PLIN0020 Advanced Semantic Theory Review of Compositional Semantics

1 Compositional Semantics

- In PLIN2001 Semantic Theory, we developed a **compositional semantics** for (a fragment of) English. The lecture notes are available here: https://www.ucl.ac.uk/~ucjtudo/ ST.html.
- We focus on truth-conditional meaning (meaning pertinent to truth-conditions).
- In order to account for the fact that native speakers have truth-conditional intuitions about infinitely many grammatical sentences, we assume that natural languages obey the (Local) Compositionality Principle.

The (Local) Compositionality Principle

The meaning of a syntactically complex phrase *A* is determined solely by the meaning of its immediate daughter constituents.

('Meaning' here means truth-conditional meaning)

• We adopt **Frege's Conjecture** and assume that the primary mode of semantic composition is **function application**: when two meanings combine, one is a function and the other one is its argument. The resulting meaning is the value the function returns for that argument.

2 Model Theory

- We formalize the above idea in **model-theoretic semantics**.
- Every grammatical expression (a single word or a phrase) in English is assigned a modeltheoretic object as its **denotation** relative to a **model**.
 - A model *M* is a mathematical structure that models a particular state of affairs.
 - Formally, *M* is a pair $\langle D, I \rangle$, where *D* is a non-empty set of individuals/entities and *I* is a function that assigns meanings to constants.
 - We write $[\![\alpha]\!]^M$ to mean the denotation of a (grammatical) expression α relative to model *M*.
- Every denotation is one of three kinds:
 - Individuals/Entities
 - Truth-values (0 or 1)
 - Functions
- We use **semantic types** to label different kinds of semantic objects:
 - (1) Semantic types
 - a. e is a type.
 - b. *t* is a type.
 - c. If σ and τ are both types, $\langle \sigma, \tau \rangle$ is also a type.
 - d. Nothing else is a type.
 - (2) Domains
 - a. D_e is the set of individuals, D.
 - b. D_t is the set of truth-values, $\{0, 1\}$.

c. $D_{\langle \sigma, \tau \rangle}$ is the set of functions whose domain is D_{σ} and whose range is D_{τ} . (We sometimes write *et* for $\langle e, t \rangle$)

- Our semantic theory has two components:
 - Lexicon: list of denotations of syntactically simple expressions (alt.: atomic expressions)
 - Compositional Rules: rules for how to combine meanings

3 Lexicon

In PLIN2001 Semantic Theory, we covered the following items.

- Proper names denote entities (which are of type *e* and members of *D*).
- Sentences denote truth-values (which are of type *t* and either 0 or 1).
- Intransitive predicates denote functions of type $\langle e, t \rangle$.
 - (3) For any model M_{i}

 - a. $[smokes]^{M} = [\lambda x \in D_{e}. 1 \text{ iff } x \text{ smokes in } M]$ b. $[linguist]^{M} = [\lambda x \in D_{e}. 1 \text{ iff } x \text{ is a linguist in } M]$ c. $[British]^{M} = [\lambda x \in D_{e}. 1 \text{ iff } x \text{ is British in } M]$
- Transitive predicates denote functions of type $\langle e, \langle e, t \rangle \rangle$.
 - (4) For any model *M*,

 - a. $[[likes]^{M} = [\lambda x \in D_{e}.[\lambda y \in D_{e}. 1 \text{ iff } y \text{ likes } x \text{ in } M]]$ b. $[[part]^{M} = [\lambda x \in D_{e}.[\lambda y \in D_{e}. 1 \text{ iff } y \text{ is part of } x \text{ in } M]]$
 - c. $[\text{fond}]^M = [\lambda x \in D_e. [\lambda y \in D_e. 1 \text{ iff } y \text{ is fond of } x \text{ in } M]]$
 - d. $\llbracket \text{from} \rrbracket^M = [\lambda x \in D_e. [\lambda y \in D_e. 1 \text{ iff } y \text{ is from } x \text{ in } M]]$
- Semantically vacuous items denote identity functions.
 - For any model *M*, (5)
 - $\left[\!\left[a_{\text{predicative}}\right]\!\right]^{M} = \left[\lambda P \in D_{\langle e,t \rangle}. P\right]$ a.
 - b. $\llbracket is \rrbracket^M = [\lambda P \in D_{\langle e,t \rangle}, P]$
 - c. $[of]^M = [\lambda x \in D_e, x]$
- If you do not remember what functions are or how the lambda notation for functions works, read the following lecture notes:
 - Functions
 - More on functions
 - Lambda notation

Compositional Rules 4

- These meanings combine via various **compositional rules**.
- For branching structures, we have three compositional rules:

Functional Application (FA)

For any model M, if A is a branching node whose immediate daughter constituents are B and C such that $[C]^M \in \text{dom}([B]^M)$, then $[A]^M = [B]^M([C]^M)$.

Predicate Modification (PM)

For any model *M*, if A is a branching node with children B and C such that $[B]^M$ and $[C]^M$ are both of type $\langle e, t \rangle$, then $[A]^M = [\lambda x \in D_e. [B]^M(x) = [C]^M(x) = 1]$.

