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1 Determiners

From the above analysis of quantificational DPs as generalized quantifiers, we can deduce
the denotations of determiners. Recall that the denotations of nouns like linguist are of
type xe, ty, so we have the following semantic types.

t

xe, ty

smiled

xet, ty

linguistxe,tyno???

What is the semantic type of ‘no’ here? There are two options:

• We can apply Functional Application, if vnow
M is an entity, so is of type e, but the output

won’t be of type xet, ty. so this is not a viable option.
• The other possibility is that vnow

M is a function that takes vlinguistwM and returns the
generalized quantifier vno linguistwM , i.e.

(1) vno linguistwM = vnow
M(vlinguistwM)

This means that vnow
M is of type xet, xet, tyy.

Now, let’s figure out which function of type xet, xet, tyy it is. We already know vno linguistwM
and vlinguistwM . Substituting these in the above equation (1), we get:

[λf P Dxe,ty. 1 iff for no linguist x inM , f (x) = 1] = vnow
M(vlinguistwM)

= vnow
M([λx P De . 1 iff x is a linguist inM ])

In words, vnow
M takes the type-xe, ty function [λx P De . 1 iff x is a linguist inM ] and returns

the generalized quantifier on the left of=. Abstracting over this particular type-xe, ty func-
tion, we get the following as the denotation of ‘no’.

(2) For any modelM ,
vnow

M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff for no individual x such that g(x) = 1, f (x) = 1]]

Here g is the NP-denotation and f is the VP-denotation. g determines which individuals
the generalized quantifier will be about, namely the individuals that g maps to 1. Call these
individuals g -individuals. The determiner says how many of the g -individuals f needs to
map to 1 to make the sentence true. In the case of ‘no’, when f maps zero g -individuals to
1, the sentence will be true.

It is easy to generalize this analysis to other quantificational determiners.

(3) For any modelM ,
a. veveryw

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for every individual x such that

g(x) = 1, f (x) = 1

]]
b. vsomew

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for some individual x such that

g(x) = 1, f (x) = 1

]]
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c. vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for most individuals x such that

g(x) = 1, f (x) = 1

]]
All of these determiners say how many g -individuals f needs to map to 1 to make the
sentence true. Specifically, (3a) says the sentence will be true if f maps all g -individuals to
1; (3b) says the sentence will be true if f maps (at least) some g -individuals to 1; (3c) says
the sentence will be true if f maps most g -individuals to 1.

Note that for ‘every’, the first argument g will be a singular noun, while for ‘most’, it is a
plural noun, and for ‘some’, it can be either.

(4) a. Every linguist is tall.
b. Some linguist is tall.
c. *Most linguist is tall.

(5) a. *Every linguists are tall.
b. Some linguists are tall.
c. Most linguists are tall.

We are disregarding the difference between singular and plural nouns for now, because
we haven’t really discussed the semantics of plural nouns. We will deal with this issue in
the second half of the course, so for now, let’s make the following (unrealistic) assumption:

(6) vlinguistwM = vlinguistsw
M = [λx P De . x is a linguist inM ]

We need to eventually say something about nominal number, because it clearly has se-
mantic consequences. Simply put, the singular noun ‘linguist’ is about one individual,
while the plural noun ‘linguists’ is (typically) about more than one individual.

2 Sets and Their Characteristic Functions

When talking about generalizedquantifiers, the notionof characteristic functionsbecomes
handy. Take a function of type xe, ty, say vsmokesw

M .

(7) vsmokesw
M = [λx P De . 1 iff x smokes inM ]

This functionmaps anybody inM to 1 if he or she smokes inM , and to 0 if not. So it divides
the inhabitants ofM into two groups, smokers and non-smokers. We can represent them
as the following sets:

(8) a. t x | x P De and x smokes inM u

b. t x | x P De and x doesn’t smoke inM u

vsmokesw
M maps the individuals in (8a) to 1 and the individuals in (8b) to 0.

In this situation, we say vsmokesw
M characterizes the set in (8a). Or equivalently, we say

vsmokesw
M is the characteristic function of the set in (8a).

Generally, any function of type xe, ty characterizes some set. More precisely, any function
f of type xe, ty characterizes the set t x | x P De and f (x) = 1 u. Generalizing this further, we
can say that each function f of type xσ, ty characterzes the set t x | x P Dσ and f (x) = 1 u for
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any semantic type σ. Keep in mind that only functions of type xσ, ty characterize sets. So,
for instance, functions of type xe, xe, tyy, like vlovesw

M , do not characterize sets. The output
type needs to be t, i.e. the function needs to return a truth-value.

Correspondingly, when a set whose members are all of the same type is given, e.g. a set
of individuals, we can tell which function characterizes the set. For instance, take a set of
individuals t a, b, c u. This is (by assumption) a set whosemembers are all of type e. This set
is characterized by the following type-xe, ty function: [λx P De . 1 iff x = a or x = b or x = c ].
More generally, any set of individuals S is characterized by a function of type xe, ty, namely
[λx P De . 1 iff x P S ]. Generalizing over semantic types, any set S whose members are all
of type σ is characterized by the function of type xσ, ty, [λx P Dσ. 1 iff x P S ].¹

It is important to notice that when any function of type xσ, ty is given (for any semantic
type σ), we can uniquely determine the set it characterizes. If f is a function of type xσ, ty,
the set it characterizes is t x | x P Dσ and f (x) = 1 u. It doesn’t characterize any other set.
Furthermore, for any set whose members are of the same type, there is a unique function
that characterizes it. Specifically, for a set S whose members are all of type σ, i.e. S Ď

Dσ, its characteristic function is [λx P Dσ. 1 iff x P S ], and no other function of type xσ, ty
characterizes S . Notice also that for any function f of type xσ, ty, the characteristic function
of the set f characterizes is f itself.

Thismeans that there is a one-to-one correspondencebetween functions of type xσ, ty and
the sets they characterize. If a function f of type xσ, ty is given, it can be uniquely deter-
mined which set f characterizes and from that set, the function f can be reconstructed, us-
ing the above recipe. This is important, because it means that these two kinds of objects—
functions and sets—carry the same amount of information. That is to say, although formally
distinct, they are indistinguishable in some sense, and we can treat them as the ‘same
thing’ for certain purposes.

More concretely, we can regard thedenotationof ‘smokes’, vsmokeswM , as either a function
of type xe, ty or alternatively, as the set in (8a). These things are formally distinct, but one
can be recovered from the other. Likewise, recall that we defined vboyw

M and vblondw
M

as functions of type xe, ty, but alternatively we can treat them as the set of boys in M , and
the set of blond people inM , respectively.

The one-to-one correspondence between sets and their characteristic functions guaran-
tees that such ‘set talk’ is harmless, because we are not losing any information by convert-
ing type-xe, ty functions into sets and vice versa. But why do we do this? Because it allows
us to look at the same thing from a different angle and it can be quite informative, as we
will see below.

Before moving on, let us introduce some notations. For any function f of type xσ, ty, we
denote the set it characterizes by set(f ). Similarly, for any set S such that S Ď Dσ, we
denote its characteristic function by func(S). To stress the main point, we can regard f
and set(f ) as the ‘same thing’, because f = func(set(f )), and similarly, S and func(S) as
the ‘same thing’ because S = set(func(f )).
¹We will not talk about sets whose members are not of a uniform type. Technically it is possible to define
characteristic functions of such sets, but such sets and their characteristic functions do not play a role in our
semantic theory.
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3 Determiners as Relations between Sets

Recall the denotations of quantificational determiners.

(9) For any modelM ,
a. veveryw

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for every individual x such that

g(x) = 1, f (x) = 1

]]
b. vnow

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for no individual x such that

g(x) = 1, f (x) = 1

]]
c. vsomew

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for some individual x such that

g(x) = 1, f (x) = 1

]]
d. vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for most individuals x such that

g(x) = 1, f (x) = 1

]]
Let’s re-state these in terms of sets. The determiners themselves are of type xet, xet, tyy,
so they don’t characterize sets. But their arguments are of type xe, ty, so they characterize
sets of individuals.

Take the denotation of ‘every’ in (9a). We can rewrite it using sets as follows.

(10) For any modelM ,
veveryw

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for every individual x such that

x P set(g), x P set(f )

]]
This is not so different from the representation in (9a). But now notice that this is essentially
saying that set(g) is a subset of set(f ) (Recall: set A is a subset of set B iff every member
of A is a member of B). So we can write the denotation more economically as follows.

(11) For any modelM ,
veveryw

M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff set(g) Ď set(f )]]

That is to say, ‘every’ expresses a subset relation between two sets. This might sound a bit
surprising, but it intuitively makes sense. If you take a concrete example like ‘Every linguist
smiled’, its truth-condition can be paraphrased as ‘The set of linguists is a subset of the set
of people who smiled’.

Let’s nonw reanalyze‘some’ using sets. First, take the ‘function-talk’ denotation in (3b) and
convert the functions into sets as follows.

(12) For any modelM ,
vsomew

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for some individual x such that

x P set(g), x P set(f )

]]
This means that set(g) and set(f ) have somemember in common. So using symbols from
Set Theory, we can re-state it as:

(13) For any modelM ,
vsomew

M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff set(g) X set(f ) ‰ H]]

Take a concrete example, say, ‘Some boy is blond’. This is indeed paraphrased by ‘The set
of boys and the set of blond people have a non-empty intersection.’

4



‘No’ is essentially the converse of ‘some’. It says that the intersection is empty.

(14) For any modelM ,
vnow

M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff set(g) X set(f ) = H]]

Let us take a concrete example, say, ‘No semanticist is left-handed’. This is the same as
‘The intersection of the set of semanticists and the set of left-handed people is empty’.

The meaning of ‘most’ is more complex, but it is possible to express it in terms of sets as
well. Let us first simply re-write the denotation in (3c) using sets:

(15) For any modelM ,
vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for most individuals x such that

x P set(g), x P set(f )

]]
Now take a concrete example, ‘Most dogs are brown’. When is this true? In terms of sets,
it means: ‘The majority of members of the set of dogs are also members of the set of
brown things.’ That is, more members of the set of dogs are in the set of brown things
than not. We can express this using symbols from Set Theory as follows. Recall that |A| is
the cardinality of the set A, which is the number of distinct members of A, and A´B is the
complement of A relative to B , defined as t x | x P A and x R B u.

| t x | x is a dog u X t x | x is brown u | ą | t x | x is a dog u ´ t x | x is brown u |

The left-hand side of ą is the cardinality of the set of brown dogs, and the right-hand side
is the cardinality of the set of non-brown dogs. Now using this, we can re-write (15) as
follows.

(16) For any modelM ,
vmostwM = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff |set(g) X set(f )| ą |set(f ) ´ set(g)|]]

In words, |set(g)X set(f )| is the number of common members of g and f . In our example,
this is the number of brown dogs. |set(f )´ set(g)| is the number of members of f that are
not in g . In our example, this is the number of dogs that are not brown. And the inequality
says that the former number is greater than the latter.

We can write the same relationship in different ways. For instance, the following means
the same thing as above.

(17) For any modelM ,
vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff |set(g) X set(f )| ą

|set(f )|
2

]]
If the number of brown dogs is more than half the number of all dogs, the majority of the
dogs must be brown. So this is actually the same statement as before. You can further
transform it to:

(18) For any modelM , and any assignment a,
vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff

|set(g) X set(f )|
|set(f )| ą

1

2

]]
These are all equivalent.
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A note on the meaning of ‘most’: According to the present analysis, it means the same
thing as ‘more than half’, but you might have a quibble about that. In fact, if 53 out of
100 dogs are brown, it’s a bit strange to say ‘Most of the dogs are brown’, if not outright
false, while ‘More than half of the dogs are brown’ sounds true true. So ‘most’ and ‘more
than half’ should not mean the exact same thing. Intuitively, ‘most’ seems to require the
fraction |set(g)Xset(f )|

|set(f )| to be much larger than 1
2
. But at the same time, we do not have clear

intuitions about exactly which fraction it needs to be larger than. We just can’t really name
such a threshold fraction for ‘most’. Rather, it seems to be inherently vague somehow.
Our semantic system so far has no resources to deal with vague expressions like this, be-
cause in our semantics, every statement is clearly either true or false. To deal with this and
related issues of vagueness, we need to enrich our model. Several such ideas have been
proposed, but this is outside of the scope of this course (but would be a good thesis/Long
Essay project!).

4 Summary

We analyzed quantificational DPs as Generalized Quantifiers, which are functions of type
xet, xet, tyy.

(19) For any modelM ,
a. vevery linguistwM = [λf P Dxe,ty. 1 iff for every linguist x inM , f (x) = 1]

b. vno linguistwM = [λf P Dxe,ty. 1 iff for no linguist x inM , f (x) = 1]

c. vsome linguistwM = [λf P Dxe,ty. 1 iff for some linguist x inM , f (x) = 1]

d. vmost linguistsw
M = [λf P Dxe,ty. 1 iff for most linguists x inM , f (x) = 1]

This analysis is general enough to cover all sorts of quantificational DPs.

(20) Let QP be a quantificational DP. Then, for any modelM ,
vQPw

M = [λf P Dxe,ty. 1 iff for QP x inM , f (x) = 1]

Based on this, we arrived at the denotations of quantificational determiners.

(21) For any modelM ,
a. veveryw

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for every individual x such that

g(x) = 1, f (x) = 1

]]
b. vnow

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for no individual x such that

g(x) = 1, f (x) = 1

]]
c. vsomew

M =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for some individual x such that

g(x) = 1, f (x) = 1

]]
d. vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff for most individuals x such that

g(x) = 1, f (x) = 1

]]
These can be re-rewritten as follows, using sets.

(22) For any modelM ,

a. veveryw
M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff set(g) Ď set(f )]]

b. vnow
M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff set(g) X set(f ) = H]]

c. vsomew
M = [λg P Dxe,ty. [λf P Dxe,ty. 1 iff set(g) X set(f ) ‰ H]]
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d. vmostwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty. 1 iff

|set(g) X set(f )|
|set(f )| ą

1

2

]]
In the next lecture we’ll discuss formal properties of these determiners, and how they
might be linguistically relevant.

4.1 One Word Quantificational DPs

English has several words that function as quantificational DPs. They include:

(23) a. somebody, everybody, nobody, anybody
b. something, everything, nothing, anything
c. somewhere, everywhere, nowhere, anywhere
d. somehow, anyhow

We can analyze the ones in (23a) and (23b) as follows. Take ‘somebody’ as an example.
It seems to be made up of the determiner ‘some’ and another morpheme ‘-body’. Essen-
tially, ‘somebody’ means the same thing as ‘some person’. Thus, we can keep the analysis
of ‘some’ we came up with above, and simply analyze ‘-body’ as meaning the same thing
as person.

(24) Fro any modelM ,
vsomebodyw

M = vsome personw
M =

[
λf P Dxe,ty.

1 iff for some person x inM
f (x) = 1

]
Similarly for other words in (23a) and (23c).

For the words in (23c) and (23d), as they (can) function as adverbs, we need a theory
of how to analyze adverbs, which requires a non-trivial extension of the semantics we’ve
been developing here, and this might be a good essay topic.

It is also interesting to notice that (23c) and (23d) involve wh-words like ‘where’ and ‘how’.
Cross-linguistically, it is very common to use wh-words to form quantificational words like
these. And there must be some deep semantic reason for this. This is another intriguing
topic that we need to leave open here.

4.2 Indefinite Article ‘a(n)’

Here’s one more open issue. Recall that in PLIN2001 Semantic Theory, we analyzed the
indefinite article ‘a’ as a semantically vacuous item. Recall also that semantically vacuous
items denote identity functions. More concretely, we gave it the following denotation.

(25) For any modelM ,
vaw

M = [λf P Dxe,ty. f ]

However, in sentences like (26), we need a different lexical entry for ‘a’.

(26) A linguist smiled.

In fact, in (26), ‘a’ means something very similar to ‘some’.

(27) Some linguist smiled.
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Although you might feel that (27) has an extra connotation that the identity of the linguist
is unknown (which is itself a very interesting phenomenon), the two sentences have very
similar truth-conditions, namely, they are true if there is at least one linguist who smiled,
and false otherwise. Then, we should analyze ‘a’ in (26) as a quantificational determiner,
as in (28).

(28) For any modelM ,
vadetwM =

[
λg P Dxe,ty.

[
λf P Dxe,ty.

1 iff for an individual x P De

such that g(x) = 1, f (x) = 1

]]
= [λg P Dxe,ty. [λf P Dxe,ty. set(g) X set(f ) ‰ H]]

Having two lexical entries for ‘a’ is certainly theoretically undesraible, so we should try to
explain away one of them using the other. We will not attempt to do it here, but you could
maybe try it in your essay. It is also noticeable in this connection that in many languages
(though not in English), ‘a’ in a predicative NP like (29) is either optional or completely
absent.

(29) Alice is a linguist.
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