EVIDENCE FOR A LEARNING BIAS AGAINST “SALTATORY” PHONOLOGICAL ALTERNATIONS IN ARTIFICIAL LANGUAGE LEARNING

James White, UCLA Department of Linguistics
Saltatory phonological alternations

- **Saltatory alternation** = alternation in which an intervening sound is “jumped over”

- **Example** from Campidanian Sardinian\(^1\):
 - \(p \rightarrow \beta / V___\), but \(b\) remains unchanged

 \[
 \begin{align*}
 /\text{pani}/ & \rightarrow [\text{s}:\text{u} \ \beta\text{äi}] \quad \text{‘the bread’} \\
 /\text{binu}/ & \rightarrow [\text{s}:\text{u} \ b\text{ãu}] \quad \text{‘the wine’}
 \end{align*}
 \]

- This is a productive process that occurs at the other places of articulation as well.

1. Bolognesi, 1998
More saltatory alternations

- Some other examples:
 - Colloquial Northern German\(^1\)
 - \(g \rightarrow x / __\#\), \(k\) remains unchanged
 - Polish\(^2\)
 - \(g \rightarrow ʒ / __\ V_{\text{+front}}\), \(ʤ\) remains unchanged
 - Suma (a tonal example)\(^3\)
 - \(L \rightarrow H / H_\#\) in associative construction, final \(M\) remains unchanged

- Note that these other cases are more limited in nature.

Thus, saltatory alternations are possible, but cross-linguistically rare (at least relative to non-saltatory ones).

Question: Do learners have a bias against learning saltatory alternations?

I will present 4 artificial language experiments with interesting results indicating that they do.
Overview (Experiments 1-4)

- Artificial language learning (n = 20 for all experiments)
- **Basic design strategy**: Withhold certain information during exposure (ambiguous input), then test on the withheld cases to see which assumptions participants make

- Same basic method for Exp 1-4, but types of items in training varies

- 3 phases:
 - Exposure
 - Verification of learning
 - Generalization

1. E.g., see Wilson, 2006; Finley, 2008; and others
Experiment 1 - Method

- Artificial language learning (Auditory)
- **Exposure phase:** Train on $p \rightarrow v$, $t \rightarrow \delta$ / V__V
Experiment 1

- Artificial language learning (Auditory)
- Exposure phase: Train on p \(\rightarrow \) v, t \(\rightarrow \) ð / V__V
Experiment 1

- Artificial language learning (Auditory)
- **Exposure phase**: Train on $p \rightarrow v$, $t \rightarrow \delta / V__V$

"lanap"
Experiment 1

- Artificial language learning (Auditory)
- **Exposure phase**: Train on p \rightarrow v, t \rightarrow ď / V__V
Experiment 1

- Artificial language learning (Auditory)
- Exposure phase: Train on p → v, t → ð / V__V

“lanavi”
Experiment 1

- **Exposure phase**: Train on $p \rightarrow v, t \rightarrow \delta / V__V$
 - All singular words are CVCVC, sound inventory drawn from a subset of English phonemes
 - 36 changing items ending in /p/ or /t/
 - lanap ~ lanavi (18 of this type)
 - bunat ~ bunaði (18 of this type)
 - 36 non-changing Filler items
 - Ending in /m, n, l, r, s, sʃ/
 - Example: kasam ~ kasami
- Crucially, no words ending in intervening /b, d, f, θ/
Experiment 1

- **Verification phase**: Did they learn the pattern?
- **Task**: Hear a previously heard singular form and choose the correct plural form
 - 2-alternative forced choice test → Choose between two options: *changing* and *non-changing*.
 - 32 words from Exposure phase (8 p, 8 t, 16 fillers)
 - Must get at least 80% to move on — so that I know they have learned the pattern
Experiment 1

- **Verification phase**: Did they learn the pattern?
- **Task**: Hear a previously heard singular form and choose the correct plural form.
Experiment 1

- **Verification phase**: Did they learn the pattern?
- **Task**: Hear a previously heard singular form and choose the correct plural form

“lanap”
Experiment 1

- **Verification phase**: Did they learn the pattern?
- **Task**: Hear a previously heard singular form and choose the correct plural form
Experiment 1

- **Verification phase:** Did they learn the pattern?
- **Task:** Hear a previously heard singular form and choose the correct plural form

“lanapi”...“lanavi”

???????????????
Experiment 1

- **Verification phase:** Did they learn the pattern?
- **Task:** Hear a previously heard singular form and choose the correct plural form

Note: Changing option for fillers:
/m, r,伸/ → 严肃 (kasami ... kasavi)
/n, l, s/ → δ

“lanapi”...“lanavi”

???????????????
Experiment 1 - Method

- **Generalization phase:** Same task as verification phase, but with **novel words**.
 - 24 words ending in /p, t/
 - 24 fillers
 - But **crucially** also 24 words ending in the untrained, intervening sounds /b, d, f, θ/
Experiment 1

Input: \(p \rightarrow v \rightarrow t \rightarrow \delta \)

Possible interpretations of input: (Coronals analogous)

- Saltatory
- Partially saltatory
- Non-saltatory
Experiment 1 – Results (all words are novel)

![Bar graph showing mean percentage change in option chosen for trained and untrained sounds]

- **Trained sounds**
 - p, t
 - Fillers
 - b, d
 - f, θ

- **Untrained sounds**

Final sound of singular word

- Mean % changing option chosen
Experiment 1 – Results (all words are novel)

E.g., for a word like lanap, how frequently did participants choose lanavi rather than lanapi?
Experiment 1 – Results (all words are novel)

Participants learned pattern and extended it to new forms of the same type.
Experiment 1 – Results (all words are novel)

Participants generalized to intervening sounds at a high rate, even with no evidence for such a change!
Experiment 1 – Results (all words are novel)

Participants generalized to intervening sounds at a high rate, even with no evidence for such a change.
Experiment 1 – Results (all words are novel)

Greater change for intervening stops than for fricatives!
Observations so far

- Given ambiguous input, learners generalize to make learned alternations non-saltatory.

- There is a preference towards changing voiced stops more than voiceless fricatives.
 - Binary abstract features cannot account for this difference
 - Perhaps perceptual similarity is important

<table>
<thead>
<tr>
<th></th>
<th>Sounds</th>
<th>Confusability/Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labials</td>
<td>b ~ v</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>f ~ v</td>
<td>0.039</td>
</tr>
<tr>
<td>Coronals</td>
<td>d ~ ð</td>
<td>0.103</td>
</tr>
<tr>
<td></td>
<td>θ ~ ð</td>
<td>0.029</td>
</tr>
</tbody>
</table>
Observations so far

- Given ambiguous input, learners generalize to make learned alternations non-saltatory.
- There is a preference towards changing voiced stops more than voiceless fricatives.
 - Binary abstract features cannot account for this difference
 - Perhaps perceptual similarity is important

<table>
<thead>
<tr>
<th></th>
<th>Sounds</th>
<th>Confusability/Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labials</td>
<td>b ~ v</td>
<td>.153</td>
</tr>
<tr>
<td></td>
<td>f ~ v</td>
<td>.039</td>
</tr>
<tr>
<td>Coronals</td>
<td>d ~ ʒ</td>
<td>.103</td>
</tr>
<tr>
<td></td>
<td>θ ~ ʒ</td>
<td>.029</td>
</tr>
</tbody>
</table>

1. Wang & Bilger, 1973

= avg. of (rate that b is mistaken for v and rate that v is mistaken for b) (from confusion matrix data)
Observations so far

- Given ambiguous input, learners generalize to make learned alternations non-saltatory.
- There is a preference towards changing voiced stops more than voiceless fricatives.
 - Binary abstract features cannot account for this difference
 - Perhaps perceptual similarity is important

<table>
<thead>
<tr>
<th></th>
<th>Sounds</th>
<th>Confusability/Similarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labials</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b ~ v</td>
<td></td>
<td>.153</td>
</tr>
<tr>
<td>f ~ v</td>
<td></td>
<td>.039</td>
</tr>
<tr>
<td>Coronals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>d ~ ʕ</td>
<td></td>
<td>.103</td>
</tr>
<tr>
<td>θ ~ ʕ</td>
<td></td>
<td>.029</td>
</tr>
</tbody>
</table>

Indeed, voiced stops \([b, d]\) are more confusable with voiced fricative targets \([v, ʕ]\) than voiceless fricatives \([f, \theta]\).
Two alternate explanations

- They just learned a more general rule: all stops become voiced fricatives between vowels

- Product-oriented responses:¹ a large number of [-vi] and [-ði] plural endings resulted in a bias towards choosing those endings for new cases
 - ½ of the plurals ended in [-vi] or [-ði]
 - 1/12 ended in each of [-mi], [-ni], [-li], [-ri], [-si], [-ʃi]

2. Bybee & Slobin, 1982
Train on b \rightarrow v and d \rightarrow δ, withhold p, t, f, θ.

- Designed to address alternate explanations:
 - If learning a more general rule or responding based on product-oriented schema, then effect should remain.
 - If it is really something about the intervening sound, then the effect should be greatly reduced.
Experiment 2 - Control

Input:

\[
\begin{align*}
&b \\
&v
\end{align*}
\]

Expected behavior:

\[
\begin{align*}
p &\rightarrow b & p &\rightarrow b & p &\rightarrow b & p &\rightarrow b \\
&\rightarrow v & &\rightarrow v & &\rightarrow v & &\rightarrow v \\
&\rightarrow \phi & &\rightarrow \phi & &\rightarrow \phi & &\rightarrow \phi \\
\text{(Coronals analogous)}
\end{align*}
\]

More general rule (Similar to Exp 1)

Product-oriented responses (Similar to Exp 1)

Bias against saltations (Different from Exp 1)
Experiment 2 - Control

Input:

Expected behavior:

More general rule (Similar to Exp 1)

Bias against saltations (Different from Exp 1)

Product-oriented responses (Similar to Exp 1)

Little generalization to other sounds
Experiment 2 – Results

<table>
<thead>
<tr>
<th></th>
<th>Exp 1</th>
<th>Exp 2: Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trained stops</td>
<td>90%</td>
<td>80%</td>
</tr>
<tr>
<td>Fillers</td>
<td>10%</td>
<td>5%</td>
</tr>
<tr>
<td>Untrained stops</td>
<td>70%</td>
<td>20%</td>
</tr>
<tr>
<td>Untrained fricatives</td>
<td>50%</td>
<td>30%</td>
</tr>
</tbody>
</table>

Mean % changing option chosen

Final sound of singular word
Experiment 2 – Results

<table>
<thead>
<tr>
<th></th>
<th>Trained sounds</th>
<th>Untrained sounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trained stops</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>Fillers</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Untrained stops</td>
<td>70</td>
<td>50</td>
</tr>
<tr>
<td>Untrained fricatives</td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

Exp 1: Learned trained pattern equally well.

Final sound of singular word

Learned trained pattern equally well.
Experiment 2 – Results

Trained sounds

Untrained sounds

Mean % changing option chosen

Trained stops | Fillers | Untrained stops | Untrained fricatives

Exp 1 | Exp 2: Control

Final sound of singular word

Untrained generalization enormously reduced!
Experiment 2 – Results

2 x 2 ANOVA: Sig. main effect of Exp for untrained sounds (Type x Exp)
Experiment 2 – Results

Still sig. different than trained fillers → can think of this as the basic effect of being trained vs. untrained
Observations so far

- Given ambiguous input, learners generalize to make learned alternations non-saltatory.
 - This effect cannot be explained by participants learning a general rule or by product-oriented responses.
- There is a preference towards changing voiced stops more than voiceless fricatives.
 - Binary abstract features cannot account for this difference
 - Perhaps perceptual similarity is important
Experiment 3 – Blocked stops

- Train participants on $p \rightarrow v$ and $t \rightarrow \delta$, but also that b and d do not change

- In training:
 - 18 $p \rightarrow v$
 - 18 $t \rightarrow \delta$
 - 18 non-changing b, d (9 of each)
 - 18 non-changing fillers
 - Nothing about f, θ

Input: $p \rightarrow b \rightarrow f \rightarrow v$

(Coronals analogous)
Experiment 3 – Blocked stops

- Train participants on $p \rightarrow v$ and $t \rightarrow \delta$, but also that b and d do not change

- In training:
 - 18 $p \rightarrow v$
 - 18 $t \rightarrow \delta$
 - 18 non-changing b, d (9 of each)
 - 18 non-changing fillers
 - Nothing about f, θ

Equal # of non-changing fillers and non-changing b, d

Input: $p \rightarrow b \rightarrow f \rightarrow v$

(Coronals analogous)
Experiment 3 – Blocked stops

- **Prediction:** If there is bias against saltatory alternations
 - % changing option for fricatives /f, θ/ should remain high

Input: (Coronals analogous)
Experiment 3 – Results

Trained Sounds

Untrained or Blocked Sounds

Mean % changing option chosen

Exp 1
Exp 2: Control
Exp 3: Blocked stops

Trained stops
Fillers
Untrained/Blocked stops
Untrained fricatives

Final sound of singular word
Experiment 3 – Results

Learned trained pattern equally well
Experiment 3 – Results

No difference in generalization to untrained fricatives between Exp 1 and Exp 3
Experiment 3 – Results

Trained Sounds

Untrained or Blocked Sounds

Exp 1
Exp 2: Control
Exp 3: Blocked stops

Sig. more mistakes on blocked stops than on fillers despite being trained to not change stops!
Experiment 3 – Results

Trained Sounds

- **Exp 1**
- **Exp 2: Control**
- **Exp 3: Blocked stops**

Untrained or Blocked Sounds

- **Exp 1**
- **Exp 2: Control**
- **Exp 3: Blocked stops**

Final sound of singular word

- **Trained stops**
- **Fillers**
- **Untrained/Blocked stops**
- **Untrained fricatives**

Equal to Exp 2 even though Exp 3 is trained and Exp 2 is untrained!
Experiment 4 – Blocked Fricatives

- Same as Exp 3, but the fricatives are blocked instead of the stops
- Will we see the same pattern?

Input: p b (Coronals analogous)
Experiment 4 – Results

Trained Sounds

<table>
<thead>
<tr>
<th>Final sound of singular word</th>
<th>Trained stops</th>
<th>Fillers</th>
<th>Untrained/Blocked stops</th>
<th>Untrained/Blocked frics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp 1</td>
<td>Blue</td>
<td>Orange</td>
<td>Green</td>
<td>Purple</td>
</tr>
<tr>
<td>Exp 2: Control</td>
<td>Brown</td>
<td>Green</td>
<td>Orange</td>
<td>Purple</td>
</tr>
<tr>
<td>Exp 3: Blocked stops</td>
<td>Green</td>
<td>Purple</td>
<td>Orange</td>
<td>Brown</td>
</tr>
<tr>
<td>Exp 4: Blocked frics</td>
<td>Orange</td>
<td>Brown</td>
<td>Green</td>
<td>Purple</td>
</tr>
</tbody>
</table>

Untrained or Blocked Sounds

- Trained Sounds
- Untrained/Blocked Sounds

Mean % changing option chosen

Final sound of singular word

Graph showing the results of different experimental conditions.
Experiment 4 – Results

Learned trained pattern equally well
Experiment 4 – Results

![Graph showing results](image)

- **Trained Sounds**
 - Exp 1: Mean % changing option chosen
 - Exp 2: Control
 - Exp 3: Blocked stops
 - Exp 4: Blocked frics

- **Untrained or Blocked Sounds**
 - Untrained stops equal to Exp 1
 - Trained sounds compared
Experiment 4 – Results

Sig. more errors on blocked frics than on fillers despite being trained to not change frics!
Experiment 4 – Results

Greater than Exp 2 even though Exp 4 is trained and Exp 2 is untrained!
Observations so far

- Given ambiguous input, learners generalize to make learned alternations non-saltatory.
 - This effect cannot be explained by participants learning a general rule or by product-oriented responses.
- There is a preference towards changing voiced stops more than voiceless fricatives.
 - Binary abstract features cannot account for this difference.
 - Perhaps perceptual similarity is important.
- Even when learners are trained that intervening sounds should not change, they have a tendency to change them to make the alternation non-saltatory.
Theoretical Implications

What do we know?
What do we know?

- Natural languages exist with saltatory alternations.
 - So phonological theory must be able to generate grammars that allow saltatory alternations.
 - Even this is not totally straightforward (e.g., classical OT\(^1\) cannot handle them).

1. Prince & Smolensky, 1993/2004
Theoretical Implications

What do we know?

- Natural languages exist with saltatory alternations.
 - So phonological theory must be able to generate grammars that allow saltatory alternations.
 - Even this is not totally straightforward (e.g., standard OT cannot handle them).
- Saltatory alternations are relatively rare and I have shown that learners are biased against learning a system containing them.
 - So our theories of phonological learning should account for why these alternations are dispreferred in learning.

1. Prince & Smolensky, 1993/2004
Nature of the bias

- Substantive bias
 - Steriade’s P-map principle seems to be a good basis for such a bias in this case (at least for a starting point)
 - P(erceptual)-map → Humans are aware of perceptual relationships between sounds (in a given context) and alternations should minimize perceptual changes
 - Accounts for a preference for short distance changes over long distance changes
 - Also accounts nicely for the preference in Exp 1 to change b → v more than f → v (b is more perceptually similar to v).

1. E.g., Wilson, 2006; Finley & Badecker, 2008; etc.
2. Steriade 2001/2008
Nature of the bias

- Preliminary computational modeling looks promising for the P-map:
 - Maximum Entropy grammar learning\(^1\) with weighted constraints banning relevant alternating pairs (e.g., \(*p\sim v*)
 - Input/test items based on experiments
 - With a prior (= bias) based on the P-map, the model does pretty well; the unbiased model fails

- Is P-map sufficient?
 - Further experiments/modeling will help determine whether something else has a role (e.g., general dispreference for saltation that is more than just perceptual distance)

Future directions

- More computational modeling
 - Will help explore what types of biases work and make predictions for additional experiments

- Open response/production experiments

- Infant study
 - Do infants display a bias against saltation when learning phonological alternations?
 - Will help determine if this bias is operational in child language acquisition
Conclusions

- Learners are biased against learning saltatory alternations.
 - When trained on alternations that are (potentially) saltatory, they make assumptions/errors that make them not saltatory.
- Perceptual similarity appears to play a role in this bias.
- A substantive bias based on the P-map seems like a promising starting point for modeling the effect.
Thank you!

Acknowledgments:

- For much helpful discussion: Bruce Hayes, Megha Sundara, Robert Daland, Kie Zuraw, Sharon Peperkamp, Marc Garellek, Karen Campbell
- UCLA Language Acquisition Lab managers: Kristi Hendrickson, Chad Vicenik
- My undergraduate RAs: Kelly Ryan, Kelly Nakawatase, Ariel Quist
- UCLA Language Acquisition Lab RAs
- UCLA Phonology seminar audiences
- Research funded in part by a UCLA Summer Research Mentorship Fellowship
References

