We estimate a dynamic model of employment, human capital accumulation—including education, and savings for women in the United Kingdom, exploiting tax and benefit reforms, and use it to analyze the effects of welfare policy. We find substantial elasticities for labor supply and particularly for lone mothers. Returns to experience, which are important in determining the longer-term effects of policy, increase with education, but experience mainly accumulates when in full-time employment. Tax credits are welfare improving in the U.K., increase lone-mother labor supply and marginally reduce educational attainment, but the employment effects do not extend beyond the period of eligibility. Marginal increases in tax credits improve welfare more than equally costly increases in income support or tax cuts.

KEYWORDS: Life-cycle model, human capital, education, learning by doing, female labor supply, part time work, income tax, negative income tax, subsidies.

1. INTRODUCTION

The United Kingdom, the United States, and many other countries have put in place welfare programs subsidizing the wages of low-earning individuals and especially lone mothers, alongside other income support measures. Such programs can have multiple effects on careers and social welfare: on the one hand, they change the incentives to obtain education, to work, and to accumulate human capital and savings; and on the other hand, they offer potentially valuable (partial) insurance against labor-market shocks. We develop an empirical framework for education, life-cycle labor supply, and savings that allows us to study the longer-term behavioral and welfare effects of such programs.2

Our focus in this paper is on how such benefits affect the careers of women. As mothers, they are the main target group of these welfare programs and are most responsive to incentives.3 A sizable proportion of them become sin-

1We thank four anonymous referees and the Editor for helpful comments. This research has greatly benefited from discussions with Joe Altonji, Mike Brewer, David Card, Jim Heckman, Enrico Moretti, Hamish Low, and Corina Mommaerts. We are also grateful to participants at the EEA Summer Meetings, the IZA/SOLE transatlantic meeting, the NBER TAPES conference, and seminars at Yale University, the University of Mannheim, IFS, the University of Copenhagen, U.C. Berkeley, and the DIW for their comments. This research is funded by the ESRC Centre for the Microeconomic Analysis of Public Policy and the NCRM node Programme Evaluation for Policy Analysis, both at the IFS. Financial support from ESRC Grant RES-000-23-1524 is gratefully acknowledged. Richard Blundell would like to thank the ERC under Grant MicroConLab. Costas Meghir thanks the Cowles Foundation and the ISPS at Yale and the ESRC under the Professorial Fellowship RES-051-27-0204 for funding. The usual disclaimer applies.

2Throughout the paper, we use interchangeably the terms “benefits,” “subsidies,” “transfers,” “welfare,” and “welfare programs” to denote government transfers to lower-income individuals.

3See Blundell and MaCurdy (1999) and Meghir and Phillips (2010) for surveys of the evidence.
gle mothers at some point in their lives, have low labor-market attachment, and are vulnerable to poverty (see Blundell and Hoynes (2004), for example). Indeed, a motivation for in-work benefits is to preserve the labor-market attachment of lower-skill mothers and to prevent skill depreciation, which may underlie longer-term poverty.\footnote{See Goldin (2006 and 2014), Shaw (1989), Imai and Keane (2004), and Heckman, Lochner, and Cossa (2003).}

With the notable exception of Keane and Wolpin (2007, 2010), earlier work has focused mostly on the short-term effects of in-work benefits on labor supply,\footnote{Eissa and Liebman (1996) estimated the impact of EITC on female labor supply; Hotz and Scholz (2003) reviewed the literature on the effects of the U.S. Earned Income Tax Credit; Card and Robins (2005) and Card and Hyslop (2005) assessed the effects of the Canadian Self-Sufficiency Project on employment and wages; Blundell and Hoynes (2004), Brewer, Duncan, Shepard, and Suarez (2006), Francesconi and van der Klaauw (2007), and Francesconi, Rainer, and van der Klaauw (2009) assessed the employment effects of the U.K. ’s Working Families’ Tax Credit reform of 1999.} which are central to the optimal design of such benefits as shown by Saez (2002). However, this is not the whole story, because welfare benefits can affect the returns to education, the accumulation of human capital through experience, as well as savings, both because of their wealth effects and because they affect the extent to which people are insured against shocks; all these may change labor supply in the longer term. Thus we extend the literature and consider how welfare benefits and taxes affect careers of women through these various channels, beyond the period-by-period changes in employment.

We study the U.K. tax and welfare system, which saw numerous reforms over the 1990s and 2000s, with major increases to in-work benefits, or tax credits, between 1999 and 2002. We thus start our analysis by examining how these reforms affected the short-run labor supply of lone mothers and the educational decisions of young women. Using a quasi-experimental framework, we verify that the reforms increased lone-mother labor supply and reduced educational attainment, as expected.

Following this reduced form analysis, we estimate a dynamic life-cycle model of female education choice, labor supply, wages, and consumption/savings over the life-cycle, which is capable of addressing the longer-term effects of policy. Our data are drawn from 18 annual waves of the British Household Panel Survey (BHPS) covering the years 1991 to 2008. We combine these data with a tax and benefit simulation model to construct the household budget constraint in all its detail, incorporating taxes and the welfare system and the way it has changed over time.

In the model, at the start of their life-cycle, women choose between three possible education levels (secondary, high school, and university), taking into account the implied costs as well as the expected returns and volatility associated with each choice, both of which are affected by taxes and benefits. Once education is completed, they make period-by-period employment and savings...
decisions depending on wages, preferences, and family structure, which evolves over the life-cycle. Importantly, wages are determined by education and experience, which accumulates or depreciates depending on whether individuals work full-time, part-time, or not at all. While male income, fertility, and marriage are exogenous, they are driven by stochastic processes that depend on education and age. In this sense, our results are conditional on the observed status quo process of family formation, which differs by education.

The policy reforms are an important source of exogenous variation, which we use to estimate our dynamic model and to validate that it can replicate the effects we estimate quasi-experimentally. Over our 18-year observation period, new cohorts enter adulthood facing different tax and welfare systems, which changes the expected value of each education choice. Moreover, reforms take place over their life-cycle at different ages, differentially affecting their returns to work. Individuals are ex ante heterogeneous because of differing family background, which can affect their preferences, wages, costs of education, and responses to tax and benefit changes. The interaction between the reforms and the observable individual type thus provides exogenous variation that we use in the estimation of the dynamic model. To help explain education choice, we also use a parental liquidity shock when the woman was 16, net of the effects of any observable family background characteristics.

Our paper addresses a number of important research questions. First, we study the effects of incentives on the labor supply of women and produce Marshallian and Frisch elasticities for various demographic groups. Second, we look at how individuals make decisions on education and, more generally, at how human capital evolves over the life-cycle depending on the interaction between education, employment, and working hours. Third, by developing a framework that can explain the labor supply and education responses to incentives and their long-term effects for earnings capacity and savings, we also contribute to the understanding of the broader impact of taxes and welfare benefits and their role in redistribution, insurance, and incentives. Within this context, our model and empirical results are directly relevant for the design of optimal income tax and human capital policies that balance incentives and insurance, as developed by Stantcheva (2015).

We find moderate labor supply elasticities overall: the Frisch elasticity of labor supply is 0.63 on the extensive (participation) margin and 0.24 on the intensive one (part-time versus full-time). The elasticities are substantially higher for single mothers with secondary education only, who are the main target group of the tax credit program.\(^6\) Relatively large estimated income effects lead to lower Marshallian elasticities.

Our results display large and significant returns to labor-market experience for full-time work, especially for women who completed a 3-year university

\(^6\)Our elasticities are somewhat lower than those estimated by Keane and Wolpin (2010) but exhibit similar variation with education and family demographics.
Part-time work does not contribute to human capital growth, but does attenuate the depreciation of skills relative to not working. Those with secondary education earn little or no returns to experience. The differences in the accumulation of experience between part-time and full-time work and the complementarity with education are central to understanding the longer-term effects of tax credits.

Using the model, we find that tax credits increase the labor supply of lone mothers, but decrease that of married mothers. Most lone mothers are so for a limited period, being married at some other earlier stage of their child-rearing life. This, combined with the fact that the U.K. tax credit system encourages part-time work at the expense of full-time, leads to an average zero net effect on accumulated experience. The resulting employment rates among mothers of adult children are the same as they would have been in the absence of tax credits. However, tax credits are overall welfare improving. Finally, we consider the implications of assessing tax credits at the individual rather than at the family level, making it part of the single-filing tax system in the U.K. The effect of this reform on the savings, experience accumulation, and wages of mothers of young children is sufficiently strong to lead to a decline in employment (relative to the system of joint assessment) once eligibility ceases because children have grown. It is also an expensive reform that increases taxation substantially and is overall welfare reducing.

Our paper builds on a long history of dynamic life-cycle models. However, the closest model to ours is that developed in Keane and Wolpin (2007, 2010—KW). These papers use NLSY data to estimate a dynamic model of schooling and human capital accumulation (through work experience), labor supply, fertility, marriage, and welfare participation and to analyze the effects of welfare on these outcomes in the U.S. economy. Instead, we look at the U.K. case, where the welfare system is more generous and entitlement to benefits spreads higher in the income distribution than in the United States. Moreover, we focus on a period of critical expansion of welfare for families that significantly changed the working incentives of mothers and, potentially, the value of education for women. This variation is used in estimating our model.

The welfare system does not distinguish between married and cohabiting individuals. We use “married” as a shorthand for someone living with a partner.

A key distinguishing feature of our model compared to those of KW is that we allow for savings, a central ingredient given the motivation of our paper. We focus on savings because assets are the main channel for (self) insurance in an economy with incomplete insurance and credit markets. They will be sensitive to the risk profile associated to each level of education and will also be affected by the structure and generosity of the welfare programs. Our study relates to the entire population—not just a very low-skill and poor subgroup—and hence asset accumulation is an important feature of the life-cycle. Indeed, we document that holding assets is, to varying degrees, relevant for all education groups, particularly once we account for housing. Counterfactual simulations that change public insurance programs would give an incomplete picture of the welfare effects if they did not allow individuals to change their savings behavior because they would ignore the change in insurance value and give a distorted view of behavior. Moreover, the fit of many aspects of the model worsens substantially when we ignore assets.

A simplification with respect to KW is the way we treat fertility and marriage. While they allowed these to be fully endogenous, we condition on the observed processes when carrying out counterfactual analysis. A more complete treatment of this interesting issue is left for future research because of the formidable computational demands that it entails.

We begin with a description of the tax and welfare systems in Section 2. Section 3 describes the data and the quasi-experimental results. Section 4 describes the model, and Section 5, estimation. Section 6 presents the estimated parameters. The model fit and its implications are discussed in Section 7, while Section 8 discusses counterfactual analysis. Section 9 concludes.

2. TAX AND WELFARE POLICY IN THE U.K.

The U.K. personal tax and transfer system comprises a small number of simple taxes (mostly levied at the individual level), and a set of welfare benefits and tax credits (usually means-tested at the family level). Over the period of our data, which extends from 1991 to 2008, there have been numerous reforms. Tables I and II summarize some of the key parameters of the system at four critical points in time. For computational economy, the model we estimate will assume that individuals face these four systems, ignoring smaller reforms in periods in between. However, some reforms did take place at times in between,

9Beyond the differences in savings and in the treatment of family formation, the studies have many other differences. For example, we use a detailed description of the personal taxes and benefits operating in our observation window to obtain a realistic representation of the work incentives faced by women and how they change over time. Our identification strategy also differs from that adopted in Keane and Wolpin (2010) because we use the policy variation induced by the reforms to estimate the model.
TABLE I
WORKING TAX CREDIT AND INCOME SUPPORT UNDER DIFFERENT TAX AND TRANSFER SYSTEMS—LONE MOTHERS AND MOTHERS WITH LOW-WAGE PARTNERS WORKING FULL-TIME; 1 CHILD FAMILIES

<table>
<thead>
<tr>
<th></th>
<th>Lone Mother</th>
<th></th>
<th>Mother in Couple</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Maximum award</td>
<td>109.7 108.6 122.0 62.9</td>
<td>0.0 0.0 0.0 0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Withdrawal rate</td>
<td>100% 100% 100% 100%</td>
<td>100% 100% 100% 100%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax Credits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Work contingent component, no CC costs</td>
<td>93.6 96.5 117.1 115.7</td>
<td>43.9 43.2 74.9 47.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(4) Work contingent component with CC costs</td>
<td>93.6 96.5 186.3 184.9</td>
<td>83.3 96.5 147.7 119.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) Not work contingent component</td>
<td>0.0 0.0 0.0 47.2</td>
<td>0.0 0.0 0.0 47.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6) Withdrawal rate</td>
<td>70% 70% 55% 37%</td>
<td>70% 70% 55% 37%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(7) Female earnings at which tax credit award is exhausted</td>
<td>298.2 294.2 402.0 1255.5</td>
<td>61.7 60.8 142.3 1052.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(8) With childcare costs</td>
<td>384.9 407.9 596.7 1255.5</td>
<td>131.9 148.6 335.6 1052.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Tax and benefit systems as in April each year. CC: Child care. Figures for mothers in couples assume partner works full-time at the April 2004 minimum wage. Work requirement is 16 hours per week for 1 adult (rows 3 and 4) or all adults for CC component (difference between rows 4 and 3). Monetary amounts expressed in £ and in weekly terms, uprated to January 2008 prices using RPI. Detailed notes in Appendix F, Table XXXIII.

particular over the 1999 to 2002 period. This is important for our reduced form analysis. Appendix F provides more detail.

Income Support (IS) and tax credits are the two key elements of the U.K. benefit system over this period. Table I shows changes in the awards, taper rates, and eligibility faced by lone mothers and mothers in couples with a full-time working partner on the minimum wage.

IS is a benefit for families and acts as an income top up, causing an implicit marginal tax rate of 100%. It depends on family circumstances—number of children and adults and their ages. Between April 1999 and April 2002, there was a big increase in the generosity of the child additions for younger children, which were later removed and partly relabeled as the nonwork contingent part of tax credits, called Child Tax Credits (rows 1 and 5 in Table I). The increase

11For a comprehensive discussion of U.K. taxes and transfers, see Browne and Roantree (2012) and Browne and Hood (2012).
12These are the rates of benefit withdrawal as family earned income increases and lead to implicit tax rates on earnings.
TABLE II
TAX RATES AND_THRESHOLDS UNDER DIFFERENT TAX AND TRANSFER SYSTEMS

<table>
<thead>
<tr>
<th></th>
<th>1995</th>
<th>1999</th>
<th>2002</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income Tax: Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal allowance</td>
<td>95.5</td>
<td>105.9</td>
<td>106.0</td>
<td>103.1</td>
</tr>
<tr>
<td>Starting rate upper limit</td>
<td>182.1</td>
<td>142.5</td>
<td>150.1</td>
<td>147.0</td>
</tr>
<tr>
<td>Basic rate upper limit</td>
<td>753.4</td>
<td>789.7</td>
<td>792.6</td>
<td>785.3</td>
</tr>
<tr>
<td>Income Tax: Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Starting rate</td>
<td>20%</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Basic rate</td>
<td>25%</td>
<td>23%</td>
<td>22%</td>
<td>22%</td>
</tr>
<tr>
<td>Higher rate</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
<td>40%</td>
</tr>
<tr>
<td>National Insurance: Thresholds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower earnings limit (LEL)</td>
<td>81.67</td>
<td>83.82</td>
<td>106.27</td>
<td>102.81</td>
</tr>
<tr>
<td>Upper earnings limit (UEL)</td>
<td>619.54</td>
<td>634.99</td>
<td>698.54</td>
<td>689.17</td>
</tr>
<tr>
<td>National Insurance: Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entry fee (up to LEL)</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Main rate (earnings in LEL-UEL region)</td>
<td>10%</td>
<td>10%</td>
<td>10%</td>
<td>11%</td>
</tr>
<tr>
<td>Rate above UEL</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>1%</td>
</tr>
</tbody>
</table>

*aAmounts expressed in weekly terms and uprated to January 2008 prices using RPI. Allowance for couples is the married couple allowance and additional personal allowance. Tax and benefits systems as in April each year.

in the IS award between 1999 and 2002 was gradually implemented annually (row 1).\(^{13}\) Couples where at least one of the partners works full-time at the minimum wage are not entitled to IS as their income exceeds the upper limit for entitlement.

Tax credits are a means-tested benefit for working families with children similar to the U.S. Earned Income tax credit. Entitlement is conditional on working except for the Child Tax Credits component mentioned above. Eligibility to the work-contingent component requires at least one adult working 16 or more hours a week and at least one dependent child. Furthermore, eligibility to childcare support (difference between rows 3 and 4 in Table I) in couples requires both adults working at least 16 hours per week. Eligibility to an additional supplement occurs at 30 hours of work. In 2004, entitlement to tax credits was extended to working families without children but at much lower level of generosity.

Rows 3 and 4 in Table I show the increase in work-contingent maximum awards over the period for families with a single dependent child and no or positive childcare expenses, respectively.\(^{14}\) Over the 1999–2002 period, the maximum award increased continuously. For lone mothers with no childcare costs,
it went from £96.52 in 1999 to £105.64, £110.84, and £117.14 in 2000, 2001, and 2002, respectively. At the same time, the rate at which the benefits are tapered away dropped significantly (row 6), which implied that eligibility was extended to better-off families (rows 7 and 8). By 2004, eligibility for a newly introduced family component of the Tax Credits was maintained by those with a weekly family income of £1,086.32, and then slowly tapered at a rate of 6.67%. Childcare expenditures, which were simply deducted from earnings when evaluating eligibility (giving rise to an earnings disregard) up to 1999, generated a childcare credit worth 70% of the amount spent up to a limit of £135 per week by 2002. The reform in childcare support resulted in a sharp increase in the maximum award (row 4), from £96.52 in 1999 to £174.80, £180.00, and £186.30 in 2000, 2001, and 2002, respectively. This led the increase in entitlement observed for families with childcare expenditures (row 8).

The tax system is individually assessed and consists of the overlapping schedules of taxes and national insurance (both of which should be just perceived as tax rates), with their respective thresholds for each rate. The fall in starting and basic tax rates, accompanied by a later change in National Insurance rates, affected the incentives to work and the tradeoffs between part-time and full-time hours particularly for medium to high earners (Table II). The most important changes not shown in the table include the decline in the basic tax rate from 25% in 1991–1995 down to 24% in 1996, then to 23% in 1997 and to 22% in 2000. Also a new lower tax rate was introduced in 1992 at 20% and reduced to 10% in 1999.

The combined changes in taxes and benefits affected the work incentives of women across the income distribution, with the former/latter being potentially more relevant for high-/low-income families, respectively. Previous studies have also highlighted the heterogeneous nature of the impact of these reforms, depending on family circumstances and interactions with other taxes and benefits (Brewer, Saez, and Shephard (2010)). One important example is Housing Benefit, a large means-tested rental subsidy program potentially affecting low-income families. HB covers up to 100% of rental costs, but the withdrawal rate is high (65% on net income). Families eligible for HB face strong disincentives to work that the WFTC reform does not resolve. Our model will account for the entire tax and welfare system and hence the integration between the various programs and their impact on incentives will be fully taken into account.

Figure 1 depicts the structure of the two systems. The left panel shows the amount of benefit eligibility, while the right panel shows the resulting amount of disposable income, both as a function of hours worked at the minimum wage. Eligibility for benefits at 16 hours and then at 30 generates the upwards shifts. The increase in net income is not as big as the increase in maximum tax

15Historically, National Insurance was supposed to fund pensions. However, this is a Pay-as-you-go component of the U.K. pensions system and NI is effectively part of the income tax system.
FIGURE 1.—IS/tax credit award and budget constraint for low-wage lone parent. Notes: Lone parent earns the minimum wage (April 2004) and has one child aged 4 and no expenditure on childcare or rent. All monetary values in 2008 prices.

credit award described above because tax credits count as income in the calculation for some other benefits not described here, but taken into account in the model. Figure 2 provides the corresponding transfers and budget constraints.

FIGURE 2.—Tax credit award for low-wage parent with low-wage partner working full time. Notes: Parents earn the minimum wage (April 2004) and have one child aged 4 and no expenditure on childcare or rent. Partner works 40 hours per week. All monetary values in 2008 prices. IS reform absent from figure because family not entitled to IS.
for a woman with same characteristics but with a partner working full time (if the partner does not work, the budget constraint is similar to that in Figure 1).

3. DATA AND REDUCED FORM ANALYSIS

3.1. The Panel Data Sample

In estimation, we make use of 18 waves (1991 to 2008) of the British Household Panel Survey (BHPS). All individuals in the original 1991 sample and subsequent booster samples remain in the panel from then onwards, apart from some lost because of attrition. Other individuals have been added to the sample in subsequent periods—sometimes temporarily—as they formed families with original interviewees or were born into them. All members of the household aged 16 and above are interviewed, and a large set of demographic, educational, and labor-market information is recorded, including expenditures on childcare and assets (the latter only every 5 years).

The units of observation are women, to which we link information from the interview with the partner when applicable. Families where the female is self-employed have been dropped to avoid the difficulties relating to measuring their hours and earnings. Our full data set is an unbalanced panel of 3,901 women aged between 19 and 50 observed at some point during the 1991–2008 period. Almost 60% of those are observed for at least 5 years and over 20% are observed for at least 10 years; 25% are observed entering working life from education. Some summary descriptive statistics by education and family composition are presented in Table III. Further data details are provided in Appendix A of the Supplemental Material (Blundell, Costa Dias, Meghir, and Shaw (2016)).

Our model does not deal with macroeconomic growth and fluctuations. In estimating the model, we therefore first remove aggregate growth from all monetary values, including the monetary parameters in the tax and welfare system (such as tax thresholds and eligibility levels). To limit the importance of measurement error in earnings and especially working hours, the wage dis-

17The entire histories of 2.9% of self-employed women were dropped and partial histories (from the moment they move to self-employment) were dropped for another 3.1% of women.
18We run three regressions, one for each education level, of log wages on time dummies and dummies of Scotland and Wales, and create three education-specific wage indices from the estimated time dummies. Then we aggregate these indices using the (time-invariant) distribution of education for the entire population of workers aged 25–59 in the sample to construct an aggregate wage index. All real monetary values (using the CPI) are then rescaled using this index to remove real growth.
distribution was trimmed at percentiles 2 and 99 from below and above, respectively.\footnote{The censoring of the distribution from below is at £3.4 per hour in 2008 prices, well below the minimum wage.}

Finally, assets play an important role in our model since they are a source of self-insurance and saving is likely to respond to changes in taxes and welfare. Indeed, Table IV shows that assets are relevant for all education groups: even among the lowest education group, 58% hold some positive financial assets. Once housing is taken into account, net wealth holdings can be substantial.

\begin{table}
\centering
\caption{Distribution of Family Types in 2002—Women Aged 19–50*}
\begin{tabular}{lllll}
\hline
 & Moth\$ers & & Childless & \hline
 & & & Women & Number of Observations \\
 & Singles & In Couples & & \\
\hline
All & 0.10 & 0.44 & 0.46 & 2,096 \\
& (0.007) & (0.011) & (0.011) & \\
By education & & & & \\
Secondary & 0.15 & 0.49 & 0.36 & 839 \\
& (0.012) & (0.017) & (0.017) & \\
High school & 0.08 & 0.43 & 0.49 & 853 \\
& (0.010) & (0.017) & (0.017) & \\
University & 0.03 & 0.41 & 0.56 & 404 \\
& (0.008) & (0.024) & (0.025) & \\
\hline
\end{tabular}
\end{table}

\begin{table}
\centering
\caption{Assets by Education*}
\begin{tabular}{lccc}
\hline
Education & Financial Assets & & Housing \\
& Proportion Positive & Net Assets (£1,000) & Proportion Owners & For Owners (£1,000) \\
& Average & [p10, p90] & Value & [p10, p90] \\
\hline
Secondary & 0.58 & 3.0 & [−1.9, 8.3] & 0.69 & 127.4 & [51.9, 225, 6] \\
High school & 0.74 & 4.9 & [−2.9, 16.1] & 0.82 & 158.7 & [57.0, 287.7] \\
University & 0.82 & 9.9 & [−5.1, 28.2] & 0.85 & 206.2 & [75.0, 379.1] \\
\hline
\end{tabular}
\end{table}

\footnote{Based on BHPS data for 2002. Standard errors in parentheses under estimates.}

\footnote{BHPS data. Values in 1,000s British pounds, 2008 prices. Excludes private and public pension wealth. Financial assets net of debts, includes zeros. Gross house values. [p10, p90] in columns 3 and 6 stands for inter-decile range.}
3.2. The Impact of the Tax Credit Reforms on the Labor Supply of Single Mothers

The WFTC reform substantially increased the maximum benefit award both directly and through increases in support for childcare. It also decreased the rate at which benefits are withdrawn when earnings increase. It thus improved the incentives for single mothers to work. The contemporaneous reform to the income support (IS) system reduced the real value of the adult related benefit, affecting all women (irrespective of children), but increased the child related benefit. This latter reform counteracted somewhat the improved incentives for mothers with children due to the WFTC reform.

We use single women without children as a comparison group to estimate the effect of the WFTC and IS reforms on the labor supply of single mothers in a difference-in-differences framework—an approach first used to estimate the effects of EITC on labor supply by Eissa and Liebman (1996) and also used in the U.K. by Brewer et al. (2006). The data here are drawn from the U.K. Labor Force Survey, a repeated cross section that is much larger than the BHPS and hence contains enough single mothers.

In the top panel of Table V, we show results of a simple difference-in-differences estimator for employment, comparing the pre-reform 1999 data to the first post-reform period in 2002 separately for each education group. This is a linear probability model with employment as a dependent variable. The reported coefficient is the interaction of being a single mother with a post-reform dummy (2002). The regression also includes a dummy for single mother, and a full set of dummies for time, age, and age of the youngest child. The results indicate that the employment rates for secondary and high school educated lone mothers increased by between four and five and a half percentage points above the employment rates of similar single women without children; these are highly significant. Those who have completed university are unaffected, as we expect, because typically their earnings will be too high to benefit from the more generous support.

As a first robustness check, we then use data from 1995 to 2004, which allows us to test for differential trends between the two comparison groups using the periods preceding the reforms targeting single mothers specifically. We use a similar linear probability model for employment, but now also control and test for pre-reform differential trends by adding an interaction of being a single mother with a linear trend in the pre-reform period. Again, the estimated impact is the coefficient of the interaction term between being a single mother and a dummy for post 2002. The results are in the lower panel of Table V.

21The reforms were implemented gradually, resulting in an empirical design that is not appropriate for a simple discontinuity estimator.
Table V

DIFFERENCE-IN-DIFFERENCES EMPLOYMENT REGRESSIONS FOR LONE MOTHERS VERSUS SINGLE WOMEN

<table>
<thead>
<tr>
<th></th>
<th>(1) Secondary</th>
<th>(2) High School</th>
<th>(3) University</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999 compared to 2002—Before and after all WFTC reforms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact on employment</td>
<td>0.040***</td>
<td>0.055***</td>
<td>−0.005</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>Pooled sample 1995–2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impact on employment</td>
<td>0.041**</td>
<td>0.0474*</td>
<td>−0.0095</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.0178)</td>
<td>(0.0266)</td>
<td>(0.0341)</td>
</tr>
<tr>
<td>Lone-mothers \times pre-reform linear trend</td>
<td>0.0015</td>
<td>−0.0086</td>
<td>−0.0105</td>
</tr>
<tr>
<td>Standard error</td>
<td>(0.0040)</td>
<td>(0.0067)</td>
<td>(0.0087)</td>
</tr>
<tr>
<td>N</td>
<td>24,648</td>
<td>8,113</td>
<td>5,088</td>
</tr>
</tbody>
</table>

aData from the Labour Force Survey. Standard errors in parentheses. Top panel: two period differences in differences comparing pre-reform employment (1999) to post-reform (2002) for treatment (lone mothers) and comparison group (single women with no children). Lower panel: pooled regression for 1995–2004, including pre-reform differential trend between lone mothers and single childless women. All regressions include a full set of dummies for time, age, and age of youngest child and an indicator for being a single mother. Impact on employment is coefficient on lone-mother \times post-reform. ***, **, * indicates statistical significance at 1%, 5%, and 10%, respectively.

Impacts are basically the same as before and the coefficient on the differential trend is completely insignificant and very small in all cases.

To further validate the approach, we also implemented a set of placebo estimates on pairs of years from the pre-reform period of 1995 to 1999, a period when no reforms took place that would have affected our two groups differentially. Estimates for the various pairs are presented in Table VI: they are all very small and insignificant (except one in the High School group), with standard errors of the same magnitude as those in Table V.

Finally, Figure 3 presents a graphical comparison of the labor force participation of single women without children to single mothers (the comparison and treatment groups, respectively). For presentational purposes, we set the average labor force participation to be the same across the demographic groups prior to the reform. The vertical line corresponds to 1999, when the reform process for tax credits started; it continued until the end of our observation period. These graphs demonstrate visually that both groups evolved in the same way before the reform, irrespective of education. But the trends diverge after the reform process started for the two lower education groups, for whom the reform is most relevant, with an increase in the participation of single mothers relative to that of single women with no children. As expected, the participation of university-graduated single mothers looks unaffected by the reform as most will not be eligible for in work benefits at their level of pay.

While the effects we estimate are specific to this institutional context, this exercise serves to show that the combined reforms did indeed cause increases
TABLE VI
PLACEBO EFFECTS ON EMPLOYMENT BASED ON PRE-WFTC REFORM DATA

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>After Period:</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td></td>
</tr>
<tr>
<td>Secondary Education</td>
<td></td>
<td>0.025</td>
<td>-0.010</td>
<td>0.015</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.017)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.035*</td>
<td></td>
<td>0.012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.021)</td>
<td></td>
<td>(0.018)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>University</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.019)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aData from the Labour Force Survey. Standard errors in parentheses. Difference-in-differences estimates compare lone mothers with single women with no children (treatment and comparison groups) in pairs of years before and after pseudo-treatment. Linear probability model of employment including time and single mother dummy and single mother dummy x post pseudo reform, the coefficient of which is the pseudo impact reported. Other covariates included dummies for age and age of youngest child. Each coefficient is from a separate regression. **, * indicates statistical significance at 5% and 10%, respectively.
in the labor supply of single mothers and establishes the order of magnitude that we can expect our model to replicate. It also shows that the reforms are an important source of exogenous variation for the model.

3.2.1. *Education Choice and the Welfare Reform*

The WFTC and IS reforms as well as tax reforms may also change education choices for young people if they are perceived as permanent. This is because they change the future returns to education and the amount of risk associated with each choice, particularly in the middle and low end of the income distribution.

Consider first Figure 4. It shows the proportion of people in education at age 16, when it is still compulsory, and at 17–21, when most post-compulsory education happens. For the latter, there is a clear break in trend in 1999, at the time the reforms started being implemented. While suggestive, using the break in trend to infer the impact on education is not a credible approach. Quite apart from the fact that the reforms were implemented gradually post-1999, there were other time-varying factors that may have induced this change in trend. For example, there were tax reforms both before and after 1999 as well as an introduction of university fees in 1998 (£1,000 per year) and a means-tested educational subsidy for high school in 2004.22 As a result, it does not make much sense to use 1999 as a single break point of policy affecting education. Moreover, there is no equivalent to the comparison group we used when considering the effects on labor supply since everyone is affected by changes in the policy environment at the time of their education choice.

22The Education Maintenance Allowance—see Dearden, Emmerson, Frayne, and Meghir (2009) for an evaluation preceding the rollout.
To get a handle on how the policy-induced changes in economic incentives affect education, we specify a much simplified economic model where education choice depends on expected income under alternative education choices. The approach we follow is similar in spirit to that of Blundell, Duncan, and Meghir (1998) for tax reform and labor supply and of Gruber and Saez (2002) for estimating the taxable income elasticity.

We start by the observation that welfare and tax reform will affect people differently depending on their background characteristics, which place them at different points on the earnings distribution (in expectation). For example, if a person is predicted to have high earnings and strong labor-market attachment (even without post-compulsory education), their lifetime expected income will not be very sensitive to changes in the welfare parameters, which concern people with low labor-market attachment and low pay. By contrast, the expected income of an individual whose background characteristics predict her to be often out of work or in low pay will be very much affected by the welfare reforms.23 We can exploit this insight to estimate the effect of the reforms as mediated by changes in expected income. This is particularly useful because the same sort of variation will be used in the structural model, but in a more complex setting.

To achieve this, we simulate life-cycle disposable income paths (including predicting spells out of work) conditional on each of the three possible educational choices. These are constructed as a function only of the tax and wel-

23Family background includes the education of both parents (five levels each), number of siblings and sibling order (dummies for no siblings, three or more siblings, and whether respondent is the first child), books in childhood home (three levels), and whether lived with both parents when aged 16.
FEMALE LABOR SUPPLY, HUMAN CAPITAL, WELFARE REFORM

We then construct expected lifetime income conditional on just compulsory secondary education (EY_C), conditional on just high school (EY_HS), or university (EY_U). We need to be parsimonious in allowing for family background because we later build on this approach to specify our model, in which background characteristics enter preferences and wages. Thus we have to limit the size of the state space. Our solution was to extract two principal component factors (f_1 and f_2) from the set of background characteristics. In this way, we use all information in a parsimonious and efficient way. The resulting variability in the expected income measures depends only on the policy reforms and the two factors.

Defining the outcome variable as a dummy for attendance in post-compulsory schooling (PC_{it}), we run the regression

\[PC_{it} = \text{Time dummies} + \alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 \ln(EY_C) + \alpha_4 \ln(EY_HS) + \alpha_5 \ln(EY_U) + u_{it}. \]

The results are presented in Table VII. The first factor (f_1) has a strong positive effect on educational attainment, confirming it can discriminate across different types: educational attainment differs by about 20 percentage points over the support of f_1. The second factor is not significant. In columns 1–3, we include the simulated value of expected lifetime income for the lowest education group only. This is always highly significantly negative as expected (since it makes the lowest level of education relatively more attractive). The result remains unchanged and significant when we include differential trends by background factors (column 2) and even when allowing for these trends to differ pre- and post-1999 (column 3—we can do this because reforms are

To construct expected income, we use the estimated earnings and transition equations from the structural model introduced later in the paper to simulate sequences of disposable incomes over the life-cycle, conditional on each of the three education choices, initial family background (summarized in two factors), and on the tax/welfare system prevailing when the person was 17. We then average over many different career paths for each education level, conditioning only on the family background characteristics and the relevant tax/benefit system. In this way, the expected income per education varies only with family background and tax and welfare system.

We could construct a one-dimensional probability of attending post-compulsory education by regressing post-compulsory schooling attendance on family background in one single cross section and then use the resulting predicted probability as the variable discriminating between types of individuals. However, Abadie, Chingos, and West (2014) showed that this is likely to lead to biased effects of heterogeneous impacts.

Using this more limited information rather than all family background variables does not cause bias, but it could reduce efficiency. The first principal component accounts for 17% of the data variability. It is associated with more educated parents, fewer siblings, being the eldest child, and more books at home.
TABLE VII
THE EFFECT OF EXPECTED INCOME ON POST-COMPULSORY SCHOOLING\(^{a}\)

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(\text{EY}_C))</td>
<td>(-0.8572^{**})</td>
<td>(-0.8794^{**})</td>
<td>(-0.8823^{**})</td>
<td>(-1.0943^{**})</td>
</tr>
<tr>
<td></td>
<td>(0.3758)</td>
<td>(0.3800)</td>
<td>(0.3839)</td>
<td>(0.5136)</td>
</tr>
<tr>
<td>(\ln(\text{EY}_{HS}))</td>
<td></td>
<td></td>
<td>0.2616</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.6440)</td>
<td></td>
</tr>
<tr>
<td>(\ln(\text{EY}_U))</td>
<td></td>
<td></td>
<td>0.0362</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.4279)</td>
<td></td>
</tr>
<tr>
<td>(f_1)</td>
<td>0.1028^{***}</td>
<td>0.1042^{***}</td>
<td>0.1118^{***}</td>
<td>0.1138^{***}</td>
</tr>
<tr>
<td></td>
<td>(0.0108)</td>
<td>(0.0123)</td>
<td>(0.0283)</td>
<td>(0.0289)</td>
</tr>
<tr>
<td>(f_2)</td>
<td>0.0119</td>
<td>-0.0030</td>
<td>-0.0031</td>
<td>-0.0040</td>
</tr>
<tr>
<td></td>
<td>(0.0093)</td>
<td>(0.0102)</td>
<td>(0.0218)</td>
<td>(0.0209)</td>
</tr>
<tr>
<td>(f_1 \times t)</td>
<td>0.0001</td>
<td>0.0015</td>
<td>0.0016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0021)</td>
<td>(0.0041)</td>
<td>(0.0041)</td>
<td></td>
</tr>
<tr>
<td>(f_2 \times t)</td>
<td>-0.0053^{***}</td>
<td>-0.0055^{*}</td>
<td>-0.0054^{*}</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0018)</td>
<td>(0.0031)</td>
<td>(0.0031)</td>
<td></td>
</tr>
<tr>
<td>(f_1 \times t \times \text{post-ref})</td>
<td>-0.0217^{*}</td>
<td>-0.0216^{*}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0123)</td>
<td>(0.0123)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_2 \times t \times \text{post-ref})</td>
<td>0.0230^{**}</td>
<td>0.0229^{**}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0115)</td>
<td>(0.0115)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_1 \times \text{post-ref})</td>
<td>0.0445</td>
<td>0.0443</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0657)</td>
<td>(0.0656)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(f_2 \times \text{post-ref})</td>
<td>-0.0632</td>
<td>-0.0638</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0478)</td>
<td>(0.0484)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time dummies</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Average effect</td>
<td>-0.012^{**}</td>
<td>-0.012^{**}</td>
<td>-0.012^{**}</td>
<td>-0.012^{**}</td>
</tr>
<tr>
<td>St. error</td>
<td>(0.0052)</td>
<td>(0.0052)</td>
<td>(0.0053)</td>
<td>(0.0054)</td>
</tr>
</tbody>
</table>

Changes in expected income by education group comparing 1999 to 2002
\[\Delta \ln(\text{EY}_C) = 0.014, \Delta \ln(\text{EY}_{HS}) = 0.010, \Delta \ln(\text{EY}_U) = 0.004 \]

\[N = 1,033 \]

\(^{a}\)Linear probability model on BHPS data. Cohorts 1970–1985. The dependent variable is 1 for those with post-compulsory education and zero otherwise. post-ref is a dummy for post-reform (cohorts 1982+); \(t\) is a linear time trend; \(f_1\) and \(f_2\) are the first two principal components extracted from the family background variables (the education of both parents (five levels each), number of siblings and sibling order (dummies for no siblings, three or more siblings, and whether respondent is the first child), books in childhood home (three levels), and whether lived with both parents when aged 16). The means of the factors \((f_1, f_2)\) are \((0.9, -0.033)\), the lowest quartile, the median and the top quartile are \((-0.067, -1.02), (1.217, -0.086)\) and \((2.08, 0.92)\), respectively.

implemented throughout the period and there is more than just pre- and post-1999 variability; all included regressors explain only 39% of the variability in \(\ln(\text{EY}_C)\).
The bottom of Table VII shows that the average expected incomes corresponding to all education levels increased following the reform, but EY_C followed by EY_HS increased the most as expected given the nature of the reforms. Column 4 in the table shows that the expected incomes corresponding to the two higher education groups have a positive effect as expected but are less significant, particularly so for EY_U which is the least affected by the reforms.

The results are consistent with what we expect and are remarkably robust. Put together, they imply that the changes in expected income induced by the reform cause a decline in post-compulsory education of 1.2 percentage points (st. error 0.54). Given that EY_C changed by 1.4%, this is a substantial effect. When we repeat this exercise using as dependent variable university attendance (versus less), we obtain a decline of 0.5 percentage points, which, however, is not significant (st. error 0.5). As we shall see, these effects are closely replicated by the structural model we describe below.

4. MODEL

The reduced form analysis establishes the responsiveness of important decisions to changes in taxes and transfers. However, it has little to say about the mechanisms underlying choices. The model we develop below allows us to understand the longer-term effects of policy on behavior and on welfare, to carry out counterfactual analysis, and to address policy questions from a normative perspective as well (see Stantcheva (2015), for example).

4.1. Outline of the Model

At the age of 17, a woman chooses between leaving education with a secondary degree, completing high school, or completing college. Upon completing education, women enter the labor market at the age of 19 for those completing high school or less, and at the age of 22 for university graduates. From then onwards, we model annual consumption and labor supply choices—one of unemployment, part-time, or full-time employment. Women retire at the age of 60 (the state pension retirement age for all women over this period), and live for another 10 years from their accumulated savings. Households are credit constrained and, with the exception of university loans, they cannot borrow.

In every period, a woman may have a child (up to the age of 43), may get married, or get divorced. These events occur randomly over the life-cycle according to an education-specific stochastic process that depends on her current family arrangements and that replicates what we see in the data. For computational reasons, we simplify the problem by not treating these demographic events as explicit choices. Hence our counterfactual simulations are conditional on

27 See also Attanasio, Low, and Sanchez-Marcos (2008) and, for men, French (2005) and van der Klaauw and Wolpin (2008).
the status quo processes and abstract from the implications of changes in behavior in those dimensions. However, changing educational decision implies a change in the relevant marriage and child-bearing process. Moreover, the model accounts for marital sorting by education as observed in the data (see, e.g., Chiappori, Iyigun, and Weiss (2012)).

Wages depend on actual experience, which may depreciate when out of work and accumulates at potentially different rates when working part-time versus full-time. This explains how career breaks and part-time work shape female wages and work incentives. Individual productivity is subject to persistent shocks, whose distributions depend on unobserved preferences for work and constitute an important source of risk.

Observed ex ante heterogeneity in the model is driven by the woman’s family background, summarized by the two principal component factors we introduced earlier. To keep the size of the state space manageable, we discretize them into binary indicators when they are included in preferences for working and wages; they form four distinct observed types.

Educational choice depends on the background factors and on a liquidity shock to parental income. We measure this as the residual from a regression of parental income when the woman was 16 on the entire set of background variables—intended to control for permanent income, which is possibly correlated with preferences and abilities. We assume this does not affect preferences and wages, acting as an exclusion restriction, and its role is to explain differences in educational attainment of otherwise identical individuals, attributing these to liquidity constraints.

Women also differ in unobserved dimensions. At 17, they each draw a random cost of education and a random preference for work (consisting of a utility cost of part-time work and a utility cost of full-time work); both inform the education choice. When starting working life, they draw an initial productivity level from a distribution that depends on their random preference for work and their education. In addition to these, there are persistent idiosyncratic shocks to wages and male earnings, which will be described later.

All choices are affected by the tax and welfare system, which differs by cohort and defines disposable income under each employment option. Further reforms to the system during working life are treated as unexpected surprises. We use FORTAX, a tax and benefit micro-simulation tool to draw accurate budget constraints by family circumstances, accounting for all the detail in the tax and welfare system in place at each point in time. We now explain the model formally.

28Studies that endogenize marriage and fertility decisions include van der Klauw (1996), Francesconi (2002), Keane and Wolpin (2010), and Adda, Dustmann, and Stevens (2015).
29See also Huggett, Ventura, and Yaron (2011), who considered heterogeneity in wage profiles, and Adda, Dustmann, and Stevens (2015), who allowed for a flexible specification of human capital accumulation by working hours.
4.2. Working Life

In each year of her adult life, a woman maximizes expected lifetime utility taking as given her current characteristics and economic circumstances. These are her age \(t \), education \(s \), accumulated assets \(a \), work experience \(e \), idiosyncratic productivity \(v \), her family background \(x_1, x_2 \) where \(x_j \) is a dummy for whether above the median in the distribution of factor \(f_j \),\(^{31}\) and a two-dimensional discrete unobserved factor \(\theta = (\theta_F, \theta_P) \) characterizing her preferences for working full-time \((\theta_F)\) or part-time \((\theta_P)\). They also include her family circumstances and related information: the presence of a partner \(m \), his education \(\tilde{s} \), whether he is employed or not \((\tilde{l} = \text{F/O for Full-time hours and Out of work, respectively})\) and productivity \(\tilde{v} \), the presence of children \(k \), age of the youngest child \(t_k \), and whether she has access to free childcare \(d_c \). We denote by \(X_t \) the vector of state variables in period \(t \), including these two sets of variables. In all that follows, lowercase letters represent individual observed characteristics, the tilde denotes men’s variables, uppercase letters are for market prices and sets of variables, and Greek letters are reserved for the model parameters and unobserved shocks. Except for unobserved preferences for work and productivity, all other shocks and random components of the model are independent of each other.\(^{32}\)

We assume that utility is intertemporally separable, and that instantaneous utility depends on consumption per adult equivalent, female labor supply, family background, family circumstances, and preferences for work. Her instantaneous utility is nonseparable between consumption and leisure. At age \(t \), it is given by

\[
 u(c_t, l_t; \theta_t, Z_t) = \left(\frac{c_t / n_t}{\mu} \right)^\mu \exp \{ U(l_t, \theta_t, Z_t) \},
\]

where \(n \) is the equivalence scale,\(^{33}\) \(c \) is total family consumption, \(l \) is female labor supply and assumes three possible values: not working \((O)\), working part-time \((P)\), and working full-time \((F)\). The function \(U \) reflects how the marginal utility of consumption changes with working, by the woman’s education, background characteristics, and family demographics; it is normalized to zero if the woman is not working. Finally, \(\mu \) is the curvature parameter determining both risk aversion and the elasticity of intertemporal substitution. Since \(\mu \) will be negative, a positive \(U \) for \(l = P, F \) implies that working reduces the utility.

\(^{31}\)Discretizing the factors is an approximation used to limit the size of the state space and make the problem computationally tractable. In principle, we could improve the approximation by adding more discrete points.

\(^{32}\)To be clear, the random components of the model of the working life are the female preferences for work, whether she has access to free childcare when working, her productivity, the arrival of a child, the arrival and departure of a partner, and his education and productivity.

\(^{33}\)\(n = 1 \) for singles, 1.6 for couples, 1.4 for mother with child, and 2 for a couple with children.
of consumption and that consumption and labor supply are complements, as indeed is the case in Blundell, Browning, and Meghir (1994), who used consumption data from the U.K.34 \(U \) is specified as follows:

\[
U(l_t, \theta, Z_t) = \begin{cases}
0, & \text{if } l_t = O \text{ (Out of work)}, \\
\theta_t + Z'_t \alpha(l_t), & \text{if } l_t = P \text{ or } F \text{ (Part time or full time)},
\end{cases}
\]

where \(\alpha(l_t) = \alpha_F + \alpha_P \times 1(l_t = P) \),

where \(Z_t \) is a subset of the woman’s characteristics, including whether she is single or with a partner, and whether she is a mother; these are interacted with a dummy for the three education levels (secondary, high school, or university). It also includes a dummy for the age of the youngest child (0–2, 3–5, 6–10, or 11+), a dummy for the partner working or not, and the background factors \(x_1 \) and \(x_2 \), allowing preferences to depend on background.

The bivariate vector \(\theta = (\theta_F, \theta_P) \) reflects unobserved heterogeneity and can take two values: one for low utility cost of work and one for high cost of work.35 The values of \(\theta \), the probability of being low cost of work, and the other unknown utility parameters described by \(\alpha(l) \) for \(l = F, P \) are estimated alongside the other parameters of the model.

At any age \(t \) during working life, the woman’s decision problem can be written as

\[
V_t(X_t) = \max_{\{c_t, l_t\}_{t=\tau}^{\tilde{t}}} \mathbb{E} \left\{ \sum_{\tau=\tau}^{\tilde{t}} \beta^{\tau-t} u(c_\tau, l_\tau; \theta, Z_\tau) \middle| X_t \right\}
\]

subject to the Budget constraint,

where the expectation \(\mathbb{E} \) is taken over all future random events conditional on the available information \(X_t \), \(\beta \) is the discount factor, and \(V_\tau \) is the optimum value of discounted present and future utility. \(\tilde{t} \) is 10 years after retirement and the family lives off its savings during the retirement period.36

Budget Constraint. The budget constraint is described in terms of the asset evolution equation

\[
\begin{align*}
\begin{cases}
a_{t+1} = (1 + r)a_t + h_t w_t + m_t \ddot{h}_t \ddot{w}_t - T(l_t, X_t) \\
- Q(t^k, h_t, \ddot{h}_t, m_t) - c_t,
\end{cases}
\end{align*}
\]

with initial and terminal conditions: \(a_0 = 0 \) and \(a_{\tilde{t}+1} = 0 \),

34For more evidence on this, see Ziliak and Kniesner (2005) and Shaw (1989).
35We did experiment with a richer distribution of unobserved heterogeneity, but this did not significantly improve the fit of the model or change the results.
36This ensures that individuals save towards retirement above their social security contributions, which in the U.K. only replaces a small proportion of their working earnings.
where r is the risk-free interest rate, (w, \tilde{w}) are the hourly wage rates of wife and husband, (h, \tilde{h}) are the working hours of wife and husband (respectively 0, 18, and 38 hours corresponding to O, P, and F for women, and 0 and 40 corresponding to O and F for men), and a_s represents the borrowing limit; the latter is either zero or the amount of the student loan borrowed (a negative number). The tax and transfer function, T, unifies the tax and welfare system, describing the total incentive structure faced by an individual at all income levels, and turns out to be a complex nonconcave, nonsmooth, and often discontinuous function of income, hours of work, and family composition. It depends on hours because tax credits in the U.K. depend on hours thresholds (16 and 30). Households start life with a particular tax and welfare system and face reforms over their lifetime, which are treated as unanticipated. The age at which the reforms occur varies depending on the cohort to which individuals belong.

Finally, Q are childcare costs. Preschool children need childcare whenever no adult is staying at home, and school-age children only need childcare outside the school day as education is publicly provided. Childcare costs are zero for those with access to informal care ($d_{cc} = 0$), the probability of which is estimated from the data, and only depend on the age of the youngest child. Hence we specify

$$Q(t^k, h_t, \tilde{h}_t, m_t) = \begin{cases}
 h_t \times CC_h, & \text{if } d_{cc} = 1 \text{ and } t^k \leq 5 \text{ and } (\tilde{h}_t = 40 \text{ or } m_t = 0), \\
 18 \times CC_h, & \text{if } d_{cc} = 1 \text{ and } 5 < t^k \leq 10 \text{ and } h_t = 38 \text{ and } (\tilde{h}_t = 40 \text{ or } m_t = 0), \\
 0, & \text{all other cases},
\end{cases}$$

where CC_h is the constant per-hour rate, which we set to a number obtained from the data.

Female Human Capital and Earnings Dynamics. The female wage process including the distribution of all shocks is education-specific (indexed by s). It is given by

\[
\ln w_t^m = b_{s,0} + b_{s,1}x_1 + b_{s,2}x_2 + (\gamma_{s,0} + \gamma_{s,1}x_1 + \gamma_{s,2}x_2)\ln(e_t + 1) + v_t + \xi_t,
\]

\[
\ln w_t = \ln w_t^m - \xi_t,
\]

\[
e_t = e_{t-1}(1 - \delta_s) + g_s(l_{t-1}),
\]

\[
v_t = \rho_s v_{t-1} + \xi_t,
\]

37T includes income tax, social security contributions, and the main subsidies for working-age families, namely income support, job-seekers allowance, tax credits, housing benefit, council tax benefit, child benefit. These are described in Appendix F of the Supplemental Material, together with the main reforms over the 1990s and 2000s.
where \(\ln w^m_t \) is the observed hourly wage rate, \(\xi \) is i.i.d. normal measurement error, \(\ln w_t \) is the wage rate on which individual decisions are based, and \(e_t \) is experience.\(^\text{38}\) Importantly, we also allow for the background variables \((x_1, x_2)\) to affect wage levels and growth. The individual productivity process, \(\nu_t \), follows an AR(1) process with normally distributed innovations, \(\zeta_t \); hence, purely transitory variation in wages is attributed to measurement error and does not affect the decision process. The initial productivity shock is distributed as a mixture of two normals with means that depend on unobserved preferences \(\theta \).

Experience depreciates at a rate \(\delta_s \) per period; its accumulation depends on whether the person is working full-time or part-time: \(g_s(F) = 1 \) while \(g_s(P) \) is an education-specific number to be estimated, defining the experience value of part-time work. The experience profile of wages is concave as in Eckstein and Wolpin (1989) if the return to experience in wages \((\gamma_{s,0} + \gamma_{s,1}x_1 + \gamma_{s,2}x_2) \) is smaller than 1.

Male Employment and Earnings. We assume men in couples either work full-time \((\tilde{l} = F)\) or are out of work \((\tilde{l} = O)\). Their hourly wage and employment are exogenous and are given by

\[
\begin{align*}
\text{Prob}[\tilde{l}_t = F|X_t] &= \begin{cases}
\text{Prob}[\tilde{\nu}_t > b_1(t, \tilde{s}_i, \tilde{l}_{t-1})], & \text{if } m_{t-1} = 1, \\
\text{Prob}[\tilde{\nu}_0 > b_0(t, \tilde{s}_i)], & \text{if } m_{t-1} = 0,
\end{cases} \\
\ln \tilde{w}^m_t &= b_3 + \tilde{\gamma}_s \ln(t - 18) + \tilde{\nu}_t + \tilde{\xi}_t, \\
\tilde{\nu}_t &= \rho \tilde{\nu}_{t-1} + \tilde{\zeta}_t,
\end{align*}
\]

where \(\ln \tilde{w}^m_t \) is measured log wage, \(\ln \tilde{w}_t \) is the log wage that matters for decisions, and \(\tilde{\xi} \) is taken to be an i.i.d. normal measurement error.\(^\text{39}\) The shock to wages, \(\tilde{\nu}_t \), is an AR(1) process with normal innovations and normal initial values, all dependent on his education, \(\tilde{s} \). The dependence between the earnings and employment of spouses is captured by the correlation in their education levels, as will be detailed below.

The Dynamics of Family Composition. Family dynamics are stochastic and education-specific but exogenously set to reproduce the patterns observed in the data. If a child is present, then \(k = 1 \) and \(t^k \) is her/his age. In the model, only the age of the youngest child matters for preferences and costs. Hence, when a new child arrives, we reinitialize \(t^k \) to zero. The probability that a new child arrives depends on the age and education of the woman, whether she has

\(\text{38}\) \(w^m_t \) is the ratio of usual weekly earnings by usual weekly hours, the latter being capped at 70.

\(\text{39}\) In order to avoid including both male and female age in the state space and so as to allow for the fact that female and male age are highly correlated in practice, we include female age in the male earnings equation instead of male age. This simplifies the computations, while allowing age effects on male earnings, which is important in a life-cycle model.
other children and the age of the youngest child, and whether she is married (described by \(m \)). It is given by

\[
(11) \quad \text{Prob}[t^k = 0|t, s, k_{t-1}, t^k_{t-1}, m_{t-1}].
\]

Once a child is born, she/he will live with the mother until (and including) 18 years of age. If the woman is married, then \(m = 1 \) and \(\tilde{s} \) is the education of the partner. The transition probability is given by

\[
(12) \quad \text{Prob}[m_t, \tilde{s}_t|t, s, m_{t-1}, \tilde{s}_{t-1}, k_{t-1}],
\]

where \(\tilde{s}_{t-1} (\tilde{s}_t) \) is only observed if \(m_{t-1} = 1 (m_t = 1) \).

4.3. Educational Choice

Investments in education are decided at the start of active life, when the woman is aged 17, based on the balance of realized costs and expected value of each educational alternative. Labor-market entry happens at 19 for those with high school or less (\(s = 1 \) or 2) and at age 22 for university graduates (\(s = 3 \)) and there is no re-entry into full-time education.\(^{41}\) The opportunity cost of education for those aged 17–18 is captured by the estimated nonpecuniary costs of education. The optimal choice of education is defined by

\[
s = \arg\max_{s \in \{1, 2, 3\}} \{ W_s(X_{17}) - B_s(X_{17}) \},
\]

where \(B_s \) measures the utility costs of the investment, defined as

\[
B_s(X_{17}) = \pi_{1s} f_1 + \pi_{2s} f_2 + \pi_{5s} y_p + \sigma_s.
\]

\(y_p \) is the liquidity shock to parental income (after removing all observed information on permanent family characteristics when the woman is 16 years old); \((f_1, f_2)\) are the continuous parental background factors, which capture permanent family heterogeneity and are discretized as described before to enter the rest of the model; \(\sigma_s \) is the unobserved utility cost of education \(s \), assumed to be normally distributed with variance \(\sigma_s^2 \). Finally, \(W_s \) is the discounted expected

\(^{40}\)As specified, fertility, marriage, and the type of spouse depend on education but not on other choices such as labor supply, and does not depend on experience. This simplification allows us to estimate these processes outside the full dynamic model, simplifying considerably the computations.

\(^{41}\)Individuals choosing to acquire professional education, including that providing on-the-job training, are classified as students when aged 17 to 18. It is being assumed that individuals 18 and younger have loose labor-market attachment, not conducive of experience accumulation.
value of lifetime utility if the woman chooses education level \(s \). It is given by

\[
W_s(X_{17}) = \begin{cases}
E[V_{19}(X_{19}) | X_{17}, s], & \text{if } s = 1, 2, \\
E \left[\max_{c_{19}, c_{20}, c_{21}} \sum_{t=19}^{21} \beta^{t-19} u(c_t, F; \theta, Z_{17}) + \beta^{22-19} V_{22}(X_{22}) \right] | X_{17}, s, & \text{if } s = 3,
\end{cases}
\]

where \(Z_{17} \) summarizes the relevant information for the instantaneous utility (as in equation (1)) and it is assumed that university years carry a utility cost similar to that of full-time work in excess of the education-specific preferences described by \(\sigma_s \). University students fund their consumption needs and tuition fees \((D) \) out of their institutional student loans. Optimization is therefore subject to the budget constraint

\[
a_{19} = a_{17} = 0, \\
a_{22} = -(1 + r)^2 c_{19} - (1 + r) c_{20} - c_{21} - D \quad \text{if} \quad s = 3.
\]

5. ESTIMATION

We follow a two-step procedure to estimate the parameters of the model. In a first step, we estimate the equations for the predetermined elements of the model, given education choices, including the dynamics of marriage, divorce, fertility, male labor supply, male earnings, and the cost of childcare. Details and estimates can be found in Appendix B of the Supplemental Material.

We set the utility function coefficient \(\mu \) to \(-0.56\), giving a risk aversion coefficient of 1.56, consistent with the findings in Blundell, Browning, and Meghir (1994) and Attanasio and Weber (1995), both of which allow for nonseparability of leisure and consumption as in this model. Finally, the annual discount factor \(\beta \) is set to 0.98 as, for example, in Attanasio, Low, and Sanchez-Marcos (2008). The annual risk-free interest rate is set to 0.015, which is slightly lower than the discount rate, thus implying that agents have some degree of impatience. The tuition cost of university education and the credit limit for university students (and graduates throughout their life) are £3,000 and £5,000, respectively, consistent with university education policy of the late 1990s in the U.K. No further credit is allowed. The remaining parameters determining preferences and female wages are estimated using the method of simulated moments.\(^{43}\)

\(^{42}\)We have experimented varying the discount factor to as low as 0.95, but we did not get substantive changes in behavior.

Estimation exploits the policy changes over time. In order to use this available source of exogenous variation, we construct moments conditional on the two factors representing family background, on the value of the parental liquidity shock (that affects education choice), and on the year in which the individual became 16, which determines the original tax and welfare system they were facing as well as the age at which they faced any subsequent reforms. In this way, we allow for the variation induced by changes in the policy environment and how this impacts different types of people based on their background, to help identification of the parameters. This implies that the model is estimated by comparing the behavior of different cohorts, who are facing different policy environments. Hence a key identifying assumption is that preferences do not change across cohorts and that differences can be attributed to policy changes.

We then solve the model and simulate the life-cycle choices of 19,505 women (5 replications of the 3,901 women profiles observed in the BHPS) using the observed distribution of family background and parental liquidity shock and the history of the tax and welfare systems that she faced. Our solution algorithm underlying these simulations is based on a modified version of the algorithms in Fella (2014) and Iskhakov, Jorgensen, Rust, and Schjerning (2015), which build on the Endogenous Grid Method proposed by Carroll (2006). The main difficulty in solving dynamic problems that combine discrete and continuous choices is that the value function is neither smooth nor concave. The way we deal with these issues, the solution algorithm, and the numerical details in implementing it and in simulating life-cycle profiles are all described in Appendix C of the Supplemental Material.

For each simulated profile, we select an observation window that matches her data counterpart so that the simulated sample exactly reproduces the time and age structure of the observed data. Again to limit the computational burden, we impose the simplification that women face up to four policy regimes over the observation window, representing the main tax and benefit systems operating during the 1990s and early 2000s. Finally, we compute the moments using the simulated data set, equivalent to those computed using observed data, and evaluate the objective function. The estimates \(\hat{\Theta} \) are defined by

\[
\hat{\Theta} = \arg\min_{\Theta} \left\{ \sum_{k=1}^{K} \left[\frac{(M_{kn}^d - M_{ks}^m(\Theta))^2}{\text{Var}(M_{kn}^d)} \right] \right\},
\]

where the sum is over the \(K \) moments, \(M_{kn}^d \) denotes the \(k \)th data moment estimated over \(N \) observations, and \(M_{ks}^m(\Theta) \) represents the \(k \)th simulated moment evaluated at parameter value \(\Theta \) over \(s \) simulations.

As mentioned earlier, we adopted the 1995, the 1999, the 2002, and the 2004 regimes and assumed they operated over the periods prior to 1996, 1997 to 1999, 2000 to 2002, and 2003 onwards, respectively.
As suggested by Altonji and Segal (1996), we do not use the asymptotically optimal weight matrix because of its potentially poor small-sample properties. The simulation procedure controls for any initial conditions problem by starting the simulation at the start of life. Unobserved heterogeneity is allowed for in the construction of the simulated moments. The moments we match are listed in Appendix D of the Supplemental Material. We compute asymptotic standard errors following Gourieroux, Monfort, and Renault (1993). This corrects for the effects of simulation noise. A discussion of the practical implementation issues in estimation can be found at the end of Appendix C of the Supplemental Material.

6. PARAMETER ESTIMATES

Table VIII reports the estimates for the female wage process. Both the wage rates at the start of working life and the returns to experience increase with education. We illustrate the effect of education on wages in row 4, which shows the mean wage rates by education for 25-year-old women who have continuously worked full-time. In row 8, we show the average return to experience, which increases with education, pointing to a complementarity between education and on-the-job learning.

Human capital depreciates between 5.7% and 8.1% a year depending on the education group (row 14), which imposes a very large cost for time spent out of work. Importantly, when working part-time, the amount of human capital accumulated is a fraction of that accumulated in full-time jobs (row 13), at most barely countering the effects of depreciation. For example, a year of part-time work is worth only 15% of a full-time one in terms of acquired experience among the lowest skill group. Effectively, working part-time leads to almost no improvements in human capital for women who have little accumulated experience, and may even be associated with a loss of human capital for the more experienced individuals. This result, together with the persistence of working choices, contributes to explaining why, in the cross section, women working part-time are paid, on average, a lower hourly rate than those working full-time—we term this the part-time penalty.

A key element of the model is the stochastic process of wages, because it is a main source of uncertainty and leads people to value programs for the insurance they provide. The autocorrelation coefficient, ρ_s, reported in row 9, is very high but not quite a unit root. The standard deviation of the shocks (row 10) implies a high degree of uncertainty for next period’s wage rate, and there is substantial heterogeneity in wages at the start of life (row 12). Finally, the family background factors shape the wage profiles of the two lower education groups but not (significantly) that of college graduates.

Estimation of the standard errors of the structural parameters takes the parameters estimated in the first estimation stage as fixed. Allowing for the variation in the first stage to be accounted in estimating second-stage standard errors is prohibitively demanding in terms of computation time.
TABLE VIII
FEMALE WAGE EQUATION AND EXPERIENCE ACCUMULATION

<table>
<thead>
<tr>
<th></th>
<th>Education</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Secondary (1)</td>
</tr>
<tr>
<td>(1) Intercept (b_{s,0})</td>
<td>5.406 (0.030)</td>
</tr>
<tr>
<td>(2) Increment: high factor 1 (b_{s,1})</td>
<td>0.005 (0.040)</td>
</tr>
<tr>
<td>(3) Increment: high factor 2 (b_{s,2})</td>
<td>0.014 (0.036)</td>
</tr>
<tr>
<td>(4) Mean hourly wage rate at 25</td>
<td>7.19 (0.050)</td>
</tr>
</tbody>
</table>

(5) Baseline \(\gamma_{s,0}\)	0.152 (0.006)	0.229 (0.009)	0.306 (0.011)
(6) Increment: high factor 1 \(\gamma_{s,1}\)	0.054 (0.009)	0.014 (0.009)	-0.002 (0.010)
(7) Increment: high factor 2 \(\gamma_{s,2}\)	-0.002 (0.008)	0.029 (0.008)	-0.006 (0.008)
(8) Mean value of the coefficient on experience	0.16 (0.008)	0.25 (0.012)	0.30 (0.014)

(9) Autocorrelation coefficient: \(\rho_s\)	0.925 (0.006)	0.916 (0.006)	0.880 (0.008)	
(10) St. deviation of innovation in productivity: \(\sqrt{\text{Var}(\xi_s)}\)	0.125 (0.005)	0.154 (0.005)	0.139 (0.005)	
(11) Mean of initial productivity for type I: \(E(v_0	\text{type I})\)	0.140 (0.011)	0.111 (0.028)	0.306 (0.015)
(12) St. deviation initial productivity: \(\sqrt{\text{Var}(v_0)}\)	0.145 (0.012)	0.202 (0.015)	0.223 (0.016)	

| (13) While in part-time work: \(g_s(P)\) | 0.150 (0.015) | 0.096 (0.022) | 0.116 (0.013) |
| (14) Depreciation rate: \(\delta_s\) | 0.081 (0.008) | 0.057 (0.008) | 0.073 (0.009) |

\(^a^\)Standard errors in parentheses. Mean hourly wages (row 4) are assessed at age 25 if women worked full-time since the start of their working life. The mean returns to experience (row 8) are averages over the population, conditional on education. The mean initial productivity (row 11) is for individuals with high preferences for working (type I). The population mean initial productivity is zero.
In Table IX, we report the preference parameters determining the U function in equation (2). In reading the table, note that positive and larger values of the coefficients make working less attractive because utility is negative (i.e., the parameter driving risk aversion, μ in equation (1), is negative). Moreover, the coefficients in column (3) on part-time work are incremental to those in full-time work and reflect the difference of part-time from full-time work.

The parameters in column (1) of Table IX imply that U for full-time work is always positive, meaning that working carries a utility cost for all groups. The parameters in column (3) are negative but smaller in absolute terms than the ones in column (1), implying part-time work yields a lower disutility than full-time work. The utility cost of working is higher for single women than for...
women in couples. These results are consistent with similar employment rates across marital status for women without children and lower employment rates among lower-educated single mothers than among their married counterparts. Children, particularly of preschool age, increase the utility costs of working and more so for full-time. Preferences depend on education, particularly amongst singles. Indeed, to rationalize the data given the budget constraint, the single university graduates are attributed a higher disutility from full-time work. We also find that the presence of a working partner (row (16)) further reduces the cost of working, implying some complementarity between the labor supply of partners (as in Blundell, Pistaferri, and Saporta-Eksten (2016)). It is interesting that family background does not directly affect preferences.

As in the reduced form analysis, Table X shows that family background matters for education and increased parental liquidity at 16 increases attainment and particularly so for university attendance. Beyond this, the unobserved random costs of education are also important in driving education choices, which explains why observationally similar people make different education decisions.

Mothers may face positive childcare costs if all adults in the household are working, in which case the cost of childcare is £2.60 per working hour for children under the age of 5 or per working hour in excess of 18 hours per week for children aged 5 to 10. The probability that this happens is estimated to be about 58% (row 6 of Table X), meaning that the rest have informal sources of childcare.

7. MODEL FIT AND IMPLICATIONS FOR BEHAVIOR

7.1. Wages and Employment

The life-cycle profiles of wage rates for working women are presented in Figure 5 for each education group. These fit the observed profiles well and show

TABLE X

<table>
<thead>
<tr>
<th></th>
<th>High School</th>
<th></th>
<th>University</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Coeff. (1)</td>
<td>St. Error (2)</td>
<td>Coeff. (3)</td>
<td>St. Error (4)</td>
</tr>
<tr>
<td>(1) Intercept</td>
<td>−0.053</td>
<td>(0.025)</td>
<td>0.682</td>
<td>(0.015)</td>
</tr>
<tr>
<td>(2) Background factor 1</td>
<td>0.227</td>
<td>(0.012)</td>
<td>0.363</td>
<td>(0.014)</td>
</tr>
<tr>
<td>(3) Background factor 2</td>
<td>0.009</td>
<td>(0.022)</td>
<td>0.299</td>
<td>(0.011)</td>
</tr>
<tr>
<td>(4) Parental liquidity shock when aged 16</td>
<td>0.305</td>
<td>(0.158)</td>
<td>0.695</td>
<td>(0.036)</td>
</tr>
<tr>
<td>(5) St. deviation unobserved utility cost of education ($\sqrt{\mathcal{V}_{\omega}}$)</td>
<td>1.579</td>
<td>(0.093)</td>
<td>1.015</td>
<td>(0.183)</td>
</tr>
<tr>
<td>(6) Probability of positive childcare costs</td>
<td>0.576</td>
<td>(0.014)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aResidual parental income constructed from regression of parental income on all long-term background characteristics when the woman is 16 years old.
the lowest education group having the most flat profile becoming steeper for higher education groups. Figure 6 shows that this pattern is replicated across the percentiles of the life-cycle wage distribution and demonstrates that the model can reproduce the observed dispersion of wages. The flattening out in

FIGURE 5.—Mean log wage rates for working women over the life-cycle by education: data versus model. Notes: BHPS versus simulated data, in solid and dashed lines, respectively. 2008 prices.

FIGURE 6.—Distribution of log wage rates for working women over the life-cycle by education: data versus model. Notes: BHPS versus simulated data. 2008 prices. All curves smoothed using kernel weights and a bandwidth of 2 years.
the observed profiles is in part because of the increasing prevalence of part-time work later in the life-cycle. Part-time workers have very low returns to experience according to our estimates, just about managing to avoid depreciation of human capital.

The part-time penalty relative to women working full-time continuously is illustrated in Figure 7. To understand its implications for wage formation, given actual labor supply behavior, we show the effect of switching off components of wage growth in Table XI. Thus, the part-time penalty implies female wages are lower by between 5.3% and 7.7% when the woman is 50 and given the observed periods of part-time work. If, in addition, we eliminate the experience cost of being out of work, wages would be higher by between 10.5% and 14.3% at 50. The realized cost of part-time and out-of-work spells by age 50 are lowest for

<table>
<thead>
<tr>
<th></th>
<th>No Penalty for not Working</th>
<th>No Part-Time Penalty</th>
<th>and no Part-Time Penalty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Secondary (%)</td>
<td>5.3</td>
<td>10.5</td>
<td></td>
</tr>
<tr>
<td>High school (%)</td>
<td>7.0</td>
<td>12.5</td>
<td></td>
</tr>
<tr>
<td>University (%)</td>
<td>7.7</td>
<td>14.3</td>
<td></td>
</tr>
</tbody>
</table>

The first column shows the effect on wages at 50 if the amount of experience gained from part-time work is the same as that of full-time work; the second column cancels, in addition, the experience cost of not working. The pattern of part-time work and full-time work is kept fixed at what actually happens.
the least-educated group, despite their lower labor-market attachment, since their return to experience is actually very low. This component of the model is crucial for understanding the mechanisms through which welfare programs can have longer-run effects.

Figure 8 shows life-cycle employment patterns. The top panel shows that employment rates are U-shaped, reflecting child-rearing, and increase with education. In the lower panel, we align these graphs with reference to the timing of births. The dip in employment caused by children is less pronounced for higher levels of education. The model fits these patterns remarkably well. A full set of model comparisons with the data moments used in estimation is presented in Appendix D of the Supplemental Material.

In Table XII, we emulate the difference-in-differences estimator for the full set of reforms implemented between 1999 and 2002 and shown earlier. Given the nature of the exercise, where we are looking at immediate short-run effects, we do not allow education choices to respond and we treat the reform as a surprise. This estimator compares the employment of single mothers (the treatment group) to similar single women without children. The simulation in Table XII produces an estimated difference-in-differences parameter of 5.6 percentage points (pp) increase in employment resulting from the reforms for the secondary education group. This compares to a difference-in-differences estimate from the data of 4.2 pp. For high school graduates, the simulation and the estimate are 5.0 pp and 5.5 pp, respectively. All these differences are small and well within the margin of estimation error; similarly, for the university group, the effects are very small in both data and simulation. Although we used the reforms in estimation as a source of variations, we did not target the effect itself and the fact the results match is encouraging for the model.

7.2. Education Choice

To validate the model predictions on education, we use the reduced form specification of education choice and the implied effects of the change in expected lifetime income induced by the 1999–2002 reforms described in column (4) of Table VII and compare them to the simulated effects of the same reform. Row 2 in Table XIII shows that the model predictions are close to the reduced form estimates. The impact is larger at the high school level as expected, but is also noticeable at the university level (albeit not significant in the data). The reform increases the generosity of benefits and increases the range of income that allows eligibility and, crucially, reduces income risk for low- to medium-income families. The model implies that this may impact education choices even at a high level for a small group of women.

Finally, we simulate the effect of reducing university tuition by £1000. We find that university attendance increases by 1.9 percentage point. As a comparison, Kane (2003) and Deming and Dynarski (2009) found that a $1000
The impact of the reforms on the employment rates of lone mothers—model simulations versus DID data estimates*

<table>
<thead>
<tr>
<th></th>
<th>Secondary</th>
<th>High School</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Estimates based on LFS data</td>
<td>4.0</td>
<td>5.5</td>
<td>−0.5</td>
</tr>
<tr>
<td>St. error</td>
<td>(1.2)</td>
<td>(1.5)</td>
<td>(1.6)</td>
</tr>
<tr>
<td>(2) Model simulation</td>
<td>5.6</td>
<td>5.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

*Row 1 displays the result from the difference-in-differences as in the top panel of Table V. Row 2 shows the results of similar calculations on simulated data from the model.

decrease in tuition in the United States increases college attendance by 3–5 percentage points. Our effect is thus smaller, but comparable. The implication is that in the United States, the impact of welfare on educational attainment may perhaps be larger than what we find here for the U.K.

7.3. Elasticities of Labor Supply

Simulated wage elasticities of labor supply are presented in Table XIV. Marshallian elasticities are obtained by perturbing the entire profile of wages and comparing the outcome of the simulation across the original and the new profile, keeping education choices fixed; as such, they account for wealth effects. The Frisch elasticities are responses to an anticipated change in the wage at one age at a time and computing the effect at each age separately. Since the perturbation in the latter case is very small, there are no wealth effects; together with the anticipated nature of the perturbation, this allows us to interpret the values in the first three columns of the table as a marginal utility of wealth constant or Frisch elasticities.

Frisch elasticities differ from Marshallian elasticities due to wealth effects, although with experience dynamics there is no necessity for Frisch elasticities to be larger. We find that participation is more elastic than hours, a result that is

Table XIII

The impact of the reforms on education attainment—model simulations versus data estimates*

<table>
<thead>
<tr>
<th></th>
<th>High School</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Estimates based on BHPS data</td>
<td>−0.012</td>
<td>−0.005</td>
</tr>
<tr>
<td>St. error</td>
<td>(0.005)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>(2) Model simulation</td>
<td>−0.007</td>
<td>−0.005</td>
</tr>
</tbody>
</table>

*Row 1 displays the data estimates of the average impact of the 1999–2002 reforms on education attainment, as in column 4 of Table VII. Row 2 shows model predictions of the impact of the same reform under revenue neutrality.
FEMALE LABOR SUPPLY, HUMAN CAPITAL, WELFARE REFORM

TABLE XIV
ELASTICITIES OF LABOR SUPPLY

<table>
<thead>
<tr>
<th></th>
<th>Frisch</th>
<th></th>
<th>Marshall</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Extensive</td>
<td>Intensive</td>
<td>Extensive</td>
<td>Intensive</td>
</tr>
<tr>
<td></td>
<td>Elasticity</td>
<td>Derivative</td>
<td>Elasticity</td>
<td>Derivative</td>
</tr>
<tr>
<td>All women</td>
<td>0.627</td>
<td>0.510</td>
<td>0.240</td>
<td></td>
</tr>
<tr>
<td>By education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Secondary</td>
<td>0.914</td>
<td>0.675</td>
<td>0.327</td>
<td>0.689</td>
</tr>
<tr>
<td>High school</td>
<td>0.567</td>
<td>0.469</td>
<td>0.223</td>
<td>0.428</td>
</tr>
<tr>
<td>University</td>
<td>0.427</td>
<td>0.375</td>
<td>0.180</td>
<td>0.331</td>
</tr>
<tr>
<td>By family composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single women with no children</td>
<td>0.532</td>
<td>0.486</td>
<td>0.159</td>
<td>0.419</td>
</tr>
<tr>
<td>Lone mothers</td>
<td>2.240</td>
<td>1.275</td>
<td>0.452</td>
<td>1.362</td>
</tr>
<tr>
<td>Women in couples, no children</td>
<td>0.264</td>
<td>0.242</td>
<td>0.163</td>
<td>0.220</td>
</tr>
<tr>
<td>Women in couples with children</td>
<td>0.688</td>
<td>0.522</td>
<td>0.316</td>
<td>0.553</td>
</tr>
</tbody>
</table>

aCalculations based on simulated data under the 1999 tax and benefit system. The derivatives in columns 2 and 5 measure the percentage point change in labor supply, in response to a 1% increase in net earnings. All effects are measured in the year the change in earnings occurs.

common in the empirical literature. Mothers are more responsive to changes in net wages than women with no children, another typical result in the empirical literature. Finally, secondary educated women are also much more responsive to incentives, particularly on the intensive margin.

The elasticities also vary with age as illustrated for both the Frisch and the Marshallian elasticities in Figure 9. Their profile is strongly influenced by changes in family composition over the life-cycle, which counteract the downward pressure on labor elasticities created by higher returns to work at younger ages due to human capital accumulation (see Imai and Keane (2004)). They peak when family formation and childrearing are most important—which happens at an increasing age with education—and then fall gradually from then onwards. It is, however, notable that the elasticities are always low for college graduates, and the Marshallian elasticities (as well as the Frisch elasticities to a less extent) show the monotonically increasing pattern with age predicted in labor supply models with human capital accumulation. The income elasticities on the extensive margin are about \(-0.4\) for all education groups and decline in absolute value with age to about \(-0.3\), with minimal variation across education groups.

47See the survey of participation and hours elasticities in Meghir and Phillips (2010).
Savings are an important margin of response to welfare reform if individuals adjust assets to achieve the desired amount of self-insurance depending on the policy environment; this, in turn, will have an effect both on predicted behavior and on the estimated welfare effects of a reform. To show how behavioral responses can be distorted by ignoring assets, we re-estimated the model shutting down any borrowing or savings and forcing people to live off their current income (including any welfare payments).49 When we do this, the loss of fit is particularly pronounced for the proportions moving in and out of work. One reason for this is that, in the absence of savings, employment becomes the only way to smooth consumption. This distorts the accumulation of experience and the model can no longer fit wage profiles as well as before, particularly for university graduates, for whom both savings and experience are more important. For them, the simulated profiles overestimate observed wage growth beyond age 40. For related reasons, the estimated Marshallian elasticities are higher when we shut down savings. Particularly pronounced differences are for the extensive margin Marshallian elasticities for single mothers and the intensive ones for single women with no children. These are the two groups who are missing husband’s income, which can provide some diversification and smoothing of shocks. A comparison of Marshallian elasticities with and without savings is provided in Appendix E of the Supplemental Material.

49In particular, the model without savings does not include tuition fees or loans, and does not account for savings towards retirement.
Finally, some estimated models use a utility function that is linear in consumption, which makes savings irrelevant. The insurance component of welfare benefits will not be valued by the risk-neutral individuals of these models. However, studies of consumption imply individuals are risk averse (see, e.g., Blundell, Browning, and Meghir (1994)). Ignoring this aspect would give an incomplete picture of the role of welfare benefits and indeed taxes.

8. THE LONG-RUN EFFECTS OF TAX AND BENEFIT REFORMS

8.1. Tax Credits

We now turn to the longer-run effects of tax credits and some aspects of their design in the U.K. These are impacts that can only be reasonably evaluated by a structural model that accounts for the longer-run effects of the dynamics, including changes in education choice and in the accumulation of experience.

The main motivation for tax credits was to provide income support to low-income mothers, while preserving their labor-market attachment and avoiding the erosion of their human capital during the child-bearing period. So how effective are they in achieving their aims? In what follows, we discuss the simulated effects of two revenue-neutral reforms allowing for responses on education, employment, hours, and savings. First, we compare outcomes under the 2002 system, with the tax credits in place, to those that would occur had they been removed—we report the effect of having tax credits, funded by increasing the basic rate of tax. Then we consider the effects of assessing eligibility for the tax credits on personal rather than family income, thus integrating tax credits to the individual-based U.K. tax system. In the tables, individuals are classified based on their pre-reform educational choice, to avoid composition effects in the comparisons.

Tax credits have a large positive effect on the employment of single mothers (Table XV, rows 1–3). The effects are stronger for part-time employment as expected from their design, but are also sizable even for full-time hours, with the exception of university-educated mothers. On the other hand, mothers with a partner decrease their labor supply: tax credits are assessed at the family level and the family may receive the credit if the male partner is working; in such case, her earnings reduce the overall family entitlement; hence tax credits are a work disincentive for mothers with a partner. Finally, as expected, we see a shift towards less educational attainment (row 7) since tax credits reduce the return to education.50

However, the remarkable result in this table is that the employment of women with adult children, who are no longer entitled to benefits, remains unaffected by the introduction of the benefit (rows 4–6). It implies no long-run impact of tax credits on labor-market attachment, beyond the time they are

50See also Keane and Wolpin (2000) on this issue.
TABLE XV
EFFECTS OF TAX CREDITS

<table>
<thead>
<tr>
<th>Pre-Reform Education Choice</th>
<th>Secondary</th>
<th>High School</th>
<th>University</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) All (pp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2) Full-time (pp)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3) Part-time (pp)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact on Employment: Mothers of Dependent Children (0–18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>(2)</td>
</tr>
<tr>
<td>(3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact on Employment: Mothers of Adult Children (19+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All (pp)</td>
</tr>
<tr>
<td>Full-time (pp)</td>
</tr>
<tr>
<td>Part-time (pp)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact on Education and Wages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education (pp)</td>
</tr>
<tr>
<td>Wages: mothers of child aged 19 (%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact on Assets (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No children</td>
</tr>
<tr>
<td>Dependent child (0–18)</td>
</tr>
<tr>
<td>Adult child (19+)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Impact on Lifetime Disposable Income and Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disposable income (%)</td>
</tr>
<tr>
<td>Consumption equivalent (%)</td>
</tr>
</tbody>
</table>

| Adjustment in the basic rate of Income Tax to fund reform: +0.9 pp |

a Reform is revenue neutral by adjusting the income tax rate. Education is allowed to adjust. Educational classification fixed at the pre-reform (no tax credits) choice. All effects are percentage points change (pp) or percent changes (%) as marked.

eligible to receive it. The reason for this important result is that their wages, as of when their children have grown, remain unchanged (row 8). To understand why, one must view the impact on labor-market experience from a life-cycle perspective: most single mothers are so for a limited period, only in just over 50% of the cases for 5 years or more, and most children are born to married mothers (about 70% among low-medium skilled women, and just under 85% among university graduates). This implies that tax credits can have opposite effects on the same woman over her lifetime: when in a couple, the incentive is to work less, which reduces the experience capital; when a lone mother, the incentive is to work more, but mainly part-time hours, which helps avoid depreciation but does not build experience. The net effect is that, on average, wages remain the same by the time children have grown up.
The effects are heterogeneous. In Table XVI, we focus on a small but important group: those who brought up their children as lone mothers exclusively. When eligible for tax credits, they work more as per the above results. So when their child becomes an adult (19 years old) and they stop being eligible for tax credits, the accumulated experience increases their wage by 5.8% for the lowest educated group, 3.3% for the high school group, and not much for the university group, compared to if no tax credits were ever available. This should incentivize them to work after the termination of eligibility. However, tax credits also have a wealth effect: when their youngest child reaches 19, secondary-educated women who raised their children as lone mothers have accumulated 37% more assets and high school graduates 9.5%. These are sizable effects on savings that counteract the effect of experience, leading to a decrease in the employment rate of this group. The overall effect on lifetime disposable income is positive—a combined effect of the transfer and the increased work effort during child-rearing years.

The inability of tax credits to cause longer-term attachment to the labor market for lower education groups—beyond the time where they are offered—is consistent with the results by Card and Hyslop (2005). They found that the Canadian Self-Sufficiency Program, which provided incentives for welfare mothers to work for a limited period, did not improve their employment after the program ended and did little to increase their wages.

Finally, tax credits lead to a decrease in savings in response to the increase in publicly provided insurance (Table XV, rows 9–11). Despite the decrease in disposable income and an increase in the basic tax rate of 0.9 pp to fund the program (Table XV, rows 12 and 14), the overall welfare gain following from this revenue-neutral reform is equivalent to a 0.82% increase in consumption overall. This shows the effects of increased insurance. From the table, we see
that most of this gain is concentrated among the lowest education group, for whom disposable income also decreases the most on average.51

The opposing incentive effects produced by the U.K. tax credit system, depending on whether a woman is married or not, raises the question as to whether they should better be assessed based on individual income, integrated with the regular individualized income tax system, or as they are now, that is, assessed on family income. Such a reform is potentially expensive because many women married to well-paid partners will become entitled to the benefit, but it improves the incentive structure and preserves the principle of individual taxation. We consider this reform, funded by increasing the basic tax rate, and contrast it to the 2002 system where tax credits are assessed at the family level.

The results are presented in Table XVII. This reform increases the employment of married mothers because her earnings no longer reduce family entitlement; indeed, she has to work to obtain the credit. However, in the new long-run steady state, single mothers work less. As before, this response can only be understood in a dynamic context. The increased employment when married reduces the human capital depreciation. However, tax credits in the U.K. are also effectively a tax on full-time work, which declines substantially compared to baseline for the same group of mothers (row 2, Table XVII). Because of the part-time penalty on wages, this leads to a counteracting reduction in human capital accumulation, on average. Thus, the net effect is a decline in wages by 1.3% at the point when some become single mothers.52 The increased benefits while married also increases saving, so that when women become lone mothers their assets are up by 18% relative to baseline.53 In addition, the tax rate has increased substantially to fund this reform (row 14, Table XVII). The combined effects of the resulting lower net wages and increased savings produces the decline in employment for single mothers. By the time they are no longer eligible for benefits because their children are grown, their wages have declined substantially (see row 8, Table XVII), taxes are higher, and assets for

51 The value of consumption compensation is the solution to the equation

$$EV_0 = E \sum_t \beta^{t-0} \left[\frac{(1-r)c_{1a}/n_{1a}}{\mu} \exp \left\{ U(l_{1a}, X_{1a}) + \theta(l_{1a}) \right\} \right],$$

where the index 0/1 stands for the pre/post-reform solutions and the value function is evaluated at different stages in life for different rows. The equation can be solved for \(r \), yielding

$$r = 1 - \left(\frac{EV_0}{EV_1} \right)^{1/\mu}.$$

52 The effect on wages is larger for university graduates (−2.4%) than for secondary and high-school educated women (−0.2% and −1.7%, respectively). This is because the former have higher returns to experience.

53 The corresponding effects on assets by education are +30%, +16%, and +6% for secondary, high-school, and university graduates, respectively.
TABLE XVII

EFFECTS OF ASSESSING TAX CREDITS AT THE INDIVIDUAL LEVEL—INTEGRATED WITH THE
2002 TAX AND BENEFIT SYSTEM

<table>
<thead>
<tr>
<th>Impact on Employment: Mothers of Dependent Children (0–18)</th>
<th>Secondary Education Choice</th>
<th>High School Education Choice</th>
<th>University Education Choice</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Single</td>
<td>Married</td>
<td>Single</td>
</tr>
<tr>
<td>(1) All (pp)</td>
<td>-3.7</td>
<td>29.6</td>
<td>-4.3</td>
</tr>
<tr>
<td>(2) Full-time (pp)</td>
<td>-6.3</td>
<td>-16.2</td>
<td>-7.3</td>
</tr>
<tr>
<td>(3) Part-time (pp)</td>
<td>2.6</td>
<td>45.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Impact on Employment: Mothers of Adult Children (19+)</td>
<td>-2.8</td>
<td>-2.8</td>
<td>-3.7</td>
</tr>
<tr>
<td>(4) All (pp)</td>
<td>-8.7</td>
<td>-6.6</td>
<td>-7.3</td>
</tr>
<tr>
<td>(5) Full-time (pp)</td>
<td>5.1</td>
<td>3.7</td>
<td>3.6</td>
</tr>
<tr>
<td>Impact on Education and Wages</td>
<td>1.97</td>
<td>-0.82</td>
<td>1.15</td>
</tr>
<tr>
<td>(7) Education (pp)</td>
<td>-3.7</td>
<td>-5.7</td>
<td>-5.9</td>
</tr>
<tr>
<td>(8) Wages: mothers of child aged 19+ (%)</td>
<td>-12.4</td>
<td>-11.5</td>
<td>-11.4</td>
</tr>
<tr>
<td>(9) No children</td>
<td>21.3</td>
<td>8.3</td>
<td>-2.8</td>
</tr>
<tr>
<td>(10) Dependent child (0–18)</td>
<td>6.8</td>
<td>0.0</td>
<td>-6.4</td>
</tr>
<tr>
<td>(11) Adult child (19+)</td>
<td>0.22</td>
<td>-3.51</td>
<td>-6.74</td>
</tr>
</tbody>
</table>

*Adjustment in the basic rate of Income Tax to fund reform: +8.5 pp

The lowest education group remain 6.8% higher than at baseline; as a result, they continue having lower employment relative to the case of family assessed benefits, given the current design.

The reform also discourages education and leads to a decline in post-compulsory schooling of nearly 2 percentage points. Overall, lifetime disposable income declines for all but the lowest education group, driven also by the large increase in taxation required to fund this new system. The end result from individualizing tax credits is an overall decline in welfare equivalent to 1.2% of consumption, with only the lowest education group being better off, in part because of redistribution but also from increased insurance. Thus, ignoring family income when defining eligibility for benefits can be very costly and lead to unintended effects on incentives in the longer run.
8.2. Comparing Alternative Policies

Broadly speaking, the model we have developed here can be the basis for an optimal design of taxes and benefits in a dynamic economy with education choice as analyzed, for example, by Stantcheva (2015). While this is an ambitious and interesting exercise, it is beyond the scope of this paper. Here, we consider how local departures from the existing system are likely to affect welfare. The result will depend on the interplay between work incentives and preferences for insurance and income. To illustrate the extent of insurance implicit in the current system, which is the point of departure, we show in Figure 10 the amount of life-cycle consumption that an individual is willing to give up (positive or negative) to keep the status quo, as a function of changes in the variance of wages. Women with the lowest level of education are the least sensitive to changes in risk, which reflects the relatively high level of insurance already offered to those at the lower end of the pay distribution. The other two groups seem less well insured and they value declines in risk much more and to a similar extent.

We now consider the welfare implications of expanding tax credits further, as opposed to increasing the income support program or cutting taxes. To do this, we implement changes to each on the 2002 tax and benefit system, all costing 0.5% of baseline pre-tax earnings. Results are presented in Table XVIII.

We allow for responses in education, labor supply, and savings. The clear winner among the programs is tax credits, where, on average, individuals are willing to pay 1.09% of consumption for the additional benefit (row 4). The second preferred alternative is a tax cut, with a willingness to pay of 0.80% of
TABLE XVIII
IMPACTS OF AN EXOGENOUS INCREASE IN PUBLIC SPENDING DISTRIBUTED THROUGH ALTERNATIVE ROUTES

<table>
<thead>
<tr>
<th>Basic Tax Rate</th>
<th>Tax Credits Award</th>
<th>Income Support Award</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sec</td>
<td>HS</td>
</tr>
<tr>
<td>(1) Lifetime gross earnings</td>
<td>0.19</td>
<td>0.13</td>
</tr>
<tr>
<td>(2) Lifetime disposable income</td>
<td>0.68</td>
<td>0.77</td>
</tr>
<tr>
<td>(3) Welfare (post-education)</td>
<td>0.48</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Overall Effects on Welfare

| (4) Pre-education | 0.80 | 1.09 | 0.51 |

\(^a \) % changes. Educational classification is based on pre-reform choices. Welfare, measured in % consumption change to which it is equivalent. The values measure the impact of exogenously increasing public spending by 0.5% of total gross earnings and distributing it through a drop in the basic tax rate of 0.95 percentage points, an increase in the tax credits maximum award of £22.2 per week, and an increase in the IS award of £10.0 per week. All comparisons are against the 2002 tax and benefits system.

consumption. This is despite the fact that both gross and disposable incomes are higher following a tax cut, and can be partly attributed to the better targeted insurance of tax credits (rows 1 and 2). Tax cuts are also the only policy that improves the incentives to invest in education, but the effect is small, with the share of university graduates increasing by 0.1 percentage points. The least preferred program is income support, with a willingness to pay of 0.51%: while it offers good insurance at the bottom, it is associated with a large decline in gross and disposable income. Thus, in all cases, the distortionary nature of income support, with its 100% marginal tax rate, makes it the least preferable program despite its basic insurance property (it provides a strong income floor).

All education groups prefer the tax credits changes (row 3). This is true even for university graduates, who lose 0.2% of their disposable income under tax credits due to a shift towards lower education (row 2). The second best option for both university and high-school educated women is tax cuts. But secondary-educated women prefer an increase in income support to tax cuts, as their generally lower earnings make them less likely to benefit from a lower tax rate.

9. CONCLUSIONS

Tax and welfare policies that affect employment decisions may change individual careers by affecting the accumulation of human capital, including education decisions, as well as savings. Evaluating such policies requires us to take these features into account, ultimately informing the design of policies that are welfare-improving.
In this paper, we use reforms to the tax and welfare system and the way they impact different demographic groups to establish that they cause changes in both labor supply and educational decisions. We then develop a dynamic life-cycle model of women’s labor supply, human capital formation (including both education choice and work experience), and savings. We estimate this model on a long household panel from the U.K. and we use numerous tax and welfare reforms as a source of exogenous variation. We pay particular attention to the detailed modeling of the tax and welfare system and the way it was reformed.

Using the model, we estimate Frisch and Marshallian labor supply elasticities, at both the extensive and the intensive margin (part-time versus full-time), and we show how they vary over the life-cycle and by household structure. Elasticities are generally high, but below 1, except for single mothers with preschool children, where they exceed 1, underlying the strong responses of this group to work incentives.

We then use the model to evaluate the overall impact of the U.K. tax credits implemented under the 1999–2002 WFTC reform. A key substantive result is that tax credits, while inducing many low-education mothers into work, do not affect their wages and employment in the long term, beyond the time they receive the subsidy. In part, this is because their design encourages part-time work, which we demonstrate has low value in terms of human capital accumulation. It is also due to the low return to experience that we find for lower education women. Tax credits also discourage educational attainment. However, they are the preferred way of providing some insurance because the moral hazard element is low due to the built-in work incentive. This is to be contrasted with income support, with an associated 100% marginal tax rate, which has a strong moral hazard effect and is thus less effective in improving overall welfare.

REFERENCES

University College London, Gower Street, London WC1E 6BT, U.K. and Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, U.K.; r.blundell@ucl.ac.uk,

Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, U.K., CEF-UP University of Porto, Rua Dr Roberto Frias, 4200-464 Porto, Portugal, and IZA; monica_d@ifs.org.uk,

Yale University, New Haven, CT 06520, U.S.A., Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, U.K., IZA, and NBER; c.meghir@yale.edu,

and

Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, U.K. and University College London, Gower Street, London WC1E 6BT, U.K.; j.shaw@ifs.org.uk.

Co-editor Daron Acemoglu handled this manuscript.

Manuscript received April, 2013; final revision received February, 2016.