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1 Conjoined Proper Names
Proper names denote entities, or equivalently, their semantic type is e. What do conjoined
proper names like Alice and Bob denote? The phrase Alice and Bob is made of up three
components, namely, two proper names—Alice and Bob—and and. The proper names
denote entities. What does and denote?

1.1 Generalised Conjunction

Let us start with the conjunction ^ in Propositional Logic. If you remember its truth-table,
(p ^ q) is true iff both p and q are true. Here, p and q denote truth-values.

It seems that English and expresses something similar in sentences like the following,
where and conjoins two (declarative) sentences.

(1) [S Anna is American ] and [S Ben is British ]

Let us assume the following structure.

(2) S

S

Britishis

Ben

and

S

Americanis

Anna

It is easy to see that the semantic type of and here needs to be xt, xt, tyy. Adopting the
analysis of ^ above, we arrive at the following meaning:

(3)
0

andxt,xt,tyy

8M
= [λu P Dt .[λv P Dt . 1 iff u = 1 and v = 1]]

But and can also conjoin smaller constituents. For instance in (4a), VPs—which are of type
xe, ty—are conjoined, and in (4b), transitive verbs—which are of type xe, xe, tyy—are con-
joined.

(4) a. Chris [[VP drank beer ] and [VP danced ]]
b. Daniel [[V made ] and [V ate]] this cake all by himself.

In (4a), and takes two VP-denotations—which are of type xe, ty—and produces another type-
xe, ty function. In (4b), it takes two transitive verbs—which are of type xe, xe, tyy—and pro-
duces another type-xe, xe, tyy function. These uses of and can be analyzed as follows. (Re-
call the shorthand: et = xe, ty)
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(5) a.
0

andxet,xet,etyy

8M
= [λf P Det .[λg P Det . λx P De . 1 iff f (x) = 1 and g(x) = 1]]

b.
0

andxxe,ety,xxe,ety,xe,etyyy

8M

= [λf P Dxe,ety.[λg P Dxe,ety. λx P De .λy P De . 1 iff f (x)(y) = 1 and g(x)(y) = 1]]

In some sense the semantic functionof and is the same in all these cases: it takes two things
of the same semantic type, and require both conjuncts to be true when all arguments are
saturated (for andxt,xt,tyy, there’s no argument). There’s actually a general way to state the
meaning of and that encompasses all the above cases.

The general semantics for and—or generalised conjunction—makes use of the idea of ‘se-
mantic types that end in t ’, introduced at the end of the lecture notes for Week 4. The
definition is repeated here:

(6) A semantic type τ ends in t if
a. τ = t or
b. τ = xσ1,σ2y such that σ1 is a semantic type and σ2 a semantic type that ends

in t.

Semantic types like t, xe, ty, xe, xe, tyy, xxe, ty , ty, etc. end in t, while semantic types like e,
xet, ey, xe, xe, eyy, etc. do not (they end in e).

The meaning of and can be stated for any semantic type σ that ends in t as follows:

(7) For any modelM ,

vandw
M = λx P Dσ.λy P Dσ.

#

1 iff x = 1 and y = 1 if σ = t

λz P Dτ1 . vandw
M(x(z))(y(z)) if σ = xτ1, τ2y

This meaning is recursive in the sense that vandw
M is mentioned in the definition of itself.

However, it’s not circular, since in all cases, the computation of meaning ends in the first
clause without causing an infinite regress. To see this, let’s consider a subcase where
σ = xe, xe, tyy.

Then, both x and y will be of type xe, xe, tyy, i.e. the type of transitive predicates. Since σ ‰

t, we have to use the second clause of the definition, and τ1 will be e, because σ = xe, τ2y
(where τ2 = xe, ty). This means z will be an entity.

Now comes the recursion. We apply vandw
M to x(z), and then to y(z), as stated in the

second clause of (7). Notice that the argument of vandw
M , x(z), will be a function of type

xe, ty, given the semantic types of x and z , and similarly y(z)will be a function of type xe, ty.
So this time, vandw

M will conjoin two functions of type xe, ty, i.e. σ = xe, ty. Since σ ‰ t, we
are again in the second clause, but with a simpler type. Since σ = xe, ty, z will be an entity
as before, but x(z) and y(z) will now be truth-values. In the next cycle, then, vandw

M will
take two truth-values, so σ = t, and we are in the first clause, and there will be no more
recursion.

This whole computation can be illustrated in the following derivation. In each line, vandw
M

2



is expanded according to (7), with renaming of variables to avoid confusion.

vandw
M = [λf P Dxe,ety.λg P Dxe,ety.λz P De . vandw

M(x(z))(y(z))]

= [λf P Dxe,ety.λg P Dxe,ety.λz P De .

[λP P Dxe,ty.λQ P Dxe,ty. λw P De . vandw
M(P(w))(Q(w))](x(z))(y(z))]

= [λf P Dxe,ety.λg P Dxe,ety.λz P De .

[λP P Dxe,ty.λQ P Dxe,ty. λw P De .

[λu P Dt .λv P Dt . 1 iff u = 1 and v = 1](P(w))(Q(w))](x(z))(y(z))]

Now in the final line, there’s nomore occurrence of vandw
M and λ-conversion will yield the

same function as in (5b).

1.2 Proper Names as Generalised Quantifiers

Now coming back to Alice and Bob, the conjuncts here are proper names, and by as-
sumption proper names are of type e, so generalised conjunction cannot apply to them.
Fortunately, we can reanalyse proper names as generalised quantifiers, which are func-
tions of type xet, ty and whose semantic type ends in t, so generalised conjunction will be
able to apply to them.

Weanalysed thedenotations of proper names as entities, because they are used to refer to
specific entities. Interestingly, there is a certain relation between entities and generalised
quantifiers of a specific kind. Let us take Alice as an example to illustrate it.

According to the type-e analysis, the proper name Alice denotes a specific entity/person.
Let’s call that person a. In a simple sentence of the formAlice VP, the VP denotes a function
of type xe, ty, which takes a and returns a truth-value. In the generalised quantifier analysis,
vAlicew

M will be a generalised quantifier of type xet, ty, so it will take the VP-denotation.
What does it do to this function of type xe, ty? It checks which truth-value it returns when it
applies to a. That is, the generalized quantifier denotation of Alice looks like (8). vAliceew

M

is its type-e denotation.

(8) For any modelM ,
0

Alicexet,ty

8M
=

[
λf P Dxe,ty. 1 iff f (vAliceew

M) = 1
]

As you can verify Alicee VP and Alicexet,ty VPwill always have the same truth-value. It’s also
instructive to see this generalised quantifier as a set. Since it is a function of type xet, ty, it
characterises a set, namely, the set of functions of type xe, ty that returns 1 when applied
to vAliceew

M , the entity the proper name Alice refers to in M . One can see this as the set
of properties that this entity has. For instance, of vsmokeswM is in this set, it means this
person smokes. If vlikes dogswM is not in this set, it means this person does not like dog.

To put it differently, we can regard entities—which are of type e—and the set of properties
they have—which is a set of type-xe, ty functions as the ‘same thing’. Recall the discussion
on characteristic functions. There, wediscussed the one-to-one correspondencebetween
functions of type xσ, ty and sets, which allows us to see them as representing the ‘same
thing’. The correspondence between e and xet, ty allows us to treat them as the ‘same
thing’ as well. More specifically, any entity a can be ‘lifted’ to a generalised quantifier
using the following recipe:
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(9) a ÞÑ [λf P Dxe,ty. 1 iff f (a) = 1]

The other direction ismore complicated, but generally, a generalised quantifierQ created
by (9) can be mapped back to a by the following operation:

(10) Q ÞÑ the entity a such that for each f such that Q(f ) = 1, f (a) = 1

It is easier to understand this in terms of sets. set(Q) is a set of type xe, ty functions, all of
which map a to 1, and it’s the unique set that contains all such functions.

set(Q) = t f | f P Dxe,ty and f (a) = 1 u

In fact, there is only one entity that these functions all map to 1, namely a, because if there
were another such entity, say b, then a and b must have the same set of properties. How-
ever, there are properties like ‘identical to a’, which two entities cannot have simultane-
ously. In other words, the domain of functions of type xe, ty is rich enough to distinguish
any two distinct entities x and y—there must be at least one function f P Dxe,ty such that
f (x) ‰ f (y). This must be the case, because Dxe,ty contains all functions from entities to
truth-values.

It should be noted that the ‘lowering’ operation in (10) cannot apply to all generalised
quantifiers. That is, there are generalised quantifiers that don’t correspond to entities.
For instance, take somebody. In terms of sets, it will denote:

set(vsomebodyw
M) = t f | f P Dxe,ty and f (x) = 1 for some entity x P De u

In the general case there is no unique entity that all these functionsmap to 1. That is to say,
there aremore generalised quantifiers than there are entities. And the lowering operation
in (10) is only defined for those generalised quantifiers Q that have a unique entity x such
that for each f P set(Q), f (x) = 1 and in that case Q is mapped to that unique x .

1.3 Conjoined Generalised Quantifiers

Now we reanalysed proper names as generalised quantifiers of type xet, ty, and gen-
eralised conjunction can apply to two generalised quantifiers, as in (11). In this case,
σ = xet, ty, so z will be of type xe, ty.

(11)

4

6

6

6

6

6

6

6

5

Bobxet,tyand

Alicexet,ty

<

>

>

>

>

>

>

>

=

M

= vandw
M
(

0

Bobxet,ty

8M
)(

0

Alicexet,ty

8M
)

= λz P Dxe,ty. vandw
M
(

0

Bobxet,ty

8M
(z)

)(
0

Alicexet,ty

8M
(z)

)
= λz P Dxe,ty. 1 iff

0

Bobxet,ty

8M
(z) = 1 and

0

Alicexet,ty

8M
(z) = 1

= λz P Dxe,ty. 1 iff z
(

vBobew
M
)
= 1 and z

(
vAliceew

M
)
= 1

This is a kind of meaning that can apply to a VP-denotation. Essentially, it will say that the
VP-denotation holds both of Bob and Alice. This seems like a good analyses for sentences
like (12).
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(12) a. Alice and Bob sing well.
b. Alice and Bob are British.
c. Alice and Bob like spinach.

The generalised conjunction analysis says that these sentences should mean the same
thing as (13).

(13) a. Alice sings well and Bob sings well.
b. Alice is British and Bob is British.
c. Alice likes spinach and Bob likes spinach.

However, a problem arises with the following types of examples.

(14) a. Alice and Bob met.
b. Alice and Bob live together.
c. Alice and Bob are a couple.

For example, the generalised conjunction analysis will say of (14a) that it’ll be true iff
vmetwM

(
vBobew

M
)
= 1 and vmetwM

(
vAliceew

M
)
= 1, but what does this mean? The fol-

lowing sentences are all unacceptable.

(15) a. #Alice met and Bob met.
b. #Alice lives together and Bob lives together.
c. #Alice is a couple and and Bob is a couple.

So the generalised conjunction analysis works for predicates like smoke, are British, and
like spinach, but not for predicates likemet, live together, and are a couple.

2 Three Types of Predicates

What are the differences between the above two types of predicates? Intuitively, the for-
mer type of predicates describe properties of each entity. For example, the meaning of
like spinach is inherently about one person. On the other hand, the latter type of predi-
cates like live together are inherently about groups of people. It doesn’t make sense to
ask about one person whether this person lives together. The former group of predicates
are called distributive predicates and the latter group of predicates collective predicates.

We can define distributive predicates as those predicates that support the distributivity
inference. (We speak of VPs here, but we can generalise this to other syntactic categories.)

(16) A VP is said to have a distributivity inference if the following holds:
‘Alice and Bob VP’ entails and is entailed by ‘Alice VP and Bob VP’.

Since mutual entailment amounts to truth-conditional identity, we can say that for dis-
tributive predicates, ‘Alice and Bob VP’ and ‘Alice VP and Bob VP’ are truth-conditionally
synonymous.

For example fell asleep has a distributivity inference, because the following two sentences
are synonymous.
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(17) a. Alice and Bob fell asleep.
b. Alice fell asleep and Bob fell asleep.

Collectivepredicates, on theother hand, donot validate thedistributive inference in either
direction. Generally the right-hand side is simply unacceptable, so it doesn’t even make
sense to talk about entailment here. For example, look alike does not have a distributive
inference.

(18) a. John and Mary look alike.
b. John looks alike and Mary looks alike.

The generalised conjunction analysis introduced in the previous section only works for
distributive predicates, because it is made to derive the distributivity inference.

It should also be noted that there are VPs that are neither distributive nor collective. Here
is one example.

(19) John and Mary bought a house.

This type of predicates validate the entailment in one direction.

(20) a. ‘John and Mary bought a house’ does not entail ‘John bought a house and
Mary bought a house’.

b. ‘John and Mary bought a house’ is entailed by ‘John bought a house and
Mary bought a house’.

It is easy to see that (20b) is true. For (20a), consider a situation where John andMary, as a
couple, bought a house by splitting the cost. Then it’s not true that John bought a house
(he did with Mary, but not on his own), and it’s not true that Mary bought a house (she did
with John, but not on her own). (Of course, there are situations where both sentences are
true, namely situations where John andMary each bought a house, but this is not enough
to validate an entailment.)

Predicates like bought a house that only validate the distributivity inference in one direc-
tion are calledmixed predicates.

Since the analysis in the previous section always derives the distributivity inference, mixed
predicates are also problematic.

To summarise the discussion so far, we have the following three types of predicates.

• Distributive predicates (predicates that validate the distributivity inference)
– ‘John and Mary VP’ ô ‘John VP and Mary VP’

• Collective predicates (generally ‘John VP and Mary VP’ is unacceptable)
– ‘John and Mary VP’ œ *‘John VP and Mary VP’
– ‘John and Mary VP’ ö *‘John VP and Mary VP’

• Mixed predicates: (predicates that only validate the entailment in one direction)
– ‘John and Mary VP’ œ ‘John VP and Mary VP’
– ‘John and Mary VP’ ð ‘John VP and Mary VP’
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3 Plural Individuals as ‘I(ndividual)-Sums’

How do we account for collective and mixed predicates? We follow the following idea:
phrases like Alice and Bob denote plural entities and the meaning of these predicates is
inherently about such entities and cannot be reduced to predication of singular entities.

What are plural entities? One way to think about them is that they are entities just like
normal entities like Alice, Bob, my laptop, etc. but unlike these ‘simple’ entities, they are
composed of multiple entities. For example, the plural entity denoted by Alice and Bob
will be an entity distinct from Alice and from Bob, but it has Alice and Bob as its parts.

More formally, we model plural individuals as individual-sums, or i-sums for short.

• Normal entities like Alice and Bob are from now on called singular entities (alt.: atomic
individuals).

• The i-sum consisting of Alice and Bob is represented as ‘Alice‘Bob’.

Here ‘‘’ is the i-sum forming operator, and it has the following properties. For any entities
(singular or plural) x , y , and z ,

• x ‘ y = y ‘ x (Commutativity)
• x ‘ (y ‘ z) = (x ‘ y) ‘ z (Associativity)
• x ‘ x = x (Idempotence)

Since we have associativity, we often omit parentheses. That is, a ‘ (b ‘ c) and (a ‘ b) ‘ c
represent the same entity.

Nowwe enrich the domain of entitiesDe by ‘closing it with‘’. This means the following. D,
the set of entities specified by the model M , is the set of singular entities. We have been
assuming so far that De = D, but from now on, De will be assumed to contain also plural
entities, in addition to singular entities. That is, for any two members x and y in De , we will
also have x ‘ y in De (this is what it means to ‘close’ De with ‘, i.e. you have all possible
plural entities in De based on D).

(21) a. Every member of D is a member of De (i.e. D is a subset of De)
b. Whenever x and y are members of De , x ‘ y will also be a member of De .
c. Nothing else is a member of De .

For convenience, we will refer to the set of singular entities as SG , which is identical to D,
and the set of plural entities as PL. So De = SG Y PL. Here’s a small example model with
D = t a, b, c u.

• De = t a, b, c , a ‘ b, a ‘ c , b ‘ c , a ‘ b ‘ c u

• SG = t a, b, c u

• PL = t a ‘ b, a ‘ c , b ‘ c , a ‘ b ‘ c u
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a ‘ b ‘ c

a ‘ b a ‘ c b ‘ c

a b c

plural entities

singular entities

Plural entities have other entities as parts. We denote the ‘part-of’ relation by Ď. As the
horizontal line in this symbol indicates, we take every entity, singular or plural, to be trivially
a part of itself. But only plural entities have non-trivial parts. For example:

(22) a. a ‘ b ‘ c Ď a ‘ b ‘ c
b. a ‘ b Ď a ‘ b ‘ c
c. a ‘ c Ď a ‘ b ‘ c
d. a Ď a ‘ b ‘ c
e. a Ď a ‘ c

(23) a. a Ę b ‘ c
b. a ‘ b Ę a ‘ c

The part-of relation is represented in the above diagram by the lines.

We assume that conjoined proper names denote plural entities. For example, for some
specific modelM2:

(24) a. vAlicew
M2 = a

b. vBobw
M2 = b

Then, we have:

(25) vAlice and Bobw
M2 = a ‘ b

This use of and (call it andxe,eey) therefore simply denotes ‘ and is sometimes called ‘non-
Boolean conjunction’. (The function below is the same thing as ‘‘’, but we put the λ’s here
to make the types of the arguments explicit)

(26) For any modelM ,
0

andxe,eey

8M
= λx P De .λy P De . x ‘ y

In this setting collective predicates can be understood as simply predicates that are only
true of plural entities. For example, suppose that inM1:

(27) a. vBobw
M1 = b

b. vChriswM1 = c
c. vDanielwM1 = d

Suppose also that in this model, b and c look alike, but b and d do not. Then, we have:

(28) a. vlook alikew
M1(vBob and ChriswM1) = vlook alikew

M1(b ‘ c) = 1
b. vlook alikew

M1(vBob and DanielwM1) = vlook alikew
M1(b ‘ d) = 0

By assumption, collective predicates are never true of singular entities. Thus, sentences
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likeBob looks alike is simply always false. Onemight argue that it is not only false but is also
ungrammatical. Indeed, it feels a bit different fromwhen Bob andDaniel look alike is false.
There are several ways to capture this intuition. For example, sentences like Bob looks
alike are not only simply false but also violate the presupposition of the predicate look(s)
alike that the subject needs to be a plural entity. Such presuppositions on arguments are
very common. For example, is upset presupposes that the subject is a sentient entity,
and sentences like My bike is upset is either unacceptable or gets an anthropomorphic
interpretation. Another analytical possibility here is that Bob looks alike, unlike Bob and
Daniel look alike, is false in all possible models, and our semantic intuitions reflect this
difference. We leave this issue open here.

What aboutmixed predicates? Mixed predicates are those predicates that are compatible
with both singular and plural entities.

Suppose that in M3, Alice refers to entity a, who bought a house alone, and Bob refers
to entity b, who also bought a house alone, and these two are the only houses that were
bought. Then, we have:

(29) a. vAlice bought a housew
M3 = vbought a housew

M3(a) = 1
b. vBob bought a housew

M3 = vbought a housew
M3(b) = 1

c. vAlice and Bob bought a housew
M3 = vbought a housew

M3(a ‘ b) = 0

Suppose now that in M4, Alice refers to entity c and Bob refers to entity d , and c and d
together bought a house, and that was the only house-buying in this model. Then:

(30) a. vAlice bought a housew
M4 = vbought a housew

M4(c) = 0
b. vBob bought a housew

M4 = vbought a housew
M4(d) = 0

c. vAlice and Bob bought a housew
M4 = vbought a housew

M4(c ‘ d) = 1

This implies that there shouldn’t be no entailment between (31a) and (31b) in either di-
rection.

(31) a. Alice bought a house and Bob bought a house.
b. Alice and Bob bought a house.

However, recall that there actually is an entailment from (31a) to (31b). This is a problem,
because our semantics so far says that (31b) is only true if Alice and Bob bought a house
together.

A related issue ariseswith distributive predicates. Given theirmeaning, wewant to say that
they can only be true of singular entities. For example, given that Alice and Bob denotes a
plural entity, vfell asleepw

M (vAlice and Bobw
M ) should always be false in any modelM . But

the following sentence is not always false.

(32) Alice and Bob fell asleep.

How do we account for such sentences?

One possibility is to assume that and is ambiguous between generalized conjunction and
‘. Since the generalized conjunction does derive the distributivity inference, it will yield
the correct reading with a distributive predicate, while the‘-reading of andwould remain
infelicitous. For mixed predicates, both generalized conjunction and ‘ are compatible,
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but they yield different readings. That is with generalized conjunction, (31a) and (31b)
will be synonymous, but not with ‘. Notice that this correctly accounts for the one-way
entailment. That is, whenever (31a) is true, the generalized conjunction reading of (31b)
will be true, so in this direction, the entailment is valid. However, since (31b) is ambiguous
and only one of the readings entails (31a), the entailment in this direction is not valid.

However, this ambiguity-based account has two empirical problems. The first problem is
illustrated by (33).

(33) Andrew and Ben met in a pub and had beer.

This sentence contains a conjoined VP, where the first VP is a collective predicate met in
a pub and the second VP is a distributive predicate had beer. Then, under either reading
of and, there should be a problem. However, the sentence is still acceptable. Secondly,
distributive predicates are generally compatible with plural expressions, even those that
do not contain and, as shown in (34).

(34) a. They fell asleep.
b. The children fell asleep.

The plural definite subjects of these sentences presumably refer to plural entities, and as
such it seems implausible to analysis to them as conjoined generalized quantifiers. The
same point can be made with the one-way entailment of mixed predicates. Suppose that
they in (35) refers to Andrew and Ben. Then, (35b) entails (35a) but not vice versa.

(35) a. They bought a house.
b. Andrew bought a house and Ben bought a house.

4 Distributivity

In this section, we will introduce an idea that solves both of the problems above, namely
the idea of a distributivity operator. It is instructive first to consider the following sentence.

(36) Alice and Bob each bought a house.

This sentence is in fact synonymous with (37).

(37) Alice bought a house and Bob bought a house.

That is to say, unlike the version of (36) without each, it is no longer true in a context where
Alice and Bob bought a house together. In a way, the word each here disambiguates the
sentence.

What is themeaningof each? A standard analysis is that it denotes adistributivity operator.
The idea is that in (36), for example, the distributivity operator applies the denotation of
bought a house separately to each atomic part of vAlice and Bobw

M .

(38) For anymodelM , veachw
M = λfxe,ty.λx P PL.1 iff for each y P SG such that y Ď x , f (y) = 1

The variable y here ranges over singular entities (i.e. members of SG ) that comprise the
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plural entity x , and the predicate f is applied to each y . This accounts for the meaning of
(36) as follows.

(39)
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= 1 iff vAlicew
M bought a house inM and vBobw

M bought a house inM

We extend this idea to (40), which does not contain each.
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(40) Alice and Bob bought a house.

That is, we assume that a covert distributivity operator is optionally present in this sen-
tence, making the sentence ambiguous. When it is present, the sentence has the same
meaning as (36), and it is not present, it only has the ‘collective construal’, which is true
just incase Alice and Bob bought a house together. Let us denote the covert distributivity
operator by∆. Thus, we assume (40) to be ambiguous between the following two parses
with two different readings:

(41) a. Alice and Bob ∆ bought a house. ñ Distributive reading
b. Alice and Bob bought a house. ñ Collective reading

Now we account for the entailment from (42a) to (42b).

(42) a. Alice bought a house and Bob bought a house.
b. Alice and Bob bought a house.

That is, whenever (42a) is true, there is a parsing of (42b) that is true, namely (41a). In fact,
the entailment goes through in the other direction too once we fix our parsing to (41a),
as (41a) is synonymous with (42a) after all. That (42b) also has a parse (41b) without ∆,
however, makes it look as if the entailment is only one way.

Turning now to distributive predicates, we assume that they are only true of singular enti-
ties. Consequently, when the subject is plural, ∆ must be present to make the sentence
acceptable.

(43) a. Alice and Bob ∆ fell asleep.
b. *Alice and Bob fell asleep.

Finally,∆ simply cannot apply to a collective predicate, because, by assumption, a collec-
tive predicate cannot be true of singular entities.

(44) a. Alice and Bob look a like.
b. *Alice and Bob ∆ look alike.

5 Further Readings

Bennett (1974) and Hausser (1974) are the earliest analyses of plurality in the framework
of Montague Grammar. These authors analyse plural entities as sets, rather than i-sums.
But such theories require a lot of redundancy in the lexicon for predicates that can apply
to both singular and plural entities. For this reason, Scha (1981) proposes to treat singular
and plural entities on a par, i.e. they are all sets. This is easy to do, the domain of singular
entities and the domain of singleton sets are obviously isomorphic.

While these authors treat plural entities as sets (other authors that do so include Landman
1989a,b, 2000, Schwarzschild 1996, Winter 2001), Link (1983) advocates a mereological
approachwhere the ‘part-of’ relation is taken tobe theprimitive and atomic entities are not
necessarily required (see Champollion & Krifka 2016 for a linguistically-oriented overview
of mereology; Varzi 2015 is also an accessible survey article on this topic). Link makes use
of this ontology for the semantics of mass nouns. We will discuss mass nouns in Week 8.
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The crucial difference between the set approach and the i-sum approach is that in the set
approach, we can talk about sets of sets of entities, sets of sets of sets of entities, sets
of sets of sets of sets of entities, etc., while in the i-sum approach, the structure of plural
entities is ‘flat’, so-to-speak. There is a lot of discussion on whether such extra structure is
necessary to account for the meanings of plural nouns phrases in natural language. If you
are interested, read Landman (1989a,b) and Schwarzschild (1996), among others.

However, if we are only interested in sets of entities, the set approach and the i-sum ap-
proach are essentially the same, because the domain of sets of entities and the domain of
i-sums are isomorphic.

Winter (2001:Ch.5) (a shorter version appeared asWinter 2002) discusses a different clas-
sification of predicates than the three-way classification we discussed above. His idea is
motivated by plural vs. singular quantificational phrases, which we will discuss next week.

The distributivity operator∆was originally put forward by Link (1987) and Roberts (1987).
Scha (1981) proposed to build in the distributivity to the lexical entry of predicates, but
there are cases involving distributivity at a non-lexical level. See also Landman (2000)
and Winter (2001) for discussion on this. Schwarzschild (1996) discusses cases involving
‘intermediate distributivity’, which can be understood as distributivity over non-singular
parts.
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