1 Compositional Semantics

- In PLIN2001 Semantic Theory, we developed a compositional semantics for (a fragment of) English. The lecture notes are available here: https://www.ucl.ac.uk/~ucjtudo/ ST. html.
- We focus on truth-conditional meaning (meaning pertinent to truth-conditions).
- In order to account for the fact that native speakers have truth-conditional intuitions about infinitely many grammatical sentences, we assume that natural languages obey the (Local) Compositionality Principle.

The (Local) Compositionality Principle

The meaning of a syntactically complex phrase A is determined solely by the meaning of its immediate daughter constituents.
('Meaning' here means truth-conditional meaning)

- We adopt Frege's Conjecture and assume that the primary mode of semantic composition is function application: when two meanings combine, one is a function and the other one is its argument. The resulting meaning is the value the function returns for that argument.

2 Model Theory

- We formalize the above idea in model-theoretic semantics.
- Every grammatical expression (a single word or a phrase) in English is assigned a modeltheoretic object as its denotation relative to a model.
- A model M is a mathematical structure that models a particular state of affairs.
- Formally, M is a pair $\langle D, I\rangle$, where D is a non-empty set of individuals/entities and I is a function that assigns meanings to constants.
- We write $\llbracket \alpha \rrbracket^{M}$ to mean the denotation of a (grammatical) expression α relative to model M.
- Every denotation is one of three kinds:
- Individuals/Entities
- Truth-values (0 or 1)
- Functions
- We use semantic types to label different kinds of semantic objects:
(1) Semantic types
a. e is a type.
b. t is a type.
c. If σ and τ are both types, $\langle\sigma, \tau\rangle$ is also a type.
d. Nothing else is a type.
(2) Domains
a. D_{e} is the set of individuals, D.
b. D_{t} is the set of truth-values, $\{0,1\}$.
c. $\quad D_{\langle\sigma, \tau\rangle}$ is the set of functions whose domain is D_{σ} and whose range is D_{τ}.
(We sometimes write et for $\langle e, t\rangle$)
- Our semantic theory has two components:
- Lexicon: list of denotations of syntactically simple expressions (alt.: atomic expressions)
- Compositional Rules: rules for how to combine meanings

3 Lexicon

In PLIN2001 Semantic Theory, we covered the following items.

- Proper names denote entities (which are of type e and members of D).
- Sentences denote truth-values (which are of type t and either 0 or 1).
- Intransitive predicates denote functions of type $\langle e, t\rangle$.
(3) For any model M,
a. \llbracket smokes $\rrbracket^{M}=\left[\lambda x \in D_{e}\right.$. 1 iff x smokes in $\left.M\right]$
b. \quad linguist $]^{M}=\left[\lambda x \in D_{e}\right.$. 1 iff x is a linguist in $\left.M\right]$
c. \llbracket British $\rrbracket^{M}=\left[\lambda x \in D_{e} .1\right.$ iff x is British in $\left.M\right]$
- Transitive predicates denote functions of type $\langle e,\langle e, t\rangle\rangle$.
(4) For any model M,
a. \quad likes $]^{M}=\left[\lambda x \in D_{e} .\left[\lambda y \in D_{e}\right.\right.$. 1 iff y likes x in $\left.\left.M\right]\right]$
b. \quad part $\rrbracket^{M}=\left[\lambda x \in D_{e}\right.$. $\left[\lambda y \in D_{e}\right.$. 1 iff y is part of x in $\left.\left.M\right]\right]$
c. \quad fond $\rrbracket^{M}=\left[\lambda x \in D_{e}\right.$. $\left[\lambda y \in D_{e}\right.$. 1 iff y is fond of x in $\left.\left.M\right]\right]$
d. \llbracket from $\rrbracket^{M}=\left[\lambda x \in D_{e}\right.$. $\left[\lambda y \in D_{e}\right.$. 1 iff y is from x in $\left.\left.M\right]\right]$
- Semantically vacuous items denote identity functions.
(5) For any model M,
a. $\llbracket \mathrm{a}_{\text {predicative }} \rrbracket^{M}=\left[\lambda P \in D_{\langle e, t\rangle} . P\right]$
b. $\llbracket i s \rrbracket^{M}=\left[\lambda P \in D_{\langle e, t\rangle} . P\right]$
c. $\llbracket o f \rrbracket^{M}=\left[\lambda x \in D_{e} \cdot x\right]$
- If you do not remember what functions are or how the lambda notation for functions works, read the following lecture notes:
- Functions
- More on functions
- Lambda notation

4 Compositional Rules

- These meanings combine via various compositional rules.
- For branching structures, we have three compositional rules:

Functional Application (FA)

For any model M, if A is a branching node whose immediate daughter constituents are B and C such that $\llbracket \mathrm{C} \rrbracket^{M} \in \operatorname{dom}\left(\llbracket \mathrm{~B} \rrbracket^{M}\right)$, then $\llbracket \mathrm{A} \rrbracket^{M}=\llbracket \mathrm{B} \rrbracket^{M}\left(\llbracket \mathrm{C} \rrbracket^{M}\right)$.

Predicate Modification (PM)

For any model M, if A is a branching node with children B and C such that $\llbracket \mathrm{B} \rrbracket^{M}$ and $\llbracket \mathrm{C} \rrbracket^{M}$ are both of type $\langle e, t\rangle$, then $\llbracket \mathrm{A} \rrbracket^{M}=\left[\lambda x \in D_{e} . \llbracket \mathrm{B} \rrbracket^{M}(x)=\llbracket \mathrm{C} \rrbracket^{M}(x)=1\right]$.

Non-Branching Node Rule (NB)

For any model $\left.M, \llbracket \begin{array}{c}\mathrm{A} \\ 1 \\ \mathrm{~B}\end{array}\right]^{M}=\llbracket \mathrm{B} \rrbracket^{M}$.

- E.g. suppose \llbracket Cate $\rrbracket^{M_{2}}=c$ and \llbracket Denis $\rrbracket^{M_{2}}=d$:

(BNR)

$$
\begin{aligned}
& =\| \text { saw Denis } \|^{M_{2}}(c) \\
& =\llbracket \operatorname{saw} \rrbracket^{M_{2}}\left(\llbracket \text { Denis } \rrbracket^{M_{2}}\right)(c) \\
& =\llbracket \operatorname{saw} \rrbracket^{M_{2}}(d)(c) \\
& =\left[\lambda x \in D_{e} \cdot\left[\lambda y \in D_{e} .1 \text { iff } y \operatorname{saw} x \text { in } M_{2}\right]\right](d)(c) \\
& =\left[\lambda y \in D_{e} \cdot 1 \text { iff } y \operatorname{saw} d \text { in } M_{2}\right](c) \\
& =1 \text { iff } c \operatorname{saw} d \text { in } M_{2}
\end{aligned}
$$

