w, t) is invertible in t for all w ∈ W; (ii) π (w, t) is identified up

to some unknown one-to-one transformation T , that is, (w, t) 7→ π (w, T (t)) is identified; (iii)

(ε, η) and W are mutually independent conditional on Z and (iv) ε| (Z, η) has a continuous

distribution with the density fε|Z,η (e|z, t) being twice continuously differentiable with respect

to (z, e).

The discussion of Assumption 2 carries over to Assumption 2* with obvious modifications. As-

sumption 3*(i)-(ii) allows us to identify T−1 (η) which in turn can be used as a control variable:

Under (iii), X and ε are mutually independent conditional on
(
Z, T−1 (η)

)
. Our identification ar-

gument now proceeds as before, except that we now throughout condition on
(
Z, T−1 (η)

)
, and we

obtain:

Theorem 4 Suppose that Assumptions 1, 2* and 3* are satisfied. Then the claims of Theorems 1–2

remain true. If in addition Λ as given in (10) is known then the claims of Theorem 3 also hold true.
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4.2 Structural derivatives in models with simultaneity

In this subsection, we provide a new result for identification of changes in the derivatives of structural

functions when the value of conditional variables change while those of the unobservable variables

stay fixed. As noted in Section 2, identification of functions and derivatives in nonparametric

simultaneous equations models has been studied using a transformation of variables equation in

several previous works. Such studies imposed additivity and independence restrictions. In addition,

some of those methods, as those in Matzkin (2015), are not appropriate when X is discrete for

analyzing the effect of changes in X when the value of ε stays fixed.3 Our method can be used

when X is either discrete of continuously distributed and it does not require the additivity and

independence assumptions assumed in all those previous works.

For any j ∈ {1, ..., J}, we will denote by Y−j the vector Y without the j-th coordinate. We

consider the often specified system of simultaneous equations

Yj = sj (Y−j , X, εj) j = 1, .., J

We denote by

Y = m (X, ε)

the system of reduced form functions generated from the above systems of simultaneous equations.

Identification of elements in a system of simultaneous equation as above often requires exclusion

restrictions on the regressors X, in addition to the exclusion restrictions on ε. Our method achieves

identification through Z instead of through X. We next provide conditions for the identification of

∂sj
(
y′−j , x

′, ej

)
∂y−j

− ∂sj (y−j , x, ej)

∂y−j

for j ∈ {1, ..., J} at the value ε = e at which y = m (x, e) and y′ = m (x′, e) . When y′ = y, this

difference is a discrete version of ”cross-partial” derivatives of the structural function. In a demand

and supply example, where J = 2, s1 and s2 could denote, respectively, the demand and supply

functions, with Y1 denoting quantity, Y2 denoting price, X denoting market characteristics, and ε1

and ε2 denoting respectively unobserved taste and unobserved productivity. If y = m (x, e) , then

3Matzkin (2015) provides several estimation methods for derivatives of structual functions in simultaneous equations

models. These can be calculated at any value of a discrete conditioning variable. Fixing the value of the structural

functions at one point of the continuosly distributed variables, and integrating the derivatives, the functions and

therefore the value of ε can be identified. However, when a coordinate is discrete, this procedure requires fixing the

value of the structural function at one point of the continuous variables for each value of the discrete variable. Hence,

being able to guarantee that the value of ε stays fixed across different values of the discrete coordinate depends on the

arbitrary choices for the function’s values.
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y is the vector of quantity and price of equilibrium when markets characteristics equal x and the

vector of unobserved tastes and productivity equals e. When y′ = y, our result below establishes

identification of the changes in the slopes of the demand and supply functions when the market

characteristics change while unobserved taste and productivity stay fixed.

We will make assumptions 1-3 and the following

Assumption 5 For z ∈ Z such that e ∈ Λ(z), and for j, k ∈ {1, ..., J} such that k 6= j

∂fε|Z(e|z)
∂zj∂εj

6= 0 and
∂fε|Z(e|z)
∂zj∂εk

= 0

This assumption implicitly assigns a coordinate of z to the j−th equation. Such assignment is not

necessary to identify the counterfactual y′. It is only necessary if interest lies on the identification of

the structural rather than the reduced form functions. Our result is stated in the following theorem.

Theorem 5 Suppose that Assumptions 1, 2, 3, and 5 are satisfied. If y ∈ Y, x, x′ ∈ X , and e are

such that y = m (x, e) , then, for y′ ∈ Y such that

y′ = m
(
x′, e

)
the structural derivatives

∂sj
(
y′−j , x

′, ej

)
∂y−j

and
∂sj (y−j , x, ej)

∂y−j

are identified.

4.3 Partial Identification Results

Next, we show how Assumption 2 can be relaxed. Assumption 2(i) requires the existence of a unique

mode for each z, while Assumption 2(ii) requires that for a given value of e at which the density

fε|Z (e|z) has a mode, there is a corresponding unique value of z. If either of the two parts is violated,

we can only establish partial identification of the counterfactual ∆̃y (x, x′), as stated in the following

result.

Theorem 6 Suppose that Assumptions 1, 2(ii), and 3 are satisfied. For any y ∈ Y and x, x′ ∈ X ,

let z∗ be the unique solution to (8). Then,

∆̃y

(
x, x′

)
∈
{
y′ − y ∈ RdY :

∂ log fY |X,Z (y′|x′, z∗)
∂z

= 0

}
.
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Suppose that Assumptions 1 and 3 are satisfied. For any y ∈ Y and x, x′ ∈ X ,

∆̃y

(
x, x′

)
∈
{
y′ − y ∈ RdY : For some z∗ ∈ Z,

∂ log fY |X,Z (y|x, z∗)
∂z

= 0 &
∂ log fY |X,Z (y′|x′, z∗)

∂z
= 0

}
.

When the focus is on counterfactuals that do not specify the value of ε other than the requirement

that it stays constant, the partial identification version of Theorem 2 is:

Theorem 7 Suppose that Assumptions 1 and 3 are satisfied. For any x, x′ ∈ X and z ∈ Z,

∆Λ(z)

(
x, x′

)
∈
{
y′ − y ∈ RdY :

∂ log fY |X,Z (y|x, z)
∂z

= 0 &
∂ log fY |X,Z (y′|x′, z)

∂z
= 0

}
.

4.4 The ε-Z relationship

The strength of our identification results depend on the features of Λ (z) defined in (4) If this is one-to-

one then point identification is achieved – otherwise, only partial identification is achieved. We here

discuss the properties of Λ in a given application and how one should choose the external regressors

in Z to ensure point identification. Before doing so, it should be noted that the assumptions made

on the mappings Λ and Λ∗ can be tested by exploiting eq. (7), since the properties of Λ and Λ∗ are

embedded in ∂fY |X,Z (y|x, z) / (∂z). For example, invertibility of Λ is guaranteed by invertibility of

∂fY |X,Z (y|x, z) / (∂z) w.r.t. z. Thus, point identification is testable. We utilize this fact in Section

7 where we develop data-driven selection methods for Z.

How should we then choose Z to obtain point identification? Recall that the relationship between

ε and Z determines the properties of the solution mappings, (4) and (5). At one extreme, if there

exists a stochastic one-to-one mapping between the two, Λ (z) will generally be an invertible real-

valued function, see below. In order for this to hold, Z must necessarily be of at least the same

dimension as ε, dZ ≥ dε and Z and ε must covary. At the other extreme, suppose that Z and ε

are fully independent so no stochastic relationship exists between the two. Then fε|Z (e|z) = fε (e)

and Λ (z) = E which is the maximum volume that it can achieve. Examples 1–2 below illustrate the

features of Λ (z). Finally, note that Λ (z) = ∅ is ruled out since fε|Z (e|z) is a density.

Thus, the researcher should choose Z to ensure maximal covariation between Z and ε in terms

of fε|Z (e|z). In a given application, the choice of variables included in Z should therefore reflect the

type of unobserved heterogeneity that enters the model of interest. In the consumer demand example,

one could think of each of the components of ε as capturing a particular type of tastes/preferences
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of the consumer. We then need to identify corresponding socio-economic characteristics in data that

we expect are capturing variation in these unobserved tastes.

It is important to stress that Λ does not describe the stochastic relationship between the underly-

ing random variables Z and ε. For example, for a given individual characterized by (ε, Z), it will not

hold that ∂fε|Z (ε|Z) / (∂z) = 0, and so we cannot directly use ∂fε|Z (ε|Z) / (∂z) to identify an indi-

vidual’s particular value of ε. But Λ does provide information about the distributional relationship,

and this suffices for our identification results.

Our machinery accommodates for Z to be either a noisy proxy or noisy measurement of ε. The

following two examples illustrate these two scenarios:

Example 1 Suppose that Z acts as a noisy proxy for ε, so that ε satisfies

t (ε) = s(Z) + η,

for some unknown functions s and t and some unobservable vector η which is independent of

Z. Suppose furthermore that t is invertible in which case

log fε|Z (e|z) = log fη (t (e)− s(z)) + log |∂t (e) /∂e| .

and so
∂ log fε|Z (e|z)

∂z
= −∂s(z)

∂z

∂ log fη (t (e)− s(z))
∂η

.

Thus,

Λ (z) =

{
e ∈ E :

∂s(z)

∂z

∂ log fη (t (e)− s(z))
∂η

= 0

}
which will generally be a set. The properties of s determines how closely ε and Z covary. For

example, if ∂s(z)/ (∂z) has full rank and the distribution of η has a unique mode at zero, then

Λ (z) = t−1 (s (z)) is a singleton.

Example 2 Suppose instead that Z acts as a noisy and possibly biased measurement of ε so that

Z = s (ε, η)

where s is unknown and η is unobserved. Assume that the marginal distribution of Z is
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uniform.4 Then, since fε|Z (e|z) = fε,Z (e, z) /fz (z) = fZ|ε (z|e) fε (e) /fZ (z),

∂fε|Z (e|z)
∂z

=
∂fZ|ε (z|e)

∂z
.

Thus, the properties of Λ are determined by the ones of s (ε, η) and η. If, for example, s (ε, η) =

s̄(ε) + η for some s (·) and the distribution of η has a unique mode at zero; then

∂fε|Z (e|z)
∂z

=
∂fZ|ε (z|e)

∂z
=

∂fη (z − s̄ (e))

∂η
,

and so

Λ (z) = {e ∈ E : z = s̄ (e)} ,

which is a singleton if s̄ is invertible. This includes as a special case the standard measurement

error model, where s̄ (ε) = ε.

In general, adding more (relevant) external covariates helps in the identification since the ”size”

of the set of solutions, Λ (z), will generally shrink as we add more score equations that have to

be satisfied. However, once point identification has been achieved, so that Λ (z) is a singleton and

Λ (Z) = E , adding more external covariates provides no gain in terms of establishing identification.

This is illustrated in the following example:

Example 3 Suppose that ε, which is assumed to be a scalar for notational simplicity, satisfies

ε =

d̄∑
i=1

si(Zi) + η,

where si : R 7→R are one-to-one, i = 1, ...d, and, as before, Z1, ..., Zd̄ and η are mutually

independent and with full support. We can then normalize these such that si(Zi) ∼ N (0, 1),

i = 1, ...d, and η ∼ N (0, 1). It is now easily checked that using the first dZ ≤ d̄ external

covariates yields the following solution mapping,

ΛdZ (z1, ...zdZ ) =

dZ∑
i=1

si(zi).

4This is without loss of generality since we can always transform Z. And the identifying power of Λ is invariant to

invertible transformations of ε and Z: For any two invertible transformations Gε and GZ , the conditional distribution

of ε̄ = Gε (ε) |Z̄ = GZ (Z) satisfies

fε̄|Z̄ (z|z̄) =
fε̄,Z̄ (z, z̄)

fZ̄ (z̄)
=

fε,Z
(
G−1

ε (z) , G−1
Z (z̄)

)
fZ

(
G−1

Z (z̄)
) ∣∣∣∣∂G−1

ε (z)

∂z

∣∣∣∣ = fε|Z
(
G−1

ε (z) , G−1
Z (z̄)

) ∣∣∣∣∂G−1
ε (z)

∂z

∣∣∣∣
and so the solutions mappings for the score equations of ε̄|Z̄, Λ̄ satisfies Λ̄ (z̄) = Gε

(
Λ
(
G−1

Z (z)
))

.
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Thus, ΛdZ is a singleton for all choices of dZ ≥ 1 and so nothing is gained, in terms of

identification of m, from using more external covariates in this case.

Maintain the above model but suppose now that s1 (Z1) = [0,+∞) and s2 (Z2) = (−∞, 0).

In this case, using Z1 alone as external covariate will only allow us to identify individuals

with positive values of ε, while using both Z1 and Z2 allow us to ”hit” all individuals in the

population.

5 Application to consumer demand

In our empirical application, we apply our methodology to the estimation of household demand

when unobserved tastes stay fixed and prices or income change either in a discrete or a continuous

form. Such demand functions can be used to recover individual preferences using revealed preference

methods when changes in prices and/or income are discrete, or using either integrability or revealed

preference methods when prices and/or income are continuously distributed. Our method allows

to identify such individual demand functions even when each individual is observed only once. We

here demonstrate how our general framework accommodates a very flexible consumer demand model

and how our identification argument works in this context.

Consider a consumer characterized by income level I ∈ R+ (representing the total budget avail-

able to the consumer potentially adjusted for the set of consumer goods of interest) together with

unobserved individual characteristics which we collect in ε ∈ E . The consumer chooses quantities of

dY + 1 divisible goods. Let p = (p1, ..., pdY )′ ∈ RdY+ denote the (relative) prices of the first dY goods,

where we leave out the last good whose demand is identified through the budget constraint. Given

these prices, the consumer demands Y = (Y1, ..., YdY )′ ∈ Y ⊆ RdY+ . We let m denote the demand

function that maps prices, income and consumer characteristics into demands

Y = m (p, I, ε) . (12)

A parametric approach would deal with unobserved heterogeneity by imposing a specific func-

tional form. Consider, for example, an extended CES utility specification for a consumer with

unobserved tastes ε1, ..., εG given by

U (Y, ε) = (

dY∑
g=0

αgY
θ
g )1/θ +

dY∑
g=1

εgY
ρg
g ,
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where Y0 is the ”numeraire good”, 0 < θ < 1 is the CES parameter, and 0 < ρg < 1 for g = 1, ..., G.

As can be verified either directly or by applying Theorem 8 below, the corresponding system of

demand functions is invertible in ε and hence we can write

ε = r (p, I, Y ) . (13)

That is, given any value of Y = (Y1, ..., YdY ) one can pin down the value of ε = (ε1, ..., εdY ) that

generated it. It is then easy to predict the demand for a consumer with the same ε when confronted

with a different budget set. This analysis, however, entirely rests on the strong parametric specifi-

cation of preferences being correct. If incorrect, the analysis will be invalid. It seems plausible that

the underlying utility function has a more flexible structure than the one above. In this case the

consumer’s choice for one commodity depends on the unobservable tastes for all commodities, and

pinning down the value of ε is much more challenging. Our identification result allows us to do so

in fairly straightforward manner.

A primary goal of much consumer demand analysis is to measure the impact of changes in prices p

and income levels I on the demand. With the identification result developed in the previous sections,

this can be achieved at an individual level. Consider a consumer characterized by ε = e who has

income I = i0 and faces a price shock changing prices p = p0 to p1. We might think here of a low

income consumer (low i0) with a high initial consumption of some key goods y0 = m (p0, i0, e). The

counterfactual demand response for consumer (y0, i0, e) is given by

∆e = m (p1, i0, e)−m (p0, i0, e) . (14)

Our identification argument will allow us to identify ∆e. The value of ε at which the counterfac-

tuals will be identified can be defined from the initial observed demand y0 = m (p0, i0, e). The

counterfactual response, when ε is so characterized, is identified without a normalization. Adding a

normalization, to assign numerical values to ε, we will be able to identify changes in m with respect

to e, and also identify the distribution of ε. Our identification approach will also allow us to identify

marginal effects such as ∂m (p, I, e) / (∂I) when I is continuously distributed and ∂m (p, I, e) / (∂p)

when p is continuously distributed.

The above demand analysis is feasible within our framework under weak additional regularity

conditions on the demand model. Consider first Assumption 3: As mentioned in Section 1, several

recent results exist on invertibility of demand functions, such as Brown and Matzkin (1998), Beckert

and Blundell (2008), Berry, Gandhi and Haile (2013) and Chiappori et al (2016a). The following

result is a variation on the results in Brown and Matzkin (1998) and Beckert and Blundell (2008).
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It provides a practical method for incorporating multidimensional unobserved heterogeneity around

commonly used deterministic utility functions, in a way that generates invertible demand function.

We suppress any dependence on observables W since they remain fixed, and let y = (y1, ..., ydY )

denote the demand of the first dY goods.

Theorem 8 Suppose that the utility function satisfies U (y, ydY +1, ε) = U1 (y, ydY +1) + U2 (y, ε)

where: (i) U1 (y, ydY +1) is a twice continuously differentiable, strictly increasing and strictly qua-

siconcave function; (ii) U2 (y, ε) is a twice continuously differentiable function, which for each ε is

strictly increasing and strictly concave in y; (iii) for any y, all the principal minors of the ma-

trix DyεU2 (y, ε) =
[
∂2U2 (y, ε) / (∂yi∂εj)

]dY
i,j=1

are strictly positive. Then, the (demand) function

y = m (p, I, ε) that maximizes U (y, ydY +1, ε) subject to the budget constraint p′y + ydY +1 ≤ I is

invertible in ε.

Assumption 1 requires that, in addition to (p, I), we have observed a set of consumer-specific

covariates Z which covary with ε and, conditional on ε, do not enter directly into the demand

function (12). Suppose that we observe a number of individual characteristics for each consumer.

These will comprise two groups: The first group of characteristics, W , is included in X = (p, I,W )

and so we control for the effects of these on demands explicitly. The second group of characteristics

is included in Z to be used as external covariates. The second group of observed characteristics is

in this sense absorbed into the unobserved component ε, and so we do not control for the effect

of the second set on demand explicitly. In our empirical application, Z is computed as an index of

household members’ attitudes and behaviours relating to consumer preferences, for example the type

of news papers and TV stations they see, their attitudes to fitness, their education, etc; it seems

plausible that these variables affect consumer preferences.

One will in general expect income I (total budget to the subset of goods) to be endogenous,

and that certain observed characteristics comove with the unobserved components. Here, we may

introduce instruments W and use a control function approach to control for endogeneity as discussed

earlier.

6 Nonparametric Estimation and Inference

We develop in this section nonparametric estimators of ∆̃y (x, x′) and ∆e (x, x′) based on the iden-

tification results in the previous section. We will in the following assume that X has a continuous

distribution – the case of discrete regressors is easily accommodated for but the notation gets more
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cumbersome. Moreover, in our theoretical analysis, we restrict ourselves to the case where Assump-

tion 2 is satisfied and so Λ is a function.

First, we define the relevant objects to be estimated. Recall that the population version of the

counterfactual effect was identified through the solutions z∗ to eq. (8) and the solution y′ to eq. (9).

Note that these are actually functions and so we will use the following notation in this section: For

any given values of (y, x), let r̄ (x, y) be the solution to

∂ log fY |X,Z(y|x, r̄ (x, y))

∂z
= 0. (15)

Thus, r̄ (x, y) corresponds to z∗ where we now emphasize that it depends on (x, y). Similarly, for

any given value of (x, z), we let m̄ (x, z) be the solution to

∂ log fY |X,Z(m̄ (x, z) |x, z)
∂z

= 0. (16)

This corresponds to y′. In terms of these two functions, the counterfactual effect is given by

∆̃y

(
x, x′

)
= m̄ (x, r̄ (x, y))− y. (17)

Similarly, for a given z, we can represent ∆∆(z) (x, x′) as

∆∆(z)

(
x, x′

)
= m̄

(
x′, z

)
− m̄ (x, z) . (18)

Let (Yi, Xi, Zi), i = 1, ..., n, be i.i.d. observations from the model. We then propose the following

GMM-type estimators of m̄ (x, z) for any given values of (x, z) ∈ X × Z:

m̂ (x, z) = arg min
y∈Y0

‖ĝ(y|x, z)‖2 , (19)

where

ĝ(y|x, z) =
∂f̂Y |X,Z(y|x, z)

∂z′
(20)

contain the ”moment” conditions, f̂Y |X,Z is a nonparametric estimator of fY |X,Z and Y0 ⊆ Y is some

compact subset that the true function value m̄ (x, z) is assumed to lie in. Ideally we would like to set

Y0 = Y, but, as with other extremum estimators whose objective function is potentially non-convex,

we have to restrict the set of candidate values to be compact. Similarly, an estimator of r̄ (y, x) can

be obtained by either computing

r̂ (y, x) = arg min
z∈Z0

‖ĝ(y|x, z)‖2 , (21)

or

r̃ (y, x) = arg max
z∈Z0

f̂Y |X,Z(y|x, z), (22)
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where Z0 ⊆ Z is some compact subset that the true function value r̄ (y, x) is assumed to lie in.

Any nonparametric conditional density estimator could in principle be employed in the imple-

mentation of the above estimators. We here focus on the case where f̂Y |X,Z has been chosen as a

kernel density estimator, of the form

f̂Y |X,Z(y|x, z) =

∑n
i=1KY,hY (Yi − y)KX,hX (Xi − x)KZ,hZ (Zi − z)∑n

i=1KX,hX (Xi − x)KZ,hZ (Zi − z)
, (23)

where Ka,ha = Ka (·/ha) /ha, Ka : Rda 7→ R is a kernel function, and ha > 0 a bandwidth, a ∈

{Y,X,Z}. If X has discrete components, KX,hX (Xi − x) in the above expression should be replaced

by KX,hX (X1,i − x1) I {X2,i = x2} where X1 and X2 contain the continuous and discrete components

of X, respectively, and I {·} denotes the indicator function. With this modification of the estimator,

all the following asymptotic statements remain correct for the mixed discrete-continuous case as well

by letting dX denote the dimension of X1.

For the asymptotic analysis of m̂, we impose regularity conditions on the kernel functions used

to compute f̂Y |X,Z , and the underlying structure of the model at the values (x, z) at which we wish

to estimate m̄. To state the conditions, we introduce

H (x, z) =
∂2fY |X,Z(y|x, z)

∂z∂y′

∣∣∣∣∣
y=m̄(x,z)

∈ RdY ×dY , (24)

which measures the information content of the ”moment” conditions.

Assumption 5 The kernel functions are twice continuously differentiable and satisfy the following

conditions:
∫
Rda Ka (x) dx = 1,

∫
Rda xKa (x) dx = 0 and

∫
Rda ‖x‖

2Ka (x) dx < ∞ for a ∈

{Y,X,Z}.

Assumption 6 (i) The function m (x, e) is twice continuously differentiable w.r.t. e; (ii) (X,Z) has

a continuous distribution whose density, fX,Z (x, z) is twice continuously differentiable with

fX,Z (x, z) > 0.

Assumption 7 (i) m̄ (x, z) is situated in the interior of Y0; (ii) Hm (x, z) defined in eq. (24) has

full rank.

Assumptions 5–6 allow us to apply standard results from the analysis of nonparametric kernel

estimators. In particular, Assumptions 1, 3 and 6 guarantee that the joint density of (Y,X,Z),

fY,X,Z (y, x, z) = fY |X,Z (y|x, z) fX,Z (x, z), exists and is twice continuously differentiable. This com-

bined with the use of second-order kernels, as imposed in Assumption 5, imply that the leading

bias terms of ∂f̂Y |X,Z(y|x, z)/ (∂z′) are of order OP
(
h2
Y

)
+ OP

(
h2
X

)
+ OP

(
h2
Z

)
, while the variance
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terms are of order OP

(
1/[nhdYY hdXX hdY +2

Z ]
)

. The overall bias could be reduced by using higher-order

kernels combined with assuming the existence of higher-order derivatives of m and fε,Z ; however, to

avoid overly complicated assumptions, we refrain from this here.

Assumption 6 is used for the analysis of the GMM-type estimator m̂ (x, z) and contains standard

conditions found in the analysis of GMM estimators: Assumption 7(i) together with the identification

result in Theorem 8 ensure that the GMM estimator defined in eq. (19) is consistent; Assumption

7(ii) rules out that the “true” parameter lies on the boundary of the parameter space; and Assumption

7(iii) is the usual rank condition for GMM estimators that guarantee local identification.

The analysis of the estimators follow along the same lines as the one for standard GMM esti-

mators with the exception that the sample moment conditions here takes the form of the first-order

derivatives of a kernel density estimator. In particular, the convergence rate of m̂ will be determined

by the ones of the density derivative estimator.

Theorem 9 Suppose that Assumptions 1–3 and 5–7 hold. Then, for any bandwidth sequences sat-

isfying

nhdYY hdXX hdZ+2
Z h4

a → 0 for a = Y,X,Z, log (n) /
(
nhdYY hdXX hdZ+2

Z

)
→ 0, and nhdY +2

Y hdXX hdZ+2
Z →∞,

(25)

the estimator m̂ (x, z), as defined by eq. (19), is consistent and satisfies√
nhdYY hdXX hdZ+2

Z {m̂ (x, z)− m̄ (x, z)} →d N (0, Vm (x, z)) ,

where

Vm (x, z) = H−1
m (x, z) Ωm (x, z)H−1

m (x, z) ,

and

Ωm (x, z) =
fY |X,Z(y∗|x, z)
fX,Z(x, z)

∣∣∣∣
y∗=m̄(x,z)

∫
RdY

K2
Y (y) dy

∫
RdX

K2
X (x) dx

∫
RdZ

∂KZ (z)

∂z

∂KZ (z)

∂z′
dz ∈ RdY ×dY .

(26)

Remark 1. The first and second bandwidth condition in eq. (25) control the bias and variance of

ĝ(y|x, z), respectively, and ensure that they vanish sufficiently fast. The third condition implies

that the nonparametric estimator Ĥm (x, z) = ∂2f̂Y |X,Z(y∗|x, z)/ (∂z∂y′) is consistent

We observe that the usual curse-of-dimensionality of nonparametric estimators is present: The

convergence rate of m̂ deteriorates as the dimensions of Y , X and/or Z increase. Moreover, given

these, the asymptotic variance, Vm (x, z), of m̂ takes the usual sandwich form as well-known for
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GMM estimators. The over all variance depends on two properties of the model: First, Ωm (x, z)

is the standard asymptotic variance of kernel density derivatives and so captures the precision with

which we can learn about the true density derivative (”moment conditions”). Second, as discussed

earlier, Hm (x, z) measures the identifying strength of Z as it measures the local curvature of the

first-order conditions identifying m̄.

Next, we analyze the two estimators of r̄ (y, x) defined in eqs. (21)-(22). We impose the following

additional assumption for this analysis, which corresponds to the conditions imposed in Assumption

6 for the estimation of m̄:

Assumption 8 (i) r̄ (y, x) is situated in the interior of Z0 and (ii)

Hr (y, x) :=
∂2fY |X,Z(y|x, z)

∂z∂z′

∣∣∣∣∣
z=r̄(y,x)

∈ RdY ×dY has full rank.

Theorem 10 Suppose that Assumptions 1–3, 5–6 and 8 hold. Then, for any bandwidth sequences

satisfying

nhdYY hdXX hdY +2
Z h4

a → 0 for a = Y,X,Z, log n/hdYY hdXX hdY +4
Z| → 0, and nhdY +2

Y hdXX hdZZ →∞, (27)

the estimator r̂ (y, x), as defined by eq. (21), is consistent and satisfies√
nhdYY hdXX hdZ+2

Z {r̂ (y, x)− r̄ (y, x)} →d N (0, Vr (y, x)) ,

where

Vr (x, z) = H−1
r (x, z) Ωr (x, z)H−1

r (x, z) ,

and

Ωr (y, x) =
fY |X,Z(y|x, z∗)
fX,Z (x, z∗)

∣∣∣∣
z∗=r̄(y,x)

∫
RdY

K2
Y (z) dz

∫
RdX

K2
X (x) dx

∫
RdZ

∂KZ (z)

∂z

∂KZ (z)

∂z′
dz ∈ RdY ×dY

Furthermore, the estimator r̃ (y, x) defined in eq. (22) is first-order equivalent to r̂ (y, x).

One concern one may have, given the slow convergence rate reported in the above theorem, is

poor finite-sample performance of the proposed estimator. To investigate how well our estimator

performs in finite samples, we carried out a simulation study with the results reported in Appendix

E. As can be seen from these results our estimator performs well in sample sizes around n = 2, 000.

Given the estimators of r̄ and m̄, natural estimators of the counterfactual effects ∆̃y (x, x′) and

ΛΛ(z) (x, x′) defined in (17) and (18), respectively, are

∆̂y

(
x, x′

)
:= m̂ (x, ê)− y,

and

∆̂Λ(z)

(
x, x′

)
:= m̂

(
x′, z

)
− m̂ (x, z) .
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Theorem 11 Suppose that Assumptions 1–3 and 5–8 hold together with eq. (25). Then,√
nhdYY hdXX hdY +2

Z {∆̂Λ(z)

(
x, x′

)
−∆Λ(z)

(
x, x′

)
} →d N

(
0, Vm (x, z) + Vm

(
x′, z

))
,

where Vm (x, z) is defined in Theorem 9. If furthermore eq. (27) hold then√
nhdYY hdXX hdY +2

Z {∆̂y

(
x, x′

)
− ∆̃y

(
x, x′

)
} →d N

(
0, Vy

(
x, x′

))
,

where, with Hr and Vr defined in Theorem 10,

Vy
(
x, x′

)
=
∂m(x′, z)

∂z′
H−1
r (y, x)Vr (y, x)H−1

r (y, x)
∂m(x′, z)

∂z′
+ Vm

(
x′, r̄ (y, x)

)
.

6.1 Panel data setting

The estimators and their asymptotic theory developed so far assumed a single cross section of data.

In our empirical application, we will work with a panel of n households observed over T ≥ 2 time

periods, (Yi,t, Xi,t, Zi,t), for i = 1, ...., n and t = 1, ..., T . The identification result will still go through

if we assume that eq. (1) holds for all individuals at each time point t and that our assumptions are

satisfied for all t = 1, ..., T .

The estimation procedure remains large unaltered with the only difference being that we now

replace the kernel density estimator in eq. (23) with the following version that pools data across the

T time periods,

f̂Y |X,Z(y|x, z) =

∑n
i=1

∑T
t=1KY,hY (Yi,t − y)KX,hX (Xi,t − x)KZ,hZ (Zi,t − z)∑n
i=1

∑T
t=1KX,hX (Xi,t − x)KZ,hZ (Zi,t − z)

. (28)

The asymptotic theory also remains largely unchanged. In particular, we do not need to cluster the

standard errors at the individual level.

Theorem 12 Suppose that {(Yi,t, Xi,t, Zi,t) : i = 1, ...., n, t = 1, ..., T} is generated by

Yi,t = m (Xi,t, εi,t) ,

where: (i) {(εi,t, Xi,t, Zi,t) : t = 1, ..., T, } is stationary for each i = 1, ..., n and independently dis-

tributed across i = 1, ...., n, and (ii) for any s 6= t, (εi,s, Xi,s, Zi,s, εi,t, Xi,t, Zi,t) has a well-defined

continuous density. Then, under Assumptions 1–3 and 5–8, the asymptotic results of Theorems 9–11

remain true when Ωm (x, z) and Ωr (x, y) are replaced by Ωm (x, z) /T and Ωr (x, z) /T , respectively.

7 Choosing External Covariates

To achieve point identification we need to find relevant external covariates Z so that Assumption 3

is satisfied. In most applications, the researcher will either have more Z’s available that potentially
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satisfy Assumption 3, or will be uncertain about whether a potential set of candidate variables are

valid. We are then interested in selecting a subset of size dY from these that satisfies Assumption

3 for the following two reasons: First, the nonparametric estimator m̂ (x, z) suffers from a curse-of-

dimensionality with the precision deteriorating as dZ increases, c.f. Theorem 9. Second, if dZ > dY ,

the estimator m̂ (x, z) is not invertible in z and so we cannot recover the distribution of ε (up to the

transformation Λ).

We here develop methods for identifying a valid set of external covariates. We take as starting

point that we have available dZ ≥ dY candidate external variables available which we collect in

Z = (Z1, ..., ZdZ )′. Two procedures are then developed: The first procedure tests for whether a given

subset of the candidate variables are valid. The second procedure considers a more general scenario

where some, potentially nonlinear, transformation of the candidate variables constitutes a valid set

of external covariates.

In Appendix D, we extend the asymptotic theory to allow for multiple sets of variables that

satisfy Assumption 3.

7.1 Testing for Existence of Sufficient External Covariates

In the following, we take Assumptions 1-2 as maintained hypotheses and then wish to Assumption

3. Consider first the case where we have exactly dY external covariates whose validity we wish to

test. To that end, first observe that

∂2fY |X,Z(y|x, z)
∂z∂z′

=
∂2fε̄|z (r̄ (y, x) |z)

∂z∂z′

∣∣∣∣∂r̄(y, x)

∂y

∣∣∣∣ .
Thus, the rank condition imposed on the matrix Hr (y, x) in Theorem 10 is satisfied if and only if

∂2fε̄|Z (ε̄|z∗) /(∂z∂z′) has full rank. This in turn holds if and only if ∂2fε̄|Z (ε|z) /(∂z∂z′) has full

rank and is implied by Assumption 3. Thus, we can test Assumption 3 by testing whether the rank

of Hr (y, x) is dY or not. The matrix Hr (y, x) can be estimated using standard methods and a

rank test for it can be performed using existing tests; see Al-Sadoon (2015) for an overview of such

methods and some recent developments.

If we have more than dY external covariates (dZ > dY ), one can test Assumption 3(i) through a

nonparametric version of the J-test used in GMM with over-identifying moment conditions: Choose

the weighting matrix such that Ŵ (x, z) →P Ω−1
m (x, z), where Ωm (x, z) is defined in Theorem 16.

It now follows from the limit results derived in the proof of Theorem 16 in conjunction with the

arguments in Newey and McFadden (1994, Section 9.5) that

Ĵ (x, z) := nhdYY hdXX hdZ+2
Z min

y∈Y0

ĝ(y|x, z)Ω̂−1
m (x, z) ĝ(y|x, z)→d J (x, z) (29)
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for all (x, z) under Assumption 3(i), where J (x, z) ∼ χ2
dZ−dY and J (x1, z1)⊥J (x2, z2) for any two

pairs (x1, z1) and (x2, z2). Under the alternative, so that Assumption 3(i) does not hold for some

(x, z), we have Ĵ (x, z)→P +∞.

The above two testing procedures can be used to identify external covariates that satisfy Assump-

tion 3: Suppose we have available dZ ≥ dY candidate variables of which dY satisfies Assumption 3.

We can then either directly test for whether a given subset of size dY satisfies Assumption 3; or we

can use a step-down procedure where one variable at a time is removed according to whether the J

statistic of the “reduced” model does not reject the null.

7.2 Constructing an index Z

Instead of selecting a subset from the dZ candidate variables, one can try to combine all the variables

to construct an index Z∗ from them. This can be done in a number of ways. At the most general

level, the hypothesis of interest can be stated as

Z∗ = B (Z) satisfies Assumption 3 for some function B : RdZ 7→ RdY .

A natural way to estimate B is by searching across a set of functions and choose the one that provides

the best fit in terms of explaining the variation in Y conditional on X. Suppose that B ∈ B for some

function space B; we can then combine our kernel density estimator with sieve methods (see Chen,

2007) to estimate B by

B̂ = arg max
B∈Bn
‖B‖=1

n∑
i=1

log f̂Y |X,Z∗ (Yi|Xi, Zi;B) ,

where Bn, n ≥ 1, is a sequence of approximating parameter spaces (sieves) that becomes dense in

the original parameter space B as the sample size grows, and

f̂Y |X,Z∗ (y|x, z;B) =

∑n
i=1KY,hY (Yi − y)KX,hX (Xi − x)KZ,hZ (B (Zi)−B (z))∑n

i=1KX,hX (Xi − x)KZ,hZ (B (Zi)−B (z))
. (30)

An asymptotic theory for this estimator is outside the scope of this work and is left for future

research.

A semiparametric version is obtained by restricting B (z) to be, e.g., linear so that

Z∗ = BZ,

for some matrix B ∈ RdY ×dZ . The corresponding estimator of B (z) then takes the form B̂ (z) = Bz

where

B̂ = arg max
B∈RdY ×dZ

‖B‖=1

n∑
i=1

log f̂Y |X,Z∗ (Yi|Xi, Zi;B) , (31)
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and f̂Y |X,Z∗ (Yi|Xi, Zi;B) takes the form in eq. (30) with B (z) = Bz. This semiparametric estimator

was originally proposed in Fan et al (2009) as a dimension reduction device, and they show that B̂ is
√
n-consistent. Thus, the first-step estimation of the index Ẑ∗ = B̂Z, will not affect the asymptotic

properties of the final nonparametric estimators of m̄ (x, z) as derived earlier.

The above estimator is still computationally challenging to implement when the number of pa-

rameters, dim (B) = dY dZ , is large since the numerical optimization problem in (31) cannot be

solved in closed form. In this case, one can implement the following regression version of it: First,

we choose as an approximate model the following partially linear regression, Y = µ (X) + αBZ + u,

where µ : RdX 7→ RdY is a nonparametric regression function, while α ∈ RdY ×dY are the ”factor load-

ings” of the index, BZ. Approximating µ by a linear combination of basis function, µ (x) ' γp (x),

where γ ∈ RdY ×K are parameters and p : RdX 7→ RK are basis functions, we obtain the following

reduced rank regression,

Y = γp (X) + αBZ + u.

The estimates of γ, α and B can be computed using standard reduced rank OLS as originally

proposed by Anderson (1951).

8 Counterfactual Demand Predictions with Consumer Scanner Data

Our methods are best applied to large data sets on individual behaviour. Here we examine con-

sumer choices from a consumer home-scanner panel comprising more than 25,000 households whose

behaviour is recorded electronically on a week by week basis over an eleven year period. The home-

scan data, described in more detail below, collect granular records of expenditures, quantities and

unit prices across a full range of groceries. The data also contain a large number of socio-economic

variables (including family demographic structure, employment, education), behavioural measures

(including smoking, newspaper readership, TV programmes), health (including BMI), and attitudi-

nal data (including brand loyalty, attitudes to healthy living) which, we argue, are ideally suited to

represent the ‘external’ covariates which play a key role in our approach to estimating individual

level counterfactual demands.

After describing the data in the next subsection, we first use the data to estimate a parametric

demand model to establish the average responses to price and income changes in the data. We

then implement our approach to estimating individual counterfactual responses to price and income

changes allowing for multidimensional unobserved heterogeneity. In our empirical analysis we find
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strong evidence that individual demands are nonlinear in relative prices and income, and that this

nonlinear behaviour varies systematically across distinct individuals.5

8.1 The Homescan Data

The homescan data we use are from the Kantar Worldpanel and are collected via in-home scanning

technology. They provide information on food categories that are purchased and brought into the

home by a representative panel of British households over the eleven year period January 2005 to

October 2016. There are approximately 26,000 households per year. Participants record spending

on all grocery purchases via an electronic hand held scanner in the home. Purchases from all types

of store (supermarkets, corner stores, online, local speciality shops) are covered by the data.

The data include information on the unit price paid for each product, detailed demographic

details of the individuals in the household and the responses to attitudinal and behavioural questions,

particularly on household shopper behaviour and media information. These data have been used in

Dubois, Griffith and Nevo (2014) and Dubois, Griffith and O’Connell (2018), and similar data are

widely used in the US, for example in Aguiar and Hurst (2007); see Griffith, Leibtag, Leicester and

Nevo (2009) for a detailed comparison.

In our analysis we group goods into three aggregate categories:

1. ambient goods = bakery, drinks, cupboard ingredients, confectionery;

2. fresh ingredients = dairy, meat, fruit and vegetables;

3. prepared foods = chilled prepared.

Each subcategory comprises many (in most cases several 1000s of) products. For each subcategory

we compute a mean price for each fascia-year-month (averaging over households and weeks within

the month). We aggregate this to a fascia-time price series for each of the three aggregate goods by

using constant expenditure weights across the whole sample for each of the subcategories.

As noted above the homescan data include a remarkably extensive set of individual characteristics

and behavioural variables. We use these to form our external covariates Z that relate to individ-

ual preference heterogeneity. These variables variables are summarized in the following six broad

categories:

1. Main shopper and head of household characteristics: Employment status; Marital status; Sex;

Age; Date of birth; BMI.

2. Household information: Family type; TV Region; Acorn geodemographic code; Social class; No.

5In estimation we do not allow for the endogeneity of total expenditure or relative prices. In section 4.1, we show

how the control function method could be applied to our new approach but we leave the empirical implementation of

the estimator to future work.

31



of adults; No. of children; Household size; No. of females; No. in full time employment; Life-cyclee

stage of household; No. of smokers; No. of vegetarians; household member diabetic

3. Household durable ownership information: Household access to the internet; Cable television;

Satellite television; Home computer; No. of cars; No. of televisions; Filter coffee maker; Dishwasher;

Type of freezer; Microwave oven; Washing machine

4. House tenure/type characteristics: Housing tenure; No. of toilets; House has private garden; Type

of building: Area type (e.g. town/village/city)

5. Household shopping behaviour : Freq. of main shop; Freq. of shopping by car; Main form of

transport used to shop; Milk delivered

6. Media information: Main ITV channel; Other ITV channel; Days per week watching television;

Hours per day watching television; Hours spent watching commercial stations.

Table 1: Consumer Data Descriptive Statistics

Discription Mean SD

Share(good 1): ambient s1 0.35 (0.17)

Share(good 2): fresh ingredients s2 0.49 (0.19)

Share(good 3): prepared s3 0.17 (0.13)

Log(total expenditure) lnx 1.76 (0.62)

Log(price good 1) lnp1 -0.15 (0.20)

Log(price good 2) lnp2 -0.37 (0.17)

First characteristics index Z∗ 17.77 (1.01)

Second characteristics index Z∗∗ - 0.852 (1.75)

No. Obs. 260538

Notes: Prices are relative to the numeraire good p3. Total expenditure on the three agrregated goods

x is deflated by share-weighted price index, using common shares across the whole sample. A full

list of index characteristics (Z∗ and Z∗∗) available on request.

Using the method described in section 7.2 we reduce these characteristics to two distinct index

groups we label Z∗ and Z∗∗ described in Table 1.

8.2 Estimates from a Parametric Almost Ideal Model

To assess the overall properties of the consumer behaviour in this sample we begin by estimating a

standard parametric Almost Ideal Model (Deaton and Muellbauer, 1980) with additive unobserved
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heterogeneity. For each consumer i, the budget share on good j is written

sij = αj +
∑
k

γjk ln pk + βj(lnxi − lnPi) + εij

where pj is the price of good j, x is the total expenditure on all goods under consideration, εij is

unobservable individual and good specific heterogeneity, and where

lnP = α0 +
∑
k

(αk ln pik +
∑
l

γlk ln pil ln pik)).

Table 2: Almost Ideal Model Results: with unrestricted Z covariates

(1) (2)

Share 1: ambient Share 2: fresh ingredients

βj -0.0202 0.0128

(-34.11) (19.87)

γ1k 0.0862 -0.0530

(34.31) (-16.63)

γ2k -0.0626 0.0590

(-23.00) (15.60)

Observations 260538 260538

Notes: t-statistics in parentheses. Each share equation includes all Z covariates additively. The

regressions use the Blundell and Robin (1999) algorithm for parametric Almost Ideal demand

systems.

We allow the unobserved heterogeneity term εij to be correlated across goods j, but assume mean

independence with respect to the price and income variables. Since the model is linear in parameters,

our estimates are consistent with a model with additive random heterogeneity in the parameters.

A random coefficient model of this type would allow for multivariate unobserved heterogeneity but

would not allow the identification of individual counterfactuals which motivates our approach.

Table 1 presents the estimated income and price parameters for the Almost Ideal specification.

The estimated budget share model includes the complete set of Z covariates from the homescan data

entered additively into each budget share equation. In these estimates linear homogeneity in prices

and total expenditures is imposed so that there are two independent consumption choices within

this set of three goods. The βj parameter estimates suggest the aggregate of the ambient goods is a

necessity while the fresh ingredient aggregate is a necessity. The γjk estimates suggest symmetry is

not strongly at odds with the average responses in the data.
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Table 3: Almost Ideal Model Results: with Z∗ indices

(1) (2)

Share 1: ambient Share 2: fresh ingredients

βj -0.0201 0.0168

(-35.19) (27.86)

γ1k 0.0871 -0.0640

(37.38) (-19.93)

γ2k -0.0595 0.0600

(-24.10) (19.65)

Observations 260538 260538

Notes: t-statistics in parentheses. Each share equation include the two Z∗ indices using the

dimension reduction algorithm of section 7.2. The regressions follow Blundell and Robin (1999)

algorithm for parametric Almost Ideal style demand systems.

Table 2 presents the corresponding estimated parameters replacing the full set of covariates with

the two indices Z∗ calculated using the dimension reduction regression described in section 7.2. These

results indicate that the reduction in dimension of the Z has little impact on the estimated price

and income effects. In what follows we use these two indices to represent the excluded covariates

throughout the analysis.

8.3 Estimated counterfactuals with unobserved heterogeneity

We now turn to the empirical implementation of our new approach. We present estimated price

and income counterfactuals for individual demands allowing for multidimensional unobserved het-

erogeneity. There is no longer a single homogeneous price and income response for each price and

income, but rather a distribution of estimated individual responses according to the distribution of

unobserved heterogeneity.

In relation to the modelling framework in section 3, Y represents the vector of observed budget

shares satisfying (1) where X contains the price and income variables, and ε represents the vector

of unobserved heterogeneity. Recall that our objective is to estimate the responses in the budget

shares (Y ) to counterfactual changes in the income and price variables (X) for a distinct individual

characterized by income and price vector X = x and the initial vector of budget shares Y = y. Thus

we estimate the counterfactual for the exogenous change of income or price x to x′ for the individual

described by Y = y.
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Figure 1: Estimated Individual Demand Responses by Income
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Notes: The figures plot, with dots in the vertical line, the chosen shares of Ambient Foods and Fresh Ingredients

at the median expenditures and median prices, of three households. The dots correspond to the quantiles,

in brackets, of the marginal distributions of the two shares. The solid lines going through the dots are the

estimated counterfactual demands for each of the three households, when varying total expenditure. The 95%

confidence intervals are calculated from Theorem 11. Source: Kantar Homescan data.
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Figure 2: Estimated Individual Demand Responses by by Price

Share 1: Ambient goods Share 2: Fresh Ingredients
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Notes: The figures plot, with dots in the vertical line, the chosen shares of Ambient Foods and Fresh Ingredients

at the median expenditures and median prices, of three households. The dots correspond to the quantiles,

in brackets, of the marginal distributions of the two shares. The solid lines going through the dots are

the estimated counterfactual demands for each of the three households, when varying own price. The 95%

confidence intervals are calculated from Theorem 11. Source: Kantar Homescan data.

In estimation we used a second order kernel. Each density and derivative of a density is estimated

with bandwidths that vary depending on the number of arguments in the density and the order of

the derivative. The bandwidth for the kth variable of (Y,X,Z) is chosen as

hk = (stdk) (C) N−1/(4+I∗dY +dX+dZ+4+2∗j)

where stdk is the standard deviation of the kth variable, C is a constant, I = 1 if the kth variable

belongs to Y , and j is the number of derivatives. The grid algorithm by which the estimates were

obtained is described in Appendix F.

In Figures 1 and 2 we plot the estimated counterfactual budget share responses of ambient goods

(share 1) and fresh ingredients (share 2) to changes in total budget and relative prices, for different

quantiles of the marginal distribution of the initial shares Y1 and Y2 respectively. These correspond to

the three quartiles of the marginal distribution of Z∗ and Z∗∗. The highlighted points on the vertical

line in each figure are the observed data values for the three distinct individuals characterized by

their observed shares. The estimated counterfactual demands for these three distinct individuals are

then mapped out in the three continuous lines in each figure. Confidence intervals are constructed
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following the discussion in section 6. Note that, although there are three goods under study the

impact on share 3 is given automatically since the sums of the shares equal unity.

Turning to the specific estimated counterfactuals, Figure 1 shows that the responses in the con-

sumption of the two goods is nonlinear on total budget and that this nonlinearity varies strongly

across individuals. For some types of individuals the plot of income responses declines with income

while for other types it rises. Figure 2 indicates strong nonlinearities in the way individual consumers

respond to prices. These responses and the shape of nonlinearity also vary systematically across in-

dividuals. Ignoring nonseparable multidimensional heterogeneity would miss these key features of

behaviour.

9 Summary and Conclusions

We have developed methods for identifying and estimating counterfactuals in nonparametric models

with nonseparable multidimensional unobserved heterogeneity. When values of the regressors change

while the values of the unobserved variables stay fixed, our method allows to identify the new value

of the dependent variables. We do not require any functional restrictions on the response function

other than invertibitlity in the nonseparable vector of unobservable variables. The method is based

on a transformation of variables equation and external variables that are used to define a mapping

between derivatives of conditional densities of observable variables and derivatives of conditional

densities of unobservable variables. Only when both derivatives equal zero, responses correspond to

the same value of the unobservable variables. This relationship is used to trace responses when the

values of the regressors change while those of the unobservable variables stay fixed. The regressors

may be either discrete or continuously distributed.

We have extended the results in several directions, including the case where regressors and un-

observable variables are not conditionally independent and cases where only partial identification is

possible. We have also developed new identification results for identification of derivatives of struc-

tural functions in systems of simultaneous equations when the value of the unobservable variables

stay fixed across different values of the regressors.

We have shown that our estimators are consistent and asymptotically normal, and we have

applied them to estimate the heterogeneous responses of three households. The application used the

UK Kantar homescan data. The households made different choices on a given budget set. Our

method provided estimates for the choices these households would make if their tastes stayed the

same while prices and/or total expenditures change. We found significant differences in the three

households’ estimated counterfactual choices, as well as significant differences with results obtained
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from using the data to estimate an Almost Ideal Demand model.
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Appendices

A Proofs

Proof of Theorem 2. The result follows by noticing that Assumption 2’ guarantees that

when the value of Z stays fixed, the value of ε stays fixed as well at e = Λ(z). Assumptions 1 and

3 are then used to find the values of Y corresponding to m (X, e) . Specifically, let z be given and

let e = Λ(z) denote the unique value of ε whose existence is guaranteed by Assumption 2’. By

invertibility (Assumption 1), for any value x ∈ X , the value of Y satisfying y = m (x, e) must also

satisfy e = r (y, x). By the definition of Λ, for e = Λ (z) ,

∂ log fε|Z (r (y, x) |z)
∂z

=
∂ log fε|Z (Λ(z)|z)

∂z
= 0

By (relationship), the value y of Y satisfying y = m (x, e) satisfies

∂ log fY |X,Z(y|x, z)
∂z

=
∂ log fε|Z (r (y, x) |z)

∂z

Hence, for any x, x′ ∈ X and e = Λ (z) , the values y, y′ ∈ Y such that y = m (x, e) and y′ = m (x′, e)

are those satisfying

∂ log fY |X,Z(y′|x′, z)
∂z

= 0 and
∂ log fY |X,Z(y′|x′, z)

∂z
= 0

It follows that ∆e (x, x′) = m (x′, e)−m (x, e) is identified.

Proof of Theorem 3. As in the proof of Theorem 2, Assumptions 1,2’, and 3 imply that for

any x ∈ X and z ∈ Z, the value of the function m (x,Λ (z)) is identified as the value y satisfying the

equation
∂ log fY |X,Z(y|x, z)

∂z
= 0

Let x ∈ X and e ∈ E be given. By Assumption 4, there exists z(e) ∈ Z such that Λ(z) = e. Since

Λ is known, z(e) is known. The value m (x, e) is then the value y satisfying the equation

∂ log fY |X,Z(y|x, z(e))
∂z

= 0

Proof of Theorem 4. Let π̄−1 (w, x1) denote the inverse of π (w, T (t)) w.r.t. t which exists

and is identified under Assumption 3*(i)-(ii). Thus, we can treat η̄ = T−1 (η) = π̄−1 (W,X1) as
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observed. Since T is one-to-one, the sigma algebra associated with η is equal to that associated with

η̄ so that conditional distributions given η are identical to those given η̄.

We now show that X and ε are mutually independent conditional on (Z, η̄) so that ε| (X,Z, η̄)
d
=

ε| (Z, η̄). First, for any bounded function a(X), by conditional independence of W and (ε, η) under

Assumption 3*(iii),

E[a(X)|ε, η̄, Z] = E[a(π (W, η))|ε, η, Z] =

∫
a(π (w, η))dFW |Z (w|Z) = E[a(X)|η, Z],

which in turn implies that, for any bounded function b (ε),

E[a(X)b (ε) |η̄, Z] = E [E [a(X)|ε, η̄, Z] b (ε) |η̄, Z]

= E [E [a(X)|η̄, Z] b (ε) |η̄, Z]

= E [a(X)|η̄, Z]E [b (ε) |η̄, Z]

as desired.

Finally, observe that the results of Theorems all are based on the identity stated in eq. (6). We

now show that a similar identity holds once we include η̄ as additional control variable: First, observe

that, due to the conditional independence betweeen X and ε as shown above,

fY |X,Z,η̄(y|x, z, t) = fε|Z,η̄ (r (y, x) |z, t)
∣∣∣∣∂r (y, x)

∂y

∣∣∣∣ ,
where fε|Z,η̄ (e|z, t) is well-defined due to Assumption 3*(iv). This in turn implies that

∂ log fY |X,Z,η̄(y|x, z, t)
∂z

=
∂ log fε|Z,η̄ (r (y, x) |z, t)

∂z
.

All arguments used in the proofs of Theorems 1–3 now go through for any fixed value of t.

Proof of Theorem 5. Assumptions 1 and 3 and equation (7) imply that for all y ∈ Y, x ∈ X ,

z ∈ Z and e = r (y, x) ∈ E

∂ log fY |X,Z(y|x, z)
∂zj

=
∂ log fε|Z (r (y, x) |z)

∂zj

Differentiation with respect to y, yields

∂ log fY |X,Z(y|x, z)
∂zj∂y′

=
∂ log fε|Z (r (y, x) |z)

∂zj∂ε′

(
∂r (y, x)

∂y

)
(32)

By Assumption 5, when z = z∗ is such that

∂ log fY |X,Z(y|x, z∗)
∂z

= 0
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the coordinates of the vector ∂ log fε|Z (r (y, x) |z) /∂zj∂ε′ are all zero except for the j−th coordinate.

Denote the value of such coordinate by aj . It follows then from (32) that

∂ log fY |X,Z(y|x, z∗)
∂zj∂y′

= aj

(
∂rj (y, x)

∂y′

)
. (33)

The function sj (y−j , x, ej) can be defined implicitly by substituting yj with sj (y−j , x, ej) in the

equation

rj (y, x) = ej

Hence, the Implicit Function Theorem implies that

∂sj (y−j , x, ej)

∂y′−j
= −

(
1

∂rj (y, x, ej) /∂yj

)
∂rj (y, x, ej)

∂y′−j

It follows by (33) that ∂sj (y−j , x, ej) /∂y
′
−j is identified by the equation

∂sj (y−j , x, ej)

∂y′−j
= −

(
∂ log fY |X,Z(y|x, z∗)

∂zj∂y′j

)−1 (
∂ log fY |X,Z(y|x, z∗)

∂zj∂y′−j

)

To show that ∂sj
(
y′−j , x

′, ej

)
/∂y′−j is identified, we note that Assumption 5 applies also to r (y′, x′)

because by the definition of y′

r
(
y′, x′

)
= r (y, x)

Hence, by the same above arguments as for (y, x) , it follows that

∂sj
(
y′−j , x

′, ej

)
∂y′−j

= −

(
∂ log fY |X,Z(y′|x′, z∗)

∂zj∂y′j

)−1 (
∂ log fY |X,Z(y′|x′, z∗)

∂zj∂y′−j

)

This completes the proof.

Proof of Theorem 8. Since U1 and U2 are strictly monotone in (y, ydY +1) and y, respectively,

the budget constraint is satisfied with equality. Moreover, since for each ε, U is strictly quasiconcave,

the value of y that solves the first order conditions for the maximization of U when ydY +1 = I−p′y is

unique. Let s (y, p, I, ε) denote the vector of the dY functions such that s (y, p, I, ε) = 0 denotes this

system of first order conditions, and let y = m (p, I, ε) denote the demand function which satisfies

s (m (p, I, ε) , p, I, ε) = 0. We will show that for each (y, p, I) , ε 7→ s (y, p, I, ε) is globally univalent

(see Gale and Nikaido, 1965). This guarantees the global existence of an implicit function r (y, p, I)

such that for all (y, p, I) in a region, s (y, p, I, r (y, p, I)) = 0. The uniqueness of m on ε and of r on

y, for any (p, I) , imply that

y = m (p, I, ε)⇔ ε = r (y, p, I) .
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Hence, the demand function m (p, I, ε) is invertible in ε.

To show that s (y, p, I, ·) is globally univalent in ε, we note that for each y and with ydY +1 = I−p′y,

s (y, p, I, ε) =


∂U1
∂y1
− p1

∂U1
∂ydY +1

+ ∂U2
∂y1

...
∂U1
∂ydY

− pdY
∂U1

∂ydY +1
+ ∂U2

∂ydY

 .
Since only U2 is a function of ε, the Jacobian of s (y, p, I, ε) with respect to ε equals DyεU2 (y, ε)

as defined in the theorem. The assumption on the determinant of the principal minors imply that

DyεU2 (y, ε) is a so-called P-matrix, and so it follows by Gale and Nikaido (1965) that ε 7→ s (y, p, I, ε)

is globally univalent.

Proof of Theorem 9. First note that under Assumptions 1-5, the density of (Y,X,Z),

fY,X,Z(y, x, z), is twice continuously differentiable. Thus, employing standard results for kernel den-

sity estimation, it holds that, for any given (x, z) ∈ X0 × Z,

sup
y∈Y0

‖ĝ(y|x, z)− g(y|x, z)‖ = OP
(
h2
Y

)
+OP

(
h2
X

)
+OP

(
h2
Z

)
+OP

(
log (n)

nhdYY hdXX hdZ+2
Z

)
,

where ĝ(y|x, z) is defined in eq. (20), and g(y|x, z) = ∂fY |X,Z(y|x, z)/ (∂z); see, for example, Hansen

(2008, Theorem 7). This combined with Assumption 6(i) and the bandwidth restrictions stated in

the theorem yield ∥∥ĝ(y|x, z)′ĝ(y|x, z)− g(y|x, z)g(y|x, z)
∥∥ = oP (1) .

Consistency now follows from Newey and McFadden (1994, Theorem 2.6), where identification is

achieved through Theorem 1.

Next, we derive the asymptotic distribution of m̂ (x, z): With ŷ∗ := m̂ (x, z), y∗ := m̄ (x, z) and

ỹ situated on the line segment connecting ŷ∗ and y∗, the first-order condition for ŷ∗ together with

the mean value theorem yield

0 = Ĝ (x, z)′ ĝ(y∗|x, z) + Ĥm (x, z) (ŷ∗ − y∗) ,

where Ĝ (x, z) = ∂2f̂Y |X,Z(y∗|x, z)/ (∂z∂y′), Ĥm (x, z) := Ĝ (x, z)′ G̃ (x, z), and G̃ (x, z) = ∂2f̂Y |X,Z(ỹ|x, z)/ (∂z∂y′).

Under the stated conditions on the bandwidths in eq. (25), it follows from Lemma 13 that√
nhdYY hdXX hdZ+2

Z {ĝ(y∗|x, z)− g(y∗|x, z)} =

√
nhdYY hdXX hdZ+2

Z ĝ(y∗|x, z)→d N (0,Ωm (x, z)) , (34)

while Ĝ (x, z) and G̃ (x, z) both converge towards G (x, z) in probability. The claimed asymptotic

distribution result now follows by the same arguments as in the proof of Newey and McFadden (1994,

Theorem 2.6).
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Proof of Theorem 10. The proof of the theorem proceeds along the same lines as the one

for Theorem 9, and so we only sketch the proof for r̂ (y, x). With ĝ(y|x, z) defined in eq. (20) and

g(y|x, z) = ∂fY |X,Z(y|x, z)/ (∂z), we have, for any given (y, x) ∈ X × Y ,

sup
z∈Ē0
‖ĝ(y|x, z)− g(y|x, z)‖ = OP

(
h2
Y

)
+OP

(
h2
X

)
+OP

(
h2
Z

)
+OP

(
log (n)

nhdYY hdXX hdY +2
Z

)
.

This together with the identification result of Theorem 1 shows consistency. To obtain the asymptotic

distribution, first observe that, with ê∗ := r̂ (y, x) and z∗ := r (y, x),

0 = ĝ(y|x, ê∗) = ĝ(y|x, z∗) + Ĥr (y, x) (ê∗ − z∗) ,

where Ĥr (y, x) = ∂2f̂Y |X,Z(y|x, ẽ)/ (∂z∂z′), and ẽ is situated on the line segment connecting ê∗ and

z∗. Under the bandwidth conditions, Lemma 13 implies that√
nhdYY hdXX hdY +2

Z {ĝ(y|x, z∗)− g(y|x, z∗)} =

√
nhdYY hdXX hdY +2

Z ĝ(y|x, z∗)→d N (0,Ωr (y, x)) , (35)

and Ĥr (y, x) →P Hr (y, x), where Ωr (y, x) ∈ RdY ×dY and Hr (y, x) ∈ RdY ×dY are defined in the

theorem.

Proof of Theorem 11. Write

∆̂Λ(z)

(
x, x′

)
−∆

Λ(z)

(
x, x′

)
= {m̂

(
x′, z

)
− m̄

(
x′, z

)
} − {m̂ (x, z)− m̄ (x, z)}, (36)

where the two terms on the right-hand side are asymptotically independent of each other by the usual

arguments for kernel-based estimators. Thus, ∆̂z0 (x, x′)’s large-sample distribution follows directly

from Theorem 9.

Similarly,

∆̂y

(
x, x′

)
− ∆̃y

(
x, x′

)
= m̂(x′, r̂ (y, x))− m̄(x′, r̄ (x, y))

=
∂m̂(x′, z̄)

∂z′
{r̂ (y, x)− r̄ (y, x)}+

{
m̂(x′, r̄ (x, y))−m(x′, r̄ (x, y))

}
,

where z̄ is situated on the line segment connecting r̂ (y, x) and r̄ (x, y); in particular, z̄ →P r̄ (x, y)

and so ∂m̂(x′, z̄)/ (∂z′) →P ∂m̄(x′, r̄ (x, y))/ (∂z′). Since r̂ (y, x) and m̂(x′, r̄ (x, y)) are independent

in large samples by the usual arguments for kernel estimators, the large sample distribution now

follows by combining Theorems 9 and 10.

Proof of Theorem 12. It is easily checked that all the arguments in the proofs of Theorems

9–11 remain true with f̂Y |X,Z(y|x, z) on the form (28), except that we can no longer employ Lemma

13 to derive the limiting distribution of ĝ(y|x, z) = ∂f̂Y |X,Z(y|x, z)/ (∂z). Inspecting the proof of
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Lemma 13, we see that all arguments remain unchancged except for limiting distribution as stated

in (39) since this assumes no time series dependence, which is present in the panel data case. To

derive the limiting distribution under panel data time series dependence, first note that in the panel

data case, ∂f̂Y,X,Z(y, x, z)/ (∂z) =
∑T

t=1 ∂f̂
(t)
Y |X,Z(y, x, z)/ (∂z) /T where

f̂
(t)
Y |X,Z(y, x, z) =

n∑
i=1

KY,hY (Yi,t − y)KX,hX (Xi,t − x)KZ,hZ (Zi,t − z) . (37)

Second, by standard arguments for kernel density estimators with i.i.d. data, we find that that

DF̂ (y, x, z) :=
(
∂f̂

(1)
Y |X,Z(y, x, z)/ (∂z′) , ....∂f̂

(T )
Y |X,Z(y, x, z)/ (∂z′)

)′
satisfies

√
nhdYY hdXX hdZ+2

Z

DF̂ (y, x, z)−DF (y, x, z)−
∑

a∈{Y,X,Z}

h2
aBa(y|x, z)

→d N
(

0, ṼF (y, x, z)
)
,

(38)

where ṼF (y, x, z) =
[
ṼF,st (y, x, z)

]T
s,t=1

with ṼF,tt (y, x, z) = Ṽ (y, x, z), with Ṽ (y, x, z) is defined in

eq. (40), while, for s 6= t,

ṼF,st (y, x, z) = lim
n→∞

nhdYY hdXX hdZ+2
Z Cov

∂f̂ (s)
Y |X,Z(y, x, z)

∂z′
,
∂f̂

(t)
Y |X,Z(y, x, z)

∂z′

 .

What remains is to derive ṼF,st (y, x, z). To this end, note that

nhdYY hdXX hdZ+2
Z Cov

∂f̂ (s)
Y |X,Z(y, x, z)

∂z′
,
∂f̂

(t)
Y |X,Z(y, x, z)

∂z′


= nhdYY hdXX hdZ+2

Z E

[(
1

n

n∑
i=1

KY,hY (Yi,s − y)KX,hX (Xi,s − x)K
(1)
Z,hZ

(Zi,s − z)

)

×

 1

n

n∑
j=1

KY,hY (Yj,t − y)KX,hX (Xj,t − x)K
(1)
Z,hZ

(Zj,t − z)

+ o (1)

= hdYY hdXX hdZ+2
Z E

[
n∑
i=1

KY,hY (Yi,s − y)KX,hX (Xi,s − x)K
(1)
Z,hZ

(Zi,s − z)

× KY,hY (Yi,t − y)KX,hX (Xi,t − x)K
(1)
Z,hZ

(Zi,t − z)
]

+ o (1)

= hdYY hdXX hdZ+2
Z

∫
f(Ys,Xs,Zs),(Yt,Xt,Zt)(ys, xs, zs, yt, xt, zt)KY,hY (ys − y)KX,hX (xs − x)K

(1)
Z,hZ

(zs − z)

×KY,hY (yt − y)KX,hX (xt − x)K
(1)
Z,hZ

(zt − z) d(ys, xs, zs, yt, xt, zt)

= hdYY hdXX hdZZ f(Ys,Xs,Zs),(Yt,Xt,Zt)(y, x, z, y, x, z)

(∫
RdZ

∂KZ (z)

∂z
dz

)2

= 0,

where we have used that
∫
RdZ

∂KZ(z)
∂z dz = 0.
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B Lemmas

Lemma 13 Suppose that Assumptions A.1-A.5 hold. Then:

1. As nhdYY hdXX hdZ+2
Z h4

a → 0 for a ∈ {Y,X,Z}, and nhdYY hdXX hdZ+2
Z →∞,

√
nhdYY hdXX hdZ+2

Z

{
∂f̂Y |X,Z(y|x, z)

∂z
−
∂fY |X,Z(y|x, z)

∂z

}
→d N (0, V (y, x, z)) ,

where

V (y, x, z) =
fY |X,Z(y|x, z)
fX,Z (x, z)

∫
RdY

K2
Y (y) dy

∫
RdX

K2
X (x) dx

∫
RdZ

∂KZ (z)

∂z

∂KZ (z)

∂z′
dz ∈ RdZ×dZ .

2. As hX , hX → 0 and nhdYY hdXX hdZ+4
Z →∞,

∂2f̂Y |X,Z(y|x, z)
∂z∂z′

→P ∂2fY |X,Z(y|x, z)
∂z∂z′

.

3. As hX , hX → 0 and nhdY +2
Y hdXX hdZ+2

Z →∞,

∂2f̂Y |X,Z(y|x, z)
∂z∂y′

→P ∂2fY |X,Z(y|x, z)
∂z∂y′

,

Proof. We have

∂f̂Y |X,Z(y|x, z)
∂z

= f̂−1
X,Z(x, z)

∂f̂Y,X,Z(y, x, z)

∂z
+
f̂Y,X,Z(y|x, z)
f̂2
X,Z(x, z)

∂f̂X,Z(x, z)

∂z
,

where

f̂Y,X,Z(y, x, z) =
n∑
i=1

KY,hY (Yi − y)KX,hX (Xi − x)KZ,hZ (Zi − z) ,

f̂X,Z(x, z) =
n∑
i=1

KX,hX (Xi − x)KZ,hZ (Zi − z) .

By standard arguments for kernel estimators (see, e.g. Li and Racine, 2006), the following holds

under the smoothness assumptions imposed on the model,

√
nhdYY hdXX hdZ+2

Z

∂f̂Y,X,Z(y|x, z)
∂z

−
∂fY,X,Z(y|x, z)

∂z
−

∑
a∈{Y,X,Z}

h2
aBa(y|x, z)

→d N
(

0, Ṽ (y, x, z)
)
,

(39)

where Ba(y|x, z), a ∈ {Y,X,Z}, are the usual bias components due to kernel smoothing, and

Ṽ (y, x, z) = fY,X,Z(y, x, z)

∫
RdY

K2
Y (y) dy

∫
RdX

K2
X (x) dx

∫
RdZ

∂KZ (z)

∂z

∂KZ (z)

∂z′
dz ∈ RdZ×dZ . (40)
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Similarly,

f̂Y,X,Z(y, x, z) = fY,X,Z(y, x, z) +OP
(
h2
x

)
+OP

(
h2
z

)
+OP

(√
1

nhdYY hdXX hdZZ

)
,

f̂X,Z(x, z) = fX,Z(x, z) +OP
(
h2
x

)
+OP

(
h2
z

)
+OP

(√
1

nhdXX hdZZ

)
,

∂f̂X,Z(x, z)

∂z
=

∂fX,Z(x, z)

∂z
+OP

(
h2
x

)
+OP

(
h2
z

)
+OP

(√
1

nhdXX hdZ+2
Z

)
.

Under the conditions on the bandwidths, (i) all bias components are negligible and (ii) ∂f̂Y,X,Z(y, x, z)/ (∂z)

contains the leading variance terms with all other variance components being of a smaller order. This

shows the first part of the lemma.

The second part follows by similar arguments with the leading term being

∂2f̂Y,X,Z(y, x, z)

∂z∂z′
=
∂2fY,X,Z(y, x, z)

∂z∂z′
+OP

(
h2
y

)
+OP

(
h2
x

)
+OP

(
h2
z

)
+OP

(√
1

nhdYy hdXx hdZ+4
z

)
.

The result now follows from the conditions on the bandwidths. The third part follows by similar

arguments.

C Identification and estimation with discrete Z

We here consider the case where Z has a discrete, but potentially unbounded, support Z. In this

case, derivatives of fε|Z w.r.t. z are not well-defined, and we therefore redefine the solution mapping

Λ in terms of differences: For any collection of dY values z1, ...., zdY +1 ∈ Z with zi 6= zj , i 6= j, let

Λ (z1, ...., zdY +1) =
{
e ∈ E : fε|Z (e|zi) = fε|Z (e|zj) , 1 ≤ i < j ≤ dY + 1

}
. (41)

Here, one can interpret
{
fε|Z (e|zi)− fε|Z (e|zj)

}
/ {zi − zj} as the “derivative” of the density w.r.t.

z and so the above version of Λ can be thought of as a “discretized” version of the one introduced in

the case of continuous Z. (See Appendix D for an illustrative example of how the solution mapping

behaves) Due to the discrete nature of Z, we are only able to identify m at a discrete set of points.

With a slight abuse of notation, we have

m̄ (x, z) = m (x,Λ (z)) , where z ∈ Ē :=
{
z ∈ ZdY +1 : zi 6= zj for i 6= j

}
, (42)

is identified: For any such z ∈ Ē and any x ∈ X0, consider a solution y∗ to the following set of

equations,

fY |X,Z(y∗|x, zi) = fY |X,Z(y∗|x, zj), 1 ≤ i < j ≤ dY + 1. (43)

53



From eq. (6), this set of equations is equivalent to

fε|Z (r (y, x) |zi) = fε|Z (r (y, x) |zj) , 1 ≤ i < j ≤ dY + 1, (44)

since |∂r (y, x) / (∂y)| > 0 by assumption. By the same arguments as in the case of Z being con-

tinuous, y∗ satisfies r (y, x) = e, where e = Λ (z), or, equivalently, y∗ ∈ m (x,Λ (z)). The reverse

implication is easily shown to hold by analogous arguments and we conclude:

Theorem 14 Under Assumptions 1-3: For any given z ∈ Ē, m̄ (x, z), as defined in eq. (42), is

identified for all x ∈ X0 as the (set of) solution(s) y∗ to eq. (43).

As in the continuous Z case, the above theorem only allows us to identify m (x, e) at the values

of e ∈ Λ (z) for some z ∈ ZdY +1. Thus, given that Z is countable, we can only identify m (x, e)

at a countable number of values e ∈ E . At the same time, for the consumers that can be reached

through (43), we can identify the differences m (x′, e) − m (x, e) = m̄ (x, z) − m̄ (x, z) , when the

value of x changes to x′ while the value of z stays fixed, and we can also identify marginal effects,

∂m (x, e) / (∂x) = ∂m̄ (x, z) / (∂x).

Eq. (43) suggests the following nonparametric estimation strategy: Obtain a nonparametric

estimator of fY |X,Z , say, f̂Y |X,Z , substitute this into eq. (43),

f̂Y |X,Z(y|x, zi) = f̂Y |X,Z(y|x, zj), 1 ≤ i < j ≤ dY + 1. (45)

and solve this w.r.t. y. As before, for the theoretical results, we here focus on the case where f̂Y |X,Z

is chosen as a kernel density estimator, which in the discrete Z case takes the form

f̂Y |X,Z(y|x, z) =

∑n
i=1KY,hY (Yi − y)KX,hX (Xi − x) I {Zi = z}∑n

i=1KX,hX (Xi − x) I {Zi = z}
. (46)

If X has discrete components, the above estimator should be modified in the same manner as in the

case of Z being continuous.

Similar to the continuous case, we can represent the estimator solving eq. (45) as GMM estimator:

Let ĝ(y|x, z) = {ĝi,j(y|x, z) : 1 ≤ i < j ≤ dY }, where ĝi,j(y|x, z) = f̂Y |X,Z(y|x, zi) − f̂Y |X,Z(y|x, zj),

contain the ”moment restrictions” and define

m̂ (x, z) = arg min
y∈Y0

‖ĝ(y|x, z)‖ . (47)

Note that we here do not need a weighting matrix since the moment conditions exactly identify

m̄ (x, z).
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For the asymptotic analysis, we maintain Assumption 5, but can dispense of Assumption 6(ii)

and 6 since these are (almost) void in the case of Z being discrete. To state the result, introduce

the population version of the moment conditions, g(y|x, z) = {gi,j(y|x, z) : 1 ≤ i < j ≤ dY } where

gi,j(y|x, z) = fY |X,Z(y|x, zi) − fY |X,Z(y|x, zj). We then have the following theorem whose proof is

left out since it follows along the same lines as the one of Theorem 9:

Theorem 15 Assume that Assumptions 1-4(i), 5 and 6(i) hold and Hm (x, z) = G (x, z)′G (x, z) ∈

RdY ×dY has full rank where

G (x, z) :=
∂g(y|x, z)

∂y

∣∣∣∣
y=m̄(x,z)

∈ RdY ×dY .

Then, for any bandwidth sequences satisfying nhdYY hdXX h4
a → 0, for a = Y,X, and nhdY +2

Y hdXX →∞,

m̂ (x, z), as defined by eq. (47), is consistent and satisfies√
nhdYY hdXX {m̂ (x, z)− m̄ (x, z)} →d N

(
0, H−1

m (x, z)G (x, z)′Ωm (x, z)G (x, z)H−1
m (x, z)

)
,

where

Ωm (x, z) =

{
fY |X,Z(y|x, zi)
fX,Z (x, zi)

: 1 ≤ i < j ≤ dY + 1

}∣∣∣∣
y=m̄(x,z)

∫
RdY

K2
Y (y) dy

∫
RdX

K2
X (x) dx ∈ RdY ×dY .

D Multiple Identifying Sets

There may exist more than one set of variables that satisfy Assumption 3. If so, one can develop

a more efficient estimator of m by combining the information contained in them. Formally, let

Z(k) ∈ RdY , k = 1, ...,M , be M ≥ 2 distinct sets of variables satisfying:

Assumption 2* For k = 1, ...,M : ε is distributed independently of X conditional on Z(k) and

ε|
(
X,Z(k)

)
= ε|Z(k) has a continuous distribution characterized by a density fε|Z(k)

(
ε|z(k)

)
which is twice continuously differentiable.

Assumption 3* For k = 1, ...,M : For any e, the following equations have a unique solution in

terms of z(k),
∂fε|Z(k)

(
e|z(k)

)
∂z(k)

= 0.

The solution mapping taking e into the corresponding solution z(k) is one-to-one.

Recall that Assumption 2 and 3 generate moment conditions which identifies m̄ (x, z). Assump-

tions 2* and 3* can therefore be thought of generating over-identifying moment restrictions. Similar

to Minimum Distance-estimators, these can then be combined to obtain a more efficient estimator.
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We here focus on the estimation of m; the analysis of the corresponding estimator of r follows along

the same lines.

Given the conditional kernel density estimators f̂Y |X,Z(k)(y|x, z(k)), k = 1, ...,M , we collect the

M ”moment conditions” in Ĝ (y|x, z) = (Ĝ1 (y|x, z)′ , ..., ĜM (y|x, z)′)′ ∈ RMdY where

Ĝk (y|x, z) :=
∂f̂Y |X,Z(k)(y|x, z(k))

∂z(k)

∣∣∣∣∣
z(k)=z

, z ∈ RdY .

For a given choice of (x, z), we then propose to estimate m̄ (x, z) by

m̂ (x, z) = arg min
y∈RdY

Ĝ (y|x, z)′ Ŵ (x, z) Ĝ (y|x, z) , (48)

for some weighting matrix Ŵ (x, e) ∈ RMdY ×MdY . To state the limiting distribution of the estimator,

we define G (y|x, z) = (G1 (y|x, z)′ , ..., GM (y|x, z)′)′ ∈ RMdY where

Gk (y|x, z) :=
∂fY |X,Z(k)(y|x, z(k))

∂z(k)

∣∣∣∣∣
z(k)=z

.

The following theorem generalizes Theorem 9, where, for simplicity, we assume that the same band-

widths is used across the M density estimates:

Theorem 16 Suppose that Assumptions 1, 2*-3* and 4-5 hold, and the matrix

H (x, z) := Gy (x, z)′Gy (x, z) ∈ RdY ×dY

has full rank, where Gy (x, e) := ∂G (y|x, ε) / (∂y′)|y=m̄(x,z) ∈ RMdY ×dY . Then, for any bandwidth se-

quences satisfying nhdYY hdXX hdY +2
Z h4

a → 0 for a = Y,X,Z, nhdYY hdXX hdY +4
Z →∞ and nhdY +2

Y hdwX hdY +2
Z →

∞, m̂ (x, z), as defined by eq. (48), is consistent and satisfies√
nhdYY hdXX hdY +2

Z {m̂ (x, z)− m̄ (x, z)} →d N (0,Ω (w, z)) ,

where

Ω (x, z) = H−1 (x, z)Gy (x, z)′W (x, z)V (x, z)W (x, z)Gy (x, z)H−1 (x, z) ,

and V (x, z) = [Vij (x, z)]Mi,j=1 with

Vii (x, z) =
fY |X,Z(i)(y∗|x, z)
fX,Z(i)(x, z)

∣∣∣∣∣
y∗=m̄(x,z)

∫
RdY

K2
Y (y) dy

∫
RdX

K2
X (x) dx

∫
RdZ

∂KZ (z)

∂z

∂KZ (z)

∂z′
dz ∈ RdY ×dY ,

and, for i 6= j,

Vij (x, z) =
fY |X,Z(i),Z(j)(y∗|x, z, z)
fX,Z(i),Z(j)(x, z, z)

∣∣∣∣∣
y∗=m̄(x,z)

∫
RdY

K2
Y (y) dy

∫
RdX

K2
X (x) dx

∫
RdZ

∂KZ (z)

∂z

∂KZ (z)

∂z′
dz ∈ RdY ×dY .
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In the case where M ≥ 2, we can use a J-test to test for whether the chosen Z’s indeed are valid

co-variates satisfying Assumptions 2*–3*. As is standard for Minimum Distance-type estimators, an

efficient estimator arises by choosing Ŵ (x, z) to be a consistent estimator of W (x, z) = V −1 (x, z) in

which case the asymptotic variance of m̂ (x, e) takes the form Ω (w, z) =
[
Gy (x, z)′ V −1 (x, z)Gy (x, z)

]−1
.

E Simulation Study

Here we investigate the performance of the estimator for the vector of characteristics Z∗ correspond-

ing to a value of Y for different values of X. The data-generating process is chosen as a bivariate

(dY = 2) random coefficient model where

Yk = Xεk, and εk = Zk + ηk,

for k = 1, 2. In total,

Y = ZX +Xη.

We assume X, Z, and η are mutually independent with η ∼ N (µη,Ωη). Thus, ε|Z ∼ N (Z + µη,Ωη)

and Y | (X,Z) ∼ N
(
ZX + µη, x

2Ωη

)
. As such its density is given by

fY |X,Z (y|x, z) =
1√

(2π)d Σ (x)
exp

{
−1

2
(y − xz)′Σ−1 (x) (y − xz)

}
,

where Σ (x) = x2Ωη. In particular,

ẑ (y, x) := arg max
z
fY |X,Z (y|x, z) =

y

x
,

which is the inverse r (y, x) = y/x of the structural relation Y = m (X, ε) = Xε. For given values

of (y, x), we implement the estimator of r(y, x) defined as r̂(y, x) = arg maxz f̂Y |X,Z (y|x, z) where

f̂Y |X,Z (y|x, z) is the kernel estimator of the conditional density using a matrix of bandwidths, H.

The bandwidth matrix are chosen using the multivariate version of Silverman’s Rule-of-Thumb,

H = n−1/(2dY +1)Σ̂1/2,

where Σ̂ is the sample covariance matrix of (Y,X,Z).

The results for the estimator r̂ (y, x) = (r̂1 (y, x) , r̂2 (y, x)) are reported in the following Figures.

In each figure we fix y at a particular value, say, y, and then plot the estimates of the function

x 7→ r1 (x, y) and x 7→ r2 (x, y). The results show that the kernel-based estimator works quite well,

with small biases and not too big variances.

57



Figure 3: Estimation of r1 (x, y) with y fixed.

Figure 4: Estimation of r2 (x, y) with y fixed.
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F Computation

To calcualte the estimators, we used a grid search algorithm. Given x∗ characterizing a budget and

a z∗ = (z∗1 , z
∗
2) , the values of y = (y1, y2) minimizing(∣∣∣∣∣∂f̂Y |X=x∗,Z=z∗ (y1, y2)

∂z1

∣∣∣∣∣
)2

+

(∣∣∣∣∣∂f̂Y |X=x∗,Z=z∗ (y1, y2)

∂z2

∣∣∣∣∣
)2

over the set where
∣∣∣f̂Y |X=x∗,Z=z∗ (y1, y2)

∣∣∣ and
∣∣∣f̂Y,X,Z (y1, y2, x

∗, z∗)
∣∣∣ are sufficiently away from zero

were found by grid and subgrid searches. Specifically, let a,b be constants. Let y
(1)
1 , y

(2)
1 , ..., y

(L1)
1

denote increasing values of y1 forming a grid over the support of Y1. Let y
(1)
2 , y

(2)
2 , ..., y

(L2)
2 denote

increasing values of y2 forming a grid over the support of Y2. If for k1 and k1 + 1 and for k2 and

k2 + 1, it is the case that

max


∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1)
1 , y

(k2)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

,

∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1+1)
1 , y

(k2)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

 ≤ a
and

max


∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1)
1 , y

(k2+1)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

,

∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1+1)
1 , y

(k2+1)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

 ≤ a
while

min
{∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1)
1 , y

(k2)
2

)∣∣∣ , ∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1+1)
1 , y

(k2)
2

)∣∣∣} ≥ b
min

{∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1)
1 , y

(k2+1)
2

)∣∣∣ , ∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1+1)
1 , y

(k2+1)
2

)∣∣∣} ≥ b
min

{∣∣∣f̂Y,X,Z (y(k1)
1 , y

(k2)
2 , x∗, z∗

)∣∣∣ , ∣∣∣f̂Y,X,Z (y(k1+1)
1 , y

(k2)
2 , x∗, z∗

)∣∣∣} ≥ b
and

min
{∣∣∣f̂Y,X,Z (y(k1)

1 , y
(k2+1)
2 , x∗, z∗

)∣∣∣ , ∣∣∣f̂Y,X,Z (y(k1+1)
1 , y

(k2+1)
2

)∣∣∣} ≥ b

then, the rectangle is itself subdivided, forming a grid, with y
(k1)
1 = y

(k1,1)
1 , y

(k1,2)
1 , ..., y

(k1,L1)
1 = y

(k1+1)
1

and y
(k2)
2 = y

(k2,1)
2 , y

(k2,2)
2 , ..., y

(k2,L2)
2 = y

(k2+1)
2 . The program then checks for all points within the

subgrid, indexed as (k1, j1) , (k1, j1 + 1) and (k2, j2) , (k2, j2 + 1) for whether
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max


∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1,j1)
1 , y

(k2,j2)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

,

∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1,j1+1)
1 , y

(k2,j2)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

 ≤ a /2

and

max


∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y(

(k1,j1)
1 , y

(k2,j2+1)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

,

∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y

(k1,j1+1)
1 , y

(k2,j2+1)
2

)
∂zj

∣∣∣∣∣∣
j=1,2

 ≤ a/2
while

min

{∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1,j1)
1 , y

(k2,j2)
2

)∣∣∣
j=1,2

,
∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1,j1+1)
1 , y

(k2,j2)
2

)∣∣∣
j=1,2

}
≥ 2 b

min

{∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1,j1)
1 , y

(k2,j2+1)
2

)∣∣∣
j=1,2

,
∣∣∣f̂Y |X=x∗,Z=z∗

(
y

(k1,j1+1)
1 , y

(k2,j2+1)
2

)∣∣∣
j=1,2

}
≥ 2 b

min
{∣∣∣f̂Y,X,Z (y(k1,j1)

1 , y
(k2,j2)
2 , x∗, z∗

)∣∣∣ , ∣∣∣f̂Y,X,Z (y(k1,j1+1)
1 , y

(k2,j2)
2 , x∗, z∗

)∣∣∣} ≥ 2 b

and

min
{∣∣∣f̂Y,X,Z (y(k1,j1)

1 , y
(k2,j2+1)
2 , x∗, z∗

)∣∣∣ , ∣∣∣f̂Y,X,Z (y(k1,j1+1)
1 , y

(k2,j2+1)
2

)∣∣∣} ≥ 2 b

This procedure can be continued by subdividing again at the same time as lowering the upper

bound for
∣∣∣∂f̂Y |X=x∗,Z=z∗

(
y

(·)
1 , y

(·)
2

)
/∂zj

∣∣∣ . The point with the lowest values for

∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y(

(k1,j1)
1 , y

(k2,j2+1)
2

)
∂z1

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∂f̂Y |X=x∗,Z=z∗

(
y(

(k1,j1)
1 , y

(k2,j2+1)
2

)
∂z2

∣∣∣∣∣∣
2

among those at the end points of grids is the one reported as the solution.

A similar procedure was used when given a budget characterized by x∗ and a point y∗ =

(y∗1, y
∗
2), the search is for (z∗1 , z

∗
2) that minimizes
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(∣∣∣∣∣∂f̂Y |X=x∗,Z=(z1,z2) (y∗1, y
∗
2)

∂z1

∣∣∣∣∣
)2

+

(∣∣∣∣∣∂f̂Y |X=x∗,Z=(z1,z2) (y∗1, y
∗
2)

∂z2

∣∣∣∣∣
)2

over the set of z = (z1, z2) where
∣∣∣f̂Y |X=x∗,Z=z (y∗1, y

∗
2)
∣∣∣ , ∣∣∣f̂Y,X,Z (y∗1, y

∗
2, x
∗, z)

∣∣∣ , and
∣∣∣f̂X,Z (x∗, z)

∣∣∣
are sufficiently away from zero.
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