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easily traceable through the antennas to which they are connected or, even better, with ad

hoc applications that register the GPS tracks.

Previous studies have demonstrated the association between the health and behavioral

patterns of a person, and the possibility to predict health and well-being conditions using

di�erent sources of behavioral information from social media and mobile phones. Detec-

tion of emotional states, happiness levels and depressive disorders [� …	 ], prediction of

physical health conditions [� , 
 ] and stress levels [� ], and modeling of in”uenza spreading

[� …�� ] are some common examples of the studies carried out in this area. Interestingly,

a recent work has shown that human mobility represents a good proxy for predicting peo-

ple•s mental health conditions such as depressive states [	 ]. In this paper, we employ a sim-

ilar approach to investigate the role of human mobility for predicting the physical health

conditions of a person.

Knowing in advance if someone will present certain symptoms may have signi“cant im-

plications in terms of public health strategy and policy. For instance, speci“c prevention

strategies can be applied: a person can be informed through an early-warning mobile ap-

plication suggesting to change her/his social interactions for the next days in order to

reduce further spreading of the diseases. Thus, a predictive system of health symptoms

may allow public health o
cers to recommend speci“c social actions in order to mini-

mize the risk of contagion. Moreover, this information can also represent a valuable input

for epidemiological models. We can incorporate “ne-grained human mobility behaviors

into disease spreading models like the Global Epidemic and Mobility (GLEaM) one [�� ],

which already makes use of socio-demographic data and of aggregated data on population

mobility patterns. However, despite the importance of such applications a little e�ort has

been put in this “eld, mainly because it is very di
cult to have a data set which contains

both self-reported health symptoms and mobility behaviors of a single individual.

In this paper, we present an initial study to investigate the e�ectiveness of using indi-

vidual mobility behaviors for predicting the health conditions of a person. We address the

challenging problem of predicting future presence of physical health symptoms such as

fever, sore throat, cough, shortness of breath, headache, muscle pain, malaise, andcold by

exploring the past mobility activities of an individual, thus trying to answer the following

question:can mobility behaviors be informative regarding the future health conditions of
a person?

To address this problem, we resort to the data collected during the Mobile Territorial

Lab (MTL) study [�	 ], a longitudinal living lab that has been observing the lives of more

than ��� parents through multiple data sources (e.g. mobile phone data, questionnaires,

experience sampling probes, etc.) for more than two years. Then, we extract a set of daily

features capturing the spatio-temporal mobility patterns of a person (e.g. total distance

traveled, radius of gyration of visited places, maximum displacement from home, unique

number of visited places, etc.). For each individual we analyze how the mobility metrics

and the presence of symptoms correlate and change over time. We also design a machine

learning framework that, using past mobility behaviors, predicts the presence of ”u-like

and cold symptoms with a time horizon of two days ahead. To evaluate our machine learn-

ing framework, we “rstly run experiments using a feature selection step (Recursive Feature

Elimination (RFE) [�� ]). In order to select the more predictive features, we “t one of the

regression models and then we rank the features (i.e. total distance) by their weight in the

model. Then, once we have a comprehensive analysis of the participant•s mobility features,
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we use them to predict if s/he will present certain symptoms in the next days (e.g. two days

ahead).

Our results show that using the mobility patterns of an individual we can obtain promis-

ing performance for our challenging prediction task. Speci“cally, we obtain an Area Un-

der the Receiving Operating Characteristic Curve (AUCROC) of �.	
, a Precision score of

�.
�, a Recall score of �.��, and F�-score of �.

 in classifying symptoms two days ahead

with a Random Forest (RF) classi“er.

This paper is structured as follows. Section� o�ers an overview of the related work,

while Section� describes the data sets we used. In Section� , we describe the methodology

of our study, detailing the approach for identifying the places, the extraction of the mobility

characteristics (e.g. the radius of gyration of the visited places, the unique number and the

diversity of visited places, the routine index, etc.) and the learning models used for the

classi“cation tasks. Section	 reports and discusses the results of our experiments, and

“nally we derive some conclusions in Section� .

2 Related work
Information on human mobility behavior derived from mobile phones has been shown to

be an invaluable source to leverage within the public health domain, both at an aggregated

and individual level [�
 ]. In many cases, researchers were able to capture how massive

population moves or the daily routines of individuals, and thus to study critical issues for

public health like the spread of a disease or the detection of mental health problems such

as depression [�
 ].

Mobility behaviors have been captured mainly by (i) Call Detail Records (CDRs) or Mo-

bile Network Data generated by providers, and by (ii) smartphone applications. In the case

of the former, researchers are able to understand massive phenomena such as the spread-

ing of epidemics [�� , �� ], mass-migration phenomena [�� ] or the exposure of a popula-

tion to air-pollution [ �� ]. It is worth noticing that both CDRs and Mobile Network Data

are based on the cell towers of a provider, thus resulting in a coarser spatial granularity

with respect to the GPS data. In addition, CDRs su�er from low temporal resolution since

they are event-driven (i.e. records are created by a call/SMS trigger), while the Mobile

Network Data overcome this since they are network-driven (i.e. records are generated in-

dependently of the phone usage) [�
 ].

On the other hand, mobile applications have also started being extensively used in health

and well-being domains [
 , �	 , �
 , �� ]. Many applications rely on the longitudinal moni-

toring of an individual outside the clinical settings, leveraging on the multiple data sources

provided by the current smartphones. The major advantage of this approach is that the

collection of human behavioral routines is completely unobtrusive, “ne-grained (e.g. GPS

signal or calls/SMSs are collected directly from the user•s device) and personalized at the

individual level. In addition, the collection of potential symptoms (e.g. fever, cough, etc.)

can be self-reported by using an ad-hoc mobile phone application. In this context, Fan et

al. [�� ] proposed a hierarchical probabilistic model to simultaneously predict individu-

als• physical health by understanding how ”u is spread within the proximity interaction

networks dynamically captured by mobile phone Bluetooth data. They tested their model

both on the MIT Social Evolution [
 ] data set as well as on the data collected within the

iEpi Study [�� ], where ��� students reported their symptoms and shared their Bluetooth

sensor data. In the former, they succeeded in predicting one step ahead the occurrence
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of the symptoms, while in the latter they revealed the underlying proximity interaction

network features related with ”u exposure and spreading.

Previous studies have also employed mobile phone data in order to predict daily mood

states [� ] and stress levels [� ], and to diagnose mood changes [	 , �	 , �� ]. For instance,

Canzian and Musolesi employed well-established and novel metrics to associate human

mobility characteristics and depressive states [	 ]. Their results show that they can identify

depressive states by analyzing the mobility routines of an individual and thus they can

enable a continuous monitoring of her/his mental state by a therapist.

3 Data
In this work we use a data set collected during the Mobile Territorial Lab (MTL) study (for

a more detailed description of the study see [�	 ]). During the MTL study, the researchers

have observed the lives of more than ��� parents for almost three years (January ����-

December ���	). The participants live in the province of Trento, an area located in the

Northern of Italy, and most of them are of Italian nationality. They have di�erent levels

of education (from high school diplomas to Ph.D. degrees) and types of occupation. Par-

ticipants were provided with (i) an Android-based smartphone running a software able to

continuously collect di�erent mobile phone data (e.g. calls, SMSs, locations) and (ii) a sur-

vey application which is able to periodically ask the participants some questions designed

by the researchers in the context of a speci“c study [�	 ]. Following the Italian regulations,

all participants were asked to sign informed consent forms and the study was conducted

in accordance to them. The form and the MTL study were also approved by a joint Ethical

Committee of University of Trento and Province of Trento.

In this paper we report a study on health symptoms that we conducted on 
� partic-

ipants, �� males and 	� females, with an age ranged from �� to �� (the study was run

during the “rst phase of the MTL project when only 
� study participants were enrolled).

Table� reports the mean and the standard deviation values of the study participants• age.

In this study, we use a combination of two type of data: (i) location data, which we use

to characterize the daily mobility of the participant; and (ii) survey data with daily in-

formation about the health of the participant, which represents the ground truth of our

supervised machine learning models. The data set is completely anonymized in order to

ensure individuals• privacy.

We collect symptoms data from February ��, ���� and March ��, ���� since in this

period we have a high presence of ”u-like and cold symptoms. This is also in line with

the epidemic curve of the ����-���� in”uenza season, which presents a peak during our

window of time [�
 ]. In particular, we focus only on collecting one month of symptoms

data in order to have a high participation rate from our study participants.

It is worth specifying that symptoms and mobility data sets do not completely overlap.

This is due to the fact that there are some gaps in (i) the mobility data (i.e. participants

switched o� the mobile phones) and (ii) the survey data (i.e. participants did not “ll the

Table 1 Descriptive statistics (mean and standard deviation values) of the study participants’
age

Numbers Mean Std.

Men 20 39.2 3.2
Women 50 38.5 3.3



Barlacchi et al. EPJ Data Science  (2017) 6:27 Page 5 of 15

health symptoms• survey). Hence, we have mobility data and at least one self-reported
symptom for only �� study participants.

We now describe the two di�erent data sets that we merge by using as key the ID of the
participant.

3.1 Location data
The software installed on the smartphone continuously keeps track of: (i) the communi-
cation events (e.g. calls and SMSs), and (ii) the participant•s location captured by means
of the Global Positioning System (GPS), which recorded ��% of positions with an accu-
racy within �� meters [ �	 ]. In addition, to increase the number of location points we
also use the position retrieved by the network provider source (i.e. the cell towers to
which the phone is connected). The raw location data set consists of location point tuples
l = [ID, latitude, longitude,source,accuracy,time], where for each tuplel the study partici-
pant ID, the latitude, the longitude, the information source (i.e. GPS, Network), the accu-
racy of the location point in meters, and the timestamp are recorded, respectively.

Then, we employ the well-accepted notion ofmobility trace of an individual as a set of
stops and moves [	 , �� ]. In this notion a stop is a set of latitude and longitude points where
the individual is identi“ed to spend a particular amount of time after performing a clus-
tering procedure,explained in Section�.� in detail. Formally, a stop in a place is de“ned
as:Place = [ID,ta,td,C], whereID, ta, td andC stand for a place identi“er, the arrival time,
the departure time and the latitude-longitude coordinates, respectively. This information
de“nes a mobility trace of placesMT(t� ,t� ) as the sequence of places visited by an individ-
ual in a given period of time:MT(t� ,t� ) = (Pl� ,Pl� , . . . ,PlN(t� ,t� )), whereN(t� ,t� ) is the total
number of identi“ed visited places.

3.2 Daily health symptoms
Data on physical health symptoms were collected using a daily self-reported survey in-
strument, designed by an experienced epidemiologist. The survey instrument consisted
of eight questions with yes/no responses for each of the following symptoms:fever, sore
throat, cough, shortness of breath, headache, muscle pain, malaise, andcold.

Hence, the symptom raw variables have the following form:symptom = [yes/no] In Fig-
ure � an example of daily reported cases for (i) fever, (ii) cough and (iii) malaise is depicted.
We can notice that fever and cough have their peaks mostly in the same days. In Table�
we report the frequencies of the eight symptoms during the entire study duration and for
each symptom the number of unique individuals reporting at least one case. In the cur-
rent work, we focus on all the self-reported symptoms. According with the de“nitions
proposed by the World Health Organization (WHO) [�� ] and the European Centre for
Disease Prevention and Control (ECDC) [�� ], the presence of fever, sore throat, cough,
shortness of breath, headache, muscle pain, or malaise is a symptom of in”uenza-like ill-
ness (ILI). Cold was also chosen given the high self-reported presence of this symptom
during the time period of our study.

The daily questions were answered at the evening by using SurveyGizmo and �� partic-
ipants, over a total of 
�, reported at least one symptom.

4 Methodology
Our main goal is to study the relationship between mobility behavior and self-reported
symptoms. To do so, we need a set of characteristics that systematically describe human
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Figure 1 Number of daily reported cases of fever, cough and malaise.

Table 2 Description of the different Symptom Types, the number of cases that were present
and the unique number of individual reporting each symptom

Symptom Type # Symptom Cases # Unique Individuals

fever 37 18
sore throat 196 40
cough 165 27
shortness of breath 86 15
headache 211 50
muscular pain 274 41
malaise 223 41
cold 174 34

mobility behavior. Canzian et al. [	 ] have recently introduced metrics able to capture both

presence and absence of human mobility. Such features appear to be promising in identify-

ing physical and mental health conditions, since many of them are related with the nature

of the movement. For instance, in [	 ] they focus on depressive symptoms which could

go along with decreased movement patterns and increased spending time at home for a

long-term period. In our case, we expect to identify similar signals, but in a short-term

period.

4.1 Identification of places
A very important step is the identi“cation of places where the user is stopping. To this end,

we create location clusters using raw data. In order to increase the accuracy of location

estimation we consider only location points with accuracy less than 	� meters. Moreover,

we ignore any location point that was collected while the user was moving. In order to

infer such location points, we compute the speed of the individual by using the distance

and the time between the last and the current location points. If the speed is less than a
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certain threshold (i.e. 	 km per hour) we consider that the location is collected when the

participant was not moving.

Then, we use the location clustering approach presented in [�� ] in order to cluster the

“ltered location samples. We iterate over all location samples and for each location point

we create a new cluster only if the distance of this location from the centroid of each exist-

ing cluster is more than ��� meters. Otherwise we add this location to the corresponding

cluster and update its centroid.

Finally, we assign a unique place identi“er to each centroid for all participants. More-

over, we assign thehome label to the place where an individual spends the majority of the

late evening and night hours (from 
 pm to 
 am), taking into account the habits in the

northern part of Italy [�� ]. All the remaining places are labeled asother.

4.2 Mobility features
For each individual, we compute all mobility features based on the visitedPlaces we iden-

tify after performing the clustering procedure described above. The resulting set of mo-

bility features is the following one:

. The total distance traveled (DT (t� ,t� )): For computing the total distance traveled we
consider: (i) the raw collected geo-location points when the individual is moving,
and (ii) the detected stops in Places. We refer to them as points p = [id,ta,td,C]

where id = …�when the participant is moving and id > � when s/he stops in a Place.
For a time interval [t� ,t� ], this mobility trace is a set Np of subsequent p points
defined by a latitude-longitude pair C.

DT (t� ,t� ) =
Np(t� ,t� )∑

i=�

d(Ci,Ci+� ), (�)

. The standard deviation of the total distance traveled (σDT (t� ,t� )): the deviation from
the average total distance (Feature ), which is defined as:

AvgDT (t� ,t� ) =
�

Np(t� ,t� ) … �

Np(t� ,t� )∑

i=�

d(Ci,Ci+� ). (�)

It is worth noticing that the number of movements is equal to the number of points
minus .

. The total displacement (DisT (t� ,t� )): The total displacement is a measure of the
distance covered by an individual. It takes into account the distance between one
Place where the participant stopped and the subsequent one. Formally is defined as:

DisT (t� ,t� ) =
N(t� ,t� )∑

i=�

d(Ci,Ci+� ), (�)

where d(Ci,Ci+� ) is the geodesic distance between two visited identified places Pl�
and Pl� with latitude-longitude coordinates Ci and Ci+� , respectively.

. The standard deviation of the displacements (σDis(t� ,t� )): the deviation from the
average displacement in [t� ,t� ] as defined in [].
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. The maximum displacement between two visited Places (DisM(t� ,t� )): this metric
quantifies the maximum displacement covered in [t� ,t� ].

. The radius of gyration of the visited Places (G(t� ,t� )): We measure the radius of
gyration as in [], quantifying the span of the area the participant covers. It is the
deviation from the centroid of the visited places in a [t� ,t� ] interval weighting the
contribution of each Place with coordinates Ci within the set N by the time spent
there.

G(t� ,t� ) =

√√√√ �
T

N(t� ,t� )∑

i=�

Ti · d(Ci,Ccen)� , (�)

where Ti equals to td
i …ta

i representing the time spent in the place Pli and T is the
total time spent in all the visited places in [t� ,t� ].

. The maximum displacement from Home (DisH(t� ,t� )): this metric quantifies the
maximum span the participant covered from its home. The ID and coordinates of
the home for each participant is computed by considering the place with the
maximum frequency of visits in Places considering time intervals between
 pm- am, as explained in Section ..

. The number of different Places visited (Ndif (t� ,t� )): Here we simply count the number
of visits in different Places (i.e. the number of different places where the individual
had a stop) within the studied period. For example, if a participant visits within the
study period Pl� and Pl� for one and two times, respectively, then the Ndif = � .

. The number of different significant Places visited (Nsig(t� ,t� )): Here, we count the
number of visits in significant Places within the period under observation. We
consider significant a visited place if it belongs to the top-�� list of the most frequent
visited Places in the time period of the study. In Figure  the average number of
participants’ stops over the top-N most frequent Places is depicted. It shows that for
N > �� the frequencies of the stops to Places start to converge into a constant
minimum number for our users, thus we do not consider them as significant.
Therefore, we select N = �� as a cut-point for the significant Places lists.

Figure 2 Average number of stops in the top-N most frequent Places for the 29 participants.
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. The number of moving geo-location points (Nmoves(t� ,t� )): This is the count of the p
geo-location points where id = …�indicating that the participant was moving in the
time interval [t� ,t� ]. It serves to quantify the moving behavior of a person.

. The unique number of visited Places (Nunq(t� ,t� )): This feature quantifies the distinct
number of stops done or places visited.

. The diversity of the visited Places (Divvisits(t� ,t� )): This metric measures how an
individual spreads its visits among places in a specific time interval. This metric is a
sort of entropy and was initially introduced by [] to measure mainly the diversity
in social communication, but we apply it in a spatial context. Formally it is defined
as:

Divvisits(i) =
…

∑k
j=� vij log vij

log k
, (	)

where vij is the volume of visits user i pays to the place j normalized by the total
number of i’s visits, and k is the distinct number of places visited in the time
interval, respectively. High values of the diversity measure indicate that participants
distribute their visits more evenly among the places.

. Aggregated mobility features: Previously observed mobility patterns in a participant’s
historical time-line can be useful to describe the trend of the participant’s human
mobility. In order to capture this information we defined a set of rolling statistics
computed for each of the aforementioned mobility features. In particular, given a
time window [t� ,t� ] we aggregate the feature with the following statistics: mean,
standard deviation, maximum, minimum and the difference of the feature values
between the time t� and t� .

4.3 Classification model
We model our problem as a binary classi“cation task, where the target variable is called

Symptom Presence and the possible values of the label are {Yes/No}, that is if a user has or

not at least one of the symptoms. Given a target date, our ultimate goal is to understand

if a user will present or not symptoms in the forthcoming days by looking into its very re-

cent mobility behavior. We expect to capture even slight changes in the mobility behavior

(e.g. changes in covered distance) that can testify an upcoming ”u and cold symptoms.

Formally, given a datet we de“ne:

• thist as the number of days we go back in individual’s historical data from the date t;
• historical time interval as the time interval [t …thist,t];
• thor as the number of days ahead we answer our Symptom Presence: Yes/Not question.
To sum up, we assign the labelSymptom Presence: Yes to a user who presents ”u-like

and cold symptoms at timethor, by using historical data in the interval [t …thist,t].
Due to the limited size of the data set, we decide not to built a speci“c model for each

user. Indeed, we design a relatively general machine learning framework that can work for

each useru. A sample for the model is built when more than three consecutive days of mo-

bility data are available. Thus, given a datet, we consider valid a time window of “ve days

if the following conditions are satis“ed: (i) mobility data forthist ∈ [�, �], and (ii) symptoms

data for the time thor ∈ [�, �]. As mentioned in Section � , the data set contains gaps (i.e.

location points and symptoms are not available for every day). Thus, it is possible that for
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Figure 3 Example of problem setting with thist = 2 and thor = 2.

some samples we do not have symptoms information for all thethor ∈ [�, �]. In order to

keep the dimension of train/test consistent and independent from the horizon time, we

created di�erent training and test sets for eachthor. In this way, we avoid the possibility to

have training samples with missing classi“cation labels.

In Figure� we present a toy example of the prediction task and the constraints that apply

for thist = � and thor = �. Given a starting dayt (e.g. March, �th), we impose two constraints

on each participant: (i) her/his mobility data must be available from dayt until two days

back in the past (e.g. from March, �th until March, �th), and (ii) her/his health data must

be available from dayt up to two days in the future (e.g. from March, �th until March,

�th). Those constraints lead to strict requirements in terms of data availability that can not

always be ful“lled, because of the limitations in both data sets. Due to the aforementioned

constraints we end up with a “nal set of �� (�� males and �
 females) users out of 
�.

On the one hand the reduction of the sample size may a�ect the generalization of the

results, but it allows us to strengthen the analysis by exposing all remaining users to equal

experimental settings.

As previously said, among the symptoms described in Section� , we classify if a user

will present at least one instance offever, sore throat, cough, shortness of breath, headache,

muscle pain, malaise, or cold. Although we selected a period of the year with many cases

of ”u-like and cold symptoms, we dealt with a highly unbalanced data set, meaning that

the dominant class is theNO for the Symptom Presence variable. We used the common

approach to randomly under-sample the data set by removing samples from the over-

represented class. To give an example, witht = Wednesday we want to know if a user

u will present ”u-like and cold symptoms att + � = Friday considering her/his previous

mobility behaviors from the time intervalt … � =Monday, t = Wednesday.

In order to carry out our experiments, we split the data set in two parts: train and test.

Then, we extract the features described in Section�.� . For the classi“cation task, we test

four state-of-the-art machine learning models: Logistic Regression (LR) [�� ], Random

Forest (RF) [�	 ] and Gradient Boosted Trees (GBT) [�� ]. We selected these models be-

cause of their demonstrated e�ectiveness and, hence, popularity.

Due to the high number of features and the limited number of samples (i.e. �
� sam-

ples), we perform a feature selection step. For each classi“cation model we evaluated sev-

eral feature selection approaches by using ��-fold-cross-validation. Then, for each model

we selected the best one. We found that Recursive Feature Elimination (RFE) is the best-

performing feature selection method when using Logistic Regression (LR), Random Forest

(RF), and Gradient Boosted Trees (GBT). We evaluate the quality of the feature selection

through ��-fold-cross-validation, training the models with the reduced set of features on
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the training set. At this point, we can proceed with the parameters• optimization for each
model by using the selected set of features. In both, feature selection and parameters se-
lection, we choose an optimal set in order to maximize the precision of the algorithm. The
last step regards the selection of the best model. Again, through cross-validation, we train
each model with its best set of features and the optimal parameters selecting the one that
shows the highest precision.

5 Results
In our experiments we compare three di�erent models (LR, RF, GBT) to classify if a user
will present ”u-like and cold symptoms or not (i.e. fever, sore throat, cough, shortness of
breath, headache, muscle pain, malaise, or cold) at a timethor. To train our models, we
use the machine learning library scikit-learn [�
 ]. Due to the unbalanced nature of our
data set, we use well-known metrics for assessing the accuracy of classi“cation systems:
(i) Precision, (ii) Recall, (iii) F�-score, and (iv) AUCROC. Precision is de“ned as the ratio

tp
tp+fp , wheretp is the number of true positives andfp is the number of false positives, while
Recall is de“ned as the ratio tp

tp+fn , wheretp is the number of true positives andfn is the
number of false negatives, which are samples erroneously not labeled as belonging to the
positive class. F�-score is the harmonic mean of Precision and Recall. Finally, AUCROC
refers to the Area Under the Receiver Operating Characteristic curve and provides infor-
mation about the ability of the models to correctly classify users with or without ”u-like
and cold symptoms.

5.1 Symptoms classification
In Table � we present the classi“cation results in terms of (i) Precision, (ii) Recall, (iii) F�-
score, and (iv) AUCROC. We report the di�erent performances forthist ∈ […�, �] and thor ∈
[�, �]. The results are obtained with ��-fold-cross-validation and using the best setup for
each di�erent model.

As expected, we observe that mobility features are relevant for predicting the presence
of ”u-like and cold symptoms. Interestingly, we obtain one of the best classi“cation per-
formance using Gradient Boosted Trees (GBT) withthist = � and thor = � (AUCROC of
�.��, a Precision score of �.
�, a Recall score of �.�
, and F�-score of �.�). This is a con-
sequence to the fact that people may change their mobility habits during the days before
the self-reported registration of ”u-like and cold symptoms, i.e. they change the mobility
once they start to feel not very well. For instance, if a person is getting sick, he/she would
likely go home after work instead of doing other activities.

Table 3 Precision (Pr.), Recall (Re.), AUCROC and F1-score of the classifiers obtained with
10-fold-cross-validation and variations of thor and thist

thist = 0 thist = 1 thist = 2
Pr. AUCROC Re. F1 Pr. AUCROC Re. F1 Pr. AUCROC Re. F1

thor = 0 LR 0.67 0.5 0.96 0.79 0.67 0.5 1.0 0.8 0.68 0.51 1.0 0.81
RF 0.68 0.51 0.72 0.7 0.71 0.56 0.74 0.73 0.73 0.59 0.78 0.75
GBT 0.69 0.53 0.81 0.74 0.74 0.61 0.84 0.79 0.7 0.56 0.82 0.76

thor = 1 LR 0.68 0.5 0.93 0.78 0.67 0.49 0.95 0.78 0.68 0.52 0.96 0.8
RF 0.74 0.6 0.73 0.73 0.71 0.55 0.76 0.73 0.7 0.54 0.72 0.71
GBT 0.7 0.54 0.77 0.73 0.74 0.62 0.87 0.8 0.71 0.56 0.8 0.75

thor = 2 LR 0.68 0.51 0.99 0.81 0.68 0.51 0.91 0.78 0.68 0.5 0.95 0.79
RF 0.71 0.55 0.76 0.73 0.73 0.58 0.72 0.73 0.72 0.57 0.74 0.73
GBT 0.71 0.55 0.85 0.77 0.72 0.57 0.81 0.76 0.72 0.57 0.84 0.77
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Table 4 The confusion matrix for the two-class classification task

No symptoms Symptoms

No symptoms 0.32 0.68
Symptoms 0.18 0.82

Secondly, we can observe that as more days ahead we consider, more di
cult it becomes

to classify correctly the presence of symptoms by only looking at the mobility behaviors.

This reveals an interesting aspect related to the fact that there is a short time period (e.g.

few days) between feeling bad and reporting the symptoms. In summary, the obtained

results suggest that mobility behavior can be used for our purpose, but only looking at a

short period in the future (e.g.thor = �) and considering a limited historical period. A long

history of mobility data seems to be not relevant, a bigger sample size might be useful to

better understand this point.

Moreover, for all the built models the following selected features (see Section�.� )

emerge as the most important ones in predicting correctly the presence of symptoms:

(i) the diversity of visited places, (ii) the unique number of visited places, (iii) the number

of di�erent signi“cant visited places, (iv) the number of moving geo-location points and

(v) the aggregated mobility features. The “rst three features (i.e. diversity, unique num-

ber of visits and number of di�erent signi“cant visits) e�ectively capture a daily mobility

routine of an individual. While the moving geo-location points quantify only the moving

patterns of the participant, without considering the stops in places. Finally, the aggregated

mobility features summarize the essential short-term history in people•s mobility to detect

changes (i.e. the aggregated mobility behavior during the crucial days before reporting the

symptoms).

To summarize, the signi“cant features belong to three di�erent families: (i) visited

places• routine, (ii) moving behavior and (iii) overall short-term historical mobility be-

havior.

For sake of completeness, we also report in Table� the confusion matrix for the case

thist = � and thor = � using Gradient Boosted Trees (GBT), which refers to the best results in

the setting of predicting future presence of ”u-like and cold symptoms, i.e. one day ahead.

The confusion matrix describes the performance of our classi“cation model on the test

set. We can observe that our model presents a su
ciently high accuracy in classifying the

presence of symptoms while, mainly due to the di
cult nature of the problem and the wide

variety of symptoms we are considering, the performance with respect to the classi“cation

of the not presence of symptoms shows room for improvement.

Turning to the limitations of our study, we list the small number of study participants

used in our analyses (i.e. �� individuals) and the short temporal duration of our study

(i.e. only � weeks). However, it is worth noticing that the epidemic curve of ����-����

in”uenza season presents a peak during the four weeks selected for our study. In addi-

tion, the symptoms data are self-reported by the study participants. Finally, our sample is

composed by parents. Hence, it may be plausible that the predictive performance of our

approach is a�ected also by the changes in parents• mobility behavior related to the health

status of the kids. For example, a parent may change her/his mobility behaviors in order

to take the children to the doctor or to stay at home with the sick children. Moreover, the

parent may get sick from her/his children, thus showing the symptoms few days later. Un-

fortunately, we do not collect data about the health status of the children due to privacy
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reasons. Therefore, future studies on di�erent samples of study participants (e.g., students,
older adults) should be conducted to better investigate the predictive role of changes in
human mobility behaviors for the emergence of ”u-like and cold symptoms.

6 Conclusions
In this paper we have shown how to use individuals• mobility behavior for a novel and
challenging task: predicting the future presence of ”u-like symptoms such as fever, cough
and cold. To this end, we used the mobility information collected by mobile phones and the
daily self-reported ”u-like symptoms of �� individuals in the time interval from February
�� to March �� of ����. Previous work has exploited the use of mobility features to predict
mental health and well-being dimensions such as positive and negative emotions, stress
level, and depression symptoms. To best of our knowledge, this work represents the “rst
study that utilizes inference algorithms to predict the presence of in”uenza-like symptoms
by only looking at the mobility behaviors of a speci“c individual. Our results represent a
promising starting point for dealing with in”uenza-like public health issues. The evolution
of our proposed methodology could have signi“cant societal impact opening the way to
customized mobile phone applications, which may detect the users• condition and suggest
speci“c actions to them in order to prevent disease spreading and minimize the risk of
contagion.

In the future we plan to evaluate the predictive performance of models combining mo-
bility information and communication interactions (e.g., number of calls, number of dif-
ferent contacts and so on).
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