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Abstract. We study the convex geometry of certain invariant manifolds,

known as carrying simplices, for 3-species competitive Kolmogorov-type maps.

We show that if all planes whose normal bundles are contained in a fixed closed
and solid convex cone are rendered convex (concave) surfaces by the map, then,

if there is a carrying simplex, it is a convex (concave) surface. We apply our

results to the May-Leonard map.

1. Introduction. We consider a class of diffeomorphisms that map the first or-3

thant of Euclidean space into itself, and that are competitive. As shown by Takáč4

[31], such maps genetically possess codimension-1 invariant manifolds, and no two5

distinct points on these manifold can be ordered (the manifold is said to be un-6

ordered). For the subclass of competitive maps we consider here there is a single7

codimension-1 unordered invariant manifold that attracts all nonzero orbits. M.8

L. Zeeman named such manifolds carrying simplices. In particular we study the9

convex geometry of the carrying simplex for the three-species May-Leonard map, a10

map that models growth of three interacting populations. For three dimensions, the11

carrying simplex is a compact surface in the first orthant which projects one-to-one12

onto the two-dimensional unit probability simplex. The carrying simplex thus di-13

vides the first orthant into two components: below the simplex, the component that14

contains the origin, and above the simplex. We will say that the carrying simplex is15

convex when the set below is a convex set (see below for definitions), and concave16

when the set above is convex. Considered as a surface, a convex carrying simplex,17

as just defined, is a concave surface (taking the surface normal to point above the18

surface) and is the graph of a concave function, and a concave carrying simplex is19

a convex surface.20

A convex surface can be expressed as the supremum of its supporting planes,21

and, as we show, if each supporting plane is mapped to a new convex surface, then22

the image of the current surface under the map is also convex. A similar idea works23

for concave surfaces. We take flat surfaces formed of the convex hull of three axial24

points and iterate forward until the iterates converge to the carrying simplex. For25
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each surface iterate we consider the set of all tangent planes to that surface. We1

show that if all such tangent planes are rendered convex by the map, the next2

iterate is also convex. However, only a certain subset of planes are rendered convex3

by the map, namely those whose normal bundle belongs to a solid convex cone that4

depends on the specifics of the map. Convexity of the evolving surface, and of the5

carrying simplex, can then be established by showing that the normal bundle of6

each surface iterate lies in a fixed closed and solid convex cone.7

2. Background. The carrying simplex is a codimension-1 unordered invariant8

manifold that attracts all nonzero orbits which has been studied in the context9

of competitive dynamics (see definition 4.1 below). The origins of the carrying sim-10

plex for continuous time systems can be traced to Hirsch [10] and for discrete-time11

models de Mottoni and Schiaffino [6] and Smith [29]. It coined its name in an arti-12

cle by Zeeman [35] where asymptotic dynamics on the carrying simplex were used13

to classify 3-dimensional competitive Lotka-Volterra systems into 33 equivalence14

classes. Other authors have refined results for existence of the carrying simplex,15

and used these to unravel the long-term dynamics of competitive systems from16

ecology [28, 7, 14, 13, 15, 16, 25, 17].17

The geometry of the carrying simplex is a newer area of research, particularly18

for the case of maps. Convexity of the carrying simplex for planar competitive19

Lotka-Volterra systems was first studied by M. L. Zeeman and E. C. Zeeman [34],20

and later revisited for the same model by Tineo [32] who showed that the carrying21

simplex was either convex or concave, dependent on the sign of a single parameter.22

Baigent [3] provided an alternative proof of Tineo’s result via a dynamical approach23

based upon the graph transform. He showed that the parameter that determined24

convexity or concavity was proportional to the initial rate of change of curvature25

of the straight line joining the axial fixed points. Convexity or concavity of the26

carrying simplex of 3-dimensional Lotka-Volterra systems were first studied by M.27

L. Zeeman and E. C. Zeeman [34]. Later Baigent used the evolution equations28

for the 2nd fundamental form of each graph iterate in the graph transform [1]29

to establish examples where the carrying simplex was either convex or concave.30

For maps, Baigent recently established that the dichotomy between convexity or31

concavity of the carrying simplex carried over from the planar competitive Lotka-32

Volterra model to the planar discrete-time Leslie-Gower model [2].33

Here we extend some of these ideas to the three-species discrete-time Leslie-34

Gower model in the symmetric case, which we refer to as the May-Leonard model35

(see equation (8) below). Figure 1 shows examples of a convex and a concave36

carrying simplex for the May-Leonard map.37

In [3, 1, 2] confining the normal of evolving surfaces to a suitable convex cone38

K plays a key role, and continues to do so in the present paper since typically only39

planes with normals belonging to a closed and solid convex cone K are mapped to40

convex or concave surfaces. It is then a question of showing that the normals of the41

evolving surfaces remain within the cone K. Finding a suitable cone is typically not42

straightforward, and is sometimes (see section 12) linked to finding a cone K for43

which the map is K−competitive or equivalently that its inverse is K−monotone44

(see definitions below).45

3. Preliminaries. We take the convention that vectors are treated as column vec-46

tors and appear in boldface. Let K ⊆ C+ := R3
+, where R+ = [0,∞), be a closed47

and solid convex cone (i.e. λK ⊆ K for λ > 0, K +K ⊂ K, K ∩ (−K) = {0}, the48
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Figure 1. Carrying simplices for the May-Leonard model (8) with
r = 2. Left: Convex carrying simplex for α = 3/4, β = 2/3 (see
example 11.2). Right: Concave carrying simplex α = 5/4, β = 7/6
(see example 11.1).

interior K0 of K is non-empty and K is closed). (For a set S, we use S0 to denote1

its interior.) The cone K induces an ordering ≤K on R3 via x ≤K y if and only if2

y−x ∈ K. We also write x <K y if x ≤K y and x 6= y and x�K y if y−x ∈ K0.3

Two distinct points x,y are order-related if either x <K y or y <K x, else they4

are unrelated. The case K = C+ is the standard nonnegative cone order, and we5

will write ≤, <,� for the order relations in this case. We will use x · y to denote6

the usual inner product on R3 and ‖x‖ =
√
x · x the Euclidean norm. The points7

ei ∈ C+ are those unit vectors with components (ei)j = δij , i, j ∈ I3 := {1, 2, 3},8

(where δij = 1 if i = j and δij = 0 if i 6= j). P ? denotes the transpose of the (real)9

matrix P . By B(x, r) we mean an open ball radius r > 0 in R3 centred on x.10

Definition 3.1 (K-monotone map). We say that a map S : C+ → C+ isK−monotone11

if x ≤K y implies S(x) ≤K S(y).12

Definition 3.2 (K-Competitive map). We say that a map T : C+ → C+ is13

K−competitive if x ≤K y whenever T (x) ≤K T (y).14

This is the definition, for example, used by many other authors (e.g. [33, 12, 28,15

2]), which assume that T is orientation preserving. Other authors, e.g. [30, 17] allow16

for T to be orientation reversing. Here our assumptions on T , stated in section 4,17

imply that it is orientation-preserving.18

When K = C+ we will omit the prefix K− and simply say that the map is19

competitive in place of C+−competitive.20

Definition 3.3 (Strongly K-competitive map). We say that a map T : C+ → C+21

is strongly K−competitive if x�K y whenever T (x) <K T (y).22

Notice that when T : C+ → T (C+) is a K−competitive diffeomorphism, T−1 :23

T (C+) → C+ is a monotone map for the order ≤K defined by the cone K, i.e.24

x ≤K y ⇒ T−1(x) ≤K T−1(y). For an open set Y ⊂ R3, when T ∈ C1(Y ) and25

DT is nonsingular on Y then T is strongly competitive on Y if 0 � DT−1(x) for26

x ∈ Y . We denote by T k the composition of T with itself k times.27

Definition 3.4 (Closed order interval). We set [x,y] = {a ∈ C+ : x ≤K a ≤K y}.28
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Definition 3.5 (Unordered set). A subset X ⊂ Rd is unordered if it does not1

contain any order-related points.2

Definition 3.6 (T−forward-invariant cone). We say that the cone K ⊆ C+ is3

T−forward-invariant if T (K) ⊆ K (i.e. T (x)K ⊆ K for all x ∈ C+).4

Definition 3.7 (T−invariant cone). We say that the cone K ⊆ C+ is T−invariant5

if T (K) = K.6

Definition 3.8 (∆(·)). For a ∈ C0
+ we let ∆(a) = {x ∈ C+ : a ·x = 1}. Thus ∆(a)7

is the convex hull of the points {a−1
i ei : i ∈ I3}. We will use the special notation8

∆2 in place of ∆((1, 1, 1)), the unit probability simplex, and ∆(q−1) is the convex9

hull of {q1e1, q2e2, q3e3} using the notation q−1 = (1/q1, 1/q2, 1/q3).10

Definition 3.9 (Cofactor matrix). Let P be a real square matrix. Then the cofactor11

matrix of P , denoted by P# is the matrix whose i, jth element is the determinant12

of the matrix P obtained by removing the ith row and jth column from P . Thus13

when P is invertible, P# = detP (P−1)?.14

Definition 3.10 (Kolmogorov-type maps). We say that T : C+ → C+ is a15

Kolmogorov-type map if T = (T1, T2, T3) has Ti(x) = xifi(x) for i ∈ I3 and16

fi : C+ → C+ is at least continuous.17

4. The Carrying Simplex. As explained in the introduction the geometrical ob-18

ject that we are concerned with is a codimension-1 Lipschitz invariant manifold19

known as the carrying simplex (see Figure 1 for examples).20

We use the definition of a (d − 1)-dimensional carrying simplex (d ≥ 1 integer)21

provided by Hirsch [11]:22

Definition 4.1 (Carrying simplex). The carrying simplex is a set Σ ⊂ Rd+ \ {0}23

that is compact, invariant and unordered, and such that for each x ∈ Rd+\{0} there24

is a y ∈ Σ such that limk→∞ ‖T k(x)− T k(y)‖ → 0.25

The study of the carrying simplex for maps, although not referred to as the26

carrying simplex at the time, began with the study of evolution equations with27

periodic coefficients and a review of some of these results can be found in [9]. To28

the best of the author’s knowledge, carrying simplices as defined in 4.1 have only29

been studied in the context of maps that are competitive for the standard cone30

C+. While Hirsch’s definition does not require T to be competitive, most proofs of31

existence of the carrying simplex assume that the map T is competitive.32

For more recent existence theory for the carrying simplex for competitive maps33

the reader is referred to [33, 28, 15].34

If Σ is continuously differentiable, then the unorderedness of Σ translates into its35

normal bundle being contained in C+ [1]. It is an open question as to exactly when Σ36

is differentiable on its interior, but much progress has been made obtaining sufficient37

conditions for Σ to satisfy various smoothness properties [22, 21, 5, 4, 23, 12]. In38

two recent articles [24, 20] Mierczyński has shown that convex carrying simplices39

are C1. We will not need to know whether Σ is smooth to establish its convexity40

or concavity.41

SA: Standing assumptions on T42

1. T : C+ → C+ is a Kolmogorov-type diffeomorphism with Ti(x) = xifi(x)43

where each fi is at least C1 smooth in a neighbourhood of C+;44
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2. f � 0 on C+ and f(0)� (1, 1, 1);1

3. T has axial fixed points (q1, 0, 0), (0, q2, 0) and (0, 0, q3);2

4. ∂fi/∂xj < 0 for all i, j ∈ I3 on C+;3

5. For all x ∈ [0, q] \ {0} the matrix M(x) whose i, jth entry is −xi ∂ log(fi)
∂xj

has4

spectral radius less than one.5

These standing assumptions that we place on our map T : C+ → C+ are sufficient6

to ensure the existence of the carrying simplex (e.g. Theorem 3.1 in [15] and see also7

[28]). In particular, standing assumption 5 implies that T is orientation-preserving.8

Now we show that the carrying simplex Σ can be constructed from a particular9

sequence of images of a plane under the map T . Consider the sequence of surfaces10

{Σk}∞k=0 where Σ0 = ∆(q−1) (the convex hull of the axial fixed points):11

Σk = T k(Σ0), Σ0 = ∆(q−1), Nk = normal bundle of Σk. (1)

Note that Σk is unordered for each k ∈ Z+. Indeed if for some integer k ≥ 1 there12

are two distinct points x,y ∈ Σk such that x and y are related, then their preimages13

must have been related by the definition of a competitive map. Using induction,14

and that Σ0 is unordered, this provides a contradiction.15

Σ1 = T (∆2) is a simply-connected set. Since T is of Kolmogorov type, it maps16

the boundary ∂C+ into itself. In particular, the edge E12 of ∆2 joining q1 to q2 is17

mapped by T to an unordered curve connecting q1, q2 and lying in the plane where18

z = 0. Similarly for the other two edges of ∆2. Hence we see that ∂(T (∆2)) is a19

closed curve in ∂C+ that projects radially onto ∂∆2. The radial projection onto ∆220

of Σ1 is a simply-connected subset of ∆2 and ∂Σ1 is a closed curve that projects21

radially onto ∂∆2, so that Σ1 must project radially onto ∆2.22

We conclude that Σ1, and by induction Σk for all k ≥ 1, is an ordered surface23

that projects radially one-to-one and onto ∆2. Accordingly, with each Σk we may24

associate a continuous function Rk : ∆2 → R for which Σk = {Rk(u)u : u ∈ ∆2}.25

We will show that Σk → Σ uniformly in the following sense: Each Σk can be26

written as Σk = {Rk(u)u : u ∈ ∆2} where Rk : ∆2 → R is continuous and Rk → R∗27

uniformly where R∗ : ∆2 → R is continuous and Σ = {(R∗(u)u,u ∈ ∆2}.28

Lemma 4.2. If a surface S ⊂ R3 is unordered, then S is a Lipschitz manifold with29

Lipschitz constant less than or equal to
√

3√
3−
√

2
.30

Proof. Denote by H the plane with normal n = (1, 1, 1)/
√

3 passing through the31

origin and π : R3 → H projection onto H along n. Let x,y ∈ S be distinct. Then32

x = π(x) + n · (x − π(x))n and y = π(y) + n · (y − π(y))n. Thus x − y =33

π(x)− π(y)−n · (x− y)n so that ‖π(x)− π(y)‖2 = ‖x− y + ((x− y) ·n)n‖2 ≥34

|‖x−y‖2−‖((x−y) ·n)n‖2| = ‖x−y‖|2(1−| cos θ|)|, where θ is the angle between35

n and x − y. Now x,y are unordered, so that x − y 6∈ C+ ∪ (−C+). But then36

| cos θ| < (1,1,0)√
2
· (1,1,1)√

3
=
√

2
3 . This shows that ‖x− y‖2 ≤

√
3√

3−
√

2
‖π(x)− π(y)‖237

for all x,y ∈ S. Hence S is a Lipschitz manifold with Lipschitz constant less than38

or equal to L∗ :=
√

3√
3−
√

2
.39

The following lemma was inspired by [27].40

Lemma 4.3. Let Θ ⊂ Rd be compact and ϕk : Θ → R be a sequence of functions41

with Lipschitz constant at most L. Suppose that ϕk → ϕ pointwise, where ϕ is42

Lipschitz. Then ϕk → ϕ uniformly.43
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Proof. For each x,y ∈ Θ we have |ϕk(x) − ϕk(y)| ≤ L‖x − y‖ for all k and1

|ϕ(x)− ϕ(y)| ≤M‖x− y‖. Thus for each ε > 0, and each x,y ∈ Θ,2

|ϕk(x)− ϕ(x)| ≤ |ϕk(x)− ϕk(y)|+ |ϕk(y)− ϕ(y)|+ |ϕ(y)− ϕ(x)|
≤ (L+M)‖x− y‖+ |ϕk(y)− ϕ(y)|.

Since Θ is compact, given ε > 0, Θ can be covered by a finite number, say Nε,3

of balls B
(
yi,

ε
2(L+M)

)
, i ∈ INε . For each x ∈ Θ there is an i ∈ INε such that4

x ∈ B
(
yi,

ε
2(L+M)

)
. By pointwise convergence, there is an N such that |ϕk(yj)−5

ϕ(yj)| < ε
2 for k ≥ N , for all j ∈ INε . Hence, given ε > 0, for all x ∈ Θ, there6

exists an N such that7

|ϕk(x)− ϕ(x)| ≤ (L+M)‖x− yi‖+ |ϕk(yi)− ϕ(yi)|

≤ ε

2
+
ε

2
= ε for all k ≥ N.

8

By lemma 4.2 each Σk is the graph of a Lipschitz function φk : π(Σk) → R9

with Lipschitz constant less than or equal to L∗ =
√

3√
3−
√

2
. By [19] each φk can be10

extended (or restricted) to a Lipschitz function φk : Θ→ R where Θ = π(Σ) and Σ is11

the carrying simplex. Σ is globally attracting and unordered, and can be represented12

as the graph of a Lipschitz function φ∗ : π(Σ)→ R and {φk}∞k=0 converges pointwise13

to φ∗. Hence by lemma 4.3 φk → φ∗ uniformly. Finally maxu∈∆2
|Rk(u)−R∗(u)| ≤14 √

3 maxy∈Θ |φk(y)− φ∗(y)| so that Rk → R∗ uniformly.15

5. Convexity or concavity of the carrying simplex. Next we expand upon16

the use of ‘convex’ and ‘concave’, such as for surfaces and sets in R3. We use the17

standard definition that a set U ⊂ R3 is convex if whenever x,y ∈ U are distinct18

points then tx+ (1− t)y ∈ U for all t ∈ [0, 1].19

Let S be a smooth, regular and connected surface in R3. At each point x ∈ S0,20

let B(x, r) ⊂ R3 be any open ball radius r such that B(x, r) is divided into two21

disjoint components by S. Next choose one of the two unit normal vectors at x,22

and denote this vector by n+. The choice of n+ determines an orientation of S (a23

normal field). We denote by B+(x, r) the component of B(x, r) that the normal24

n+ points into, and B−(x, r) the component that −n+ points into, so that B(x, r)25

is the disjoint union B(x, r) = B+(x, r) ∪ (B(x, r) ∩ S) ∪B−(x, r).26

Definition 5.1 (Convex/Concave surface). We say that S is convex at x if for27

all sufficiently small r > 0 the set B+(x, r) is convex. We say that S is convex if28

S is convex at each point of S. Similarly we say that S is concave at x if for all29

sufficiently small r > 0 the set B−(x, r) is convex. We say that S is concave if S is30

concave at each point of S.31

Here, most of the surfaces S we meet are unordered, which means that they are32

graphs of decreasing functions, and we choose an orientation where the normal is33

nonnegative. This means that when S is convex, it is the graph of a function that34

is convex (on each convex subset of its domain).35

The following definition is in line with the definition originally given by E. C.36

Zeeman and M. L. Zeeman [34]. Warning: it can sometimes lead to confusion since37

it equivalently defines a carrying simplex Σ to be convex when the set in C+ below38

Σ is convex, which is when Σ is a concave surface.39



CARRYING SIMPLEX FOR THE MAY-LEONARD MAP 7

Definition 5.2 (Convex/Concave carrying simplex [34]). The carrying simplex Σ1

is said to be convex(concave) when it is a concave(convex) surface.2

In Figure 1 for example, the left plot is that of a convex carrying simplex for the3

map (8) and the right plot is that of a concave carrying simplex for the map (8).4

6. Main result. We now come to our main theoretical result, namely the following5

construction of convex or concave carrying simplices in 3 dimensional space based6

upon a reduction to the action of the map T on planes.7

Theorem 6.1 (Convex/Concave carrying simplices). Let T : C+ → T (C+) satisfy8

the standing assumptions SA, and let Σ denote the carrying simplex. Let K ⊂ C0
+9

be a closed and solid convex cone containing q−1 and such that for all a ∈ K10

the surface T (∆(a)) is strictly concave (strictly convex) and its normal bundle is a11

subset of K. Then Σ = limk→∞ T
k(∆(q−1)) is a convex (concave) carrying simplex.12

We prove this theorem in section 7.13

7. Mappings of planes to convex or concave surfaces. Let φa(x) = a ·x−1,14

x ∈ R3, a ∈ R3. The set φ−1
a (0) = {x ∈ R3 : φa(x) = 0} is the plane that passes15

through the points a−1
i ei, i ∈ I3 and φ−1

a (0)∩C+ = ∆(a). Thus by suitable choices16

of a ∈ C+ we may generate all planes with nonnegative normals.17

Under the diffeomorphism T : C+ → T (C+), the zero set of φa in C+ is trans-18

formed to the zero set of Lφa : T (C+)→ R where19

Lφa(x) = a · T−1(x)− 1. (2)

Our concern is the geometry of the level sets (Lφa)−1(0) (⊂ T (C+)) for different20

a ∈ C+, and in particular when they are convex or concave (see Figure 2). Let us

T (Δ(a)) = Lφ
a
−1(0)

 T →

  Δ(a) = φ
a
−1(0)

  1 a
1

  1 a
3

  1 a
2

 x  x

 y  y

 z  z

  φa
(x ) = a ⋅ x −1   Lφa

(x ) = φ
a
(T −1(x ))

Figure 2. Mapping of ∆(a) by T to the new set T (∆(a))
21

consider the evolution of the normal of a surface S given implicitly as the zero set22

of some smooth φ : C+ → R. For z ∈ C+, Dφ(z) ∈ Nz (the normal bundle at z),23

and24
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Lemma 7.1. With φ′ = Lφ = φ ◦ T−1,1

Dφ′(x) = (DT−1(x))?Dφ(z) =
1

detDT (z)
DT#(z)Dφ(z), x = T (z).

Proof. Apply the chain rule.2

Given an open set U ⊂ R3 and a smooth φ : U → R, the Gaussian curvature κ3

at a regular point x ∈ U (i.e. where Dφ(x) 6= 0) can be found from the well-known4

formula (e.g. [8])5

κ(x) =
Dφ(x) · (D2φ(x))#Dφ(x)

|Dφ(x)|4
, x ∈ U. (3)

In practice, to study the convexity or concavity of smooth surfaces given implicitly6

as the zero set φ−1(0), at a regular point x ∈ φ−1(0) we can appeal to the simpler7

expression8

κ0(x) = Dφ(x) · (D2φ(x))#Dφ(x), (4)

since κ0(x) in (4) has the same sign as κ(x) in (3).9

7.1. Proof of Theorem 6.1. Let S ⊂ C+ be a surface that projects radially10

one-to-one and onto ∆2. If S is the surface {R(u)u : u ∈ ∆2}, then we define11

S− = {ru : 0 ≤ r < R(u),u ∈ ∆2} and S+ = {ru : r > R(u),u ∈ ∆2}.12

Proof. We start with the case of a convex carrying simplex Σ (so that Σ− is a13

convex set).14

Consider the sequence (1), i.e. let Σ0 = ∆(q−1) and Σk = T k(Σ0), k ∈ Z+, so15

that Σ = limk→∞Σk. By the hypothesis of the theorem, Σ1 = T (Σ0) = T (∆(q−1))16

is a strictly concave surface, since q−1 ∈ K. Since each qi, i ∈ I3 is a fixed point,17

and Σ1 is a strictly concave surface, Σ1 lies on or above ∆(q−1) and the intersection18

of C+ with every tangent plane to Σ1 is of the form ∆(a) for some a ∈ K. Hence19

the normal bundle N1 ⊆ K is such that (Σ1)− =
⋂
a∈N1

(∆(a))−. We then have20

(Σ2)− = T (Σ1)− =
⋂
a∈N1

T (∆(a))− which is convex, since each T (∆(a)) is a21

strictly concave surface, and Σ2 = T (Σ1) is a strictly concave surface. Continuing22

the argument shows that each Σk is a strictly concave surface and by preservation23

of concavity in the limit (e.g. [26]), Σ is a concave surface, and therefore a convex24

carrying simplex.25

Next, we consider the case where Σ is a concave carrying simplex. Now the26

Σ1 = T (Σ0) = T (∆(q−1)) is strictly convex surface, since q−1 ∈ K. The set (Σ1)+27

is convex and can be written as the intersection (Σ1)+ =
⋂
a∈N2

(∆(a))+ where28

N2 ⊆ K is the normal bundle of Σ1. Then T ((Σ1)+) =
⋂
a∈N2

T (∆(a))+ which29

is convex since each T (∆(a))+ is a strictly convex surface, and Σ2 = T (Σ1) is a30

strictly convex surface. As in the case of a convex carrying simplex we obtain a31

sequence of surfaces, but now all strictly convex, that converge to a convex surface32

Σ, and hence Σ is a concave carrying simplex.33

8. Putting bounds on the set of supporting planes to T (∆(a)). In this34

section we show how the containment of the normal bundle sequence {Nk}∞k=0 (see35

(1)) in some solid convex cone K ⊂ C0
+ of each Σk in (1) can be used to restrict36

which a ∈ C0
+ need to be tested to see whether T (∆(a)) is a convex or concave37

surface. In Figure 3 we highlight the key difference between the convex and concave38

case. In the case when Σk is a convex surface, tangent planes meet the boundary39
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on or inside the order interval [0, q], whereas in when Σk is a concave surface they1

meet the boundary on or outside [0, q].2

Recall from (1) that the carrying simplex Σ is obtained as the (uniform) limit3

Σ = limk→∞ T
k(∆(q−1)). Suppose that each normal bundle of Σk, Nk, is a subset4

of K ⊂ C0
+ for k ∈ Z+. Fix some k ≥ 1.5

If Σk = T k(∆(q−1)) is a concave surface, then since the normal bundle Nk of6

Σk is positive, out of all its supporting planes, there is one which cuts the x−axis7

furthest from the origin, say xk. Then xk is bounded above by the maximum8

intercept xmax on the x−axis of all planes through each of the axial fixed points q39

and q2 whose normals lie in K. Similarly there are maximum y and z intercepts10

which we name ymax and zmax respectively.

  q1  xmin   q1

 K  K

  q2
  q2

  xmax

 x  x

 Σk
 Σk

  Σk
 convex surface   Σk

 concave surface

Figure 3. Bounds on the intersection of planes with the axes.
Left figure: Convex surface, 0 < xmin < xmax < q1. Right figure:
Concave surface, q1 < xmin < xmax.

11

Let p1,p2,p3 ∈ C0
+ be linearly independent and Kp = R+p1 + R+p2 + R+p3 ⊂12

C0
+. Let P be the matrix whose ith-row is pi, and assume that the pi are ordered so13

that detP > 0. Then every n ∈ Kp can be written as n = λ1p1+λ2p2+λ3p3 = Pλ,14

λ ∈ C+, so that n ∈ Kp if and only if P#n ≥ 0. At q3 = (0, 0, q3), for n ∈ Kp15

there is a tangent plane Π with normal n given by n · x = n3q3. The plane Π cuts16

the x−axis at the point x∗ = n3q3
n1

. To find xmax we must maximise n3q3
n1

over all17

n ∈ Kp, i.e. over all n such that P#n ≥ 0. Hence the maximum of x∗ over all18

possible normals in Kp is19

max
λ∈C+\{0}

q3

(
λ1p13 + λ2p23 + λ3p33

λ1p11 + λ2p21 + λ3p31

)
= max

i∈I3

pi3
pi1

q3.
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If instead we consider planes through the point q2, we obtain the same formula with1

3 replaced by 2. Hence the maximum intercept value of x is2

xmax = max
{

max
i∈I3

pi3
pi1

q3,max
i∈I3

pi2
pi1

q2

}
. (5)

Reasoning in a similar way we have3

ymax = max
{

max
i∈I3

pi1
pi2

q1,max
i∈I3

pi3
pi2

q3

}
, zmax = max

{
max
i∈I3

pi1
pi3

q1,max
i∈I3

pi2
pi3

q2

}
. (6)

Now consider the case where Σk is a convex surface, where we would now like to find4

the lower bound xmin counterpart to the xmax derived just above for the concave5

case. The upper bounds are xmax = q1, ymax = q2, zmax = q3.The same approach6

works, except now we replace maxima by minima:7

xmin = min
{

min
i∈I3

pi3
pi1

q3,min
i∈I3

pi2
pi1

q2

}
, (7)

with similar expressions for ymin and zmin.8

9. Applications to the May-Leonard model.9

9.1. The May-Leonard map. The map that we study here is a symmetric version10

of the Leslie-Gower map from Ecology. We take x = (x, y, z) ∈ C+, α, β > 0 and T11

to be the map12

TML(x) =

(
rx

1 + x+ αy + βz
,

ry

1 + y + αx+ βx
,

rz

1 + z + αx+ βy

)
, r > 1. (8)

In the remainder of the paper we assume with loss of generality that13

α > β. (9)

As shown in [15], TML is competitive and has a carrying simplex Σ for all α, β > 0.14

The geometry of the planar version of (8), obtained by setting z = 0 and taking15

only the first two components of TML, was studied in [2]. The planar carrying16

simplex is exactly the intersection of the 3-dimensional carrying simplex Σ of (8)17

with a coordinate plane. We denote by Σx=0 the intersection of the plane {x = 0}18

with Σ, and similarly for y, z. In [2] Baigent showed that the carrying simplex19

Σz=0 for the planar model (obtained, for example, by setting z = 0 in (8) and20

restricting to the xy−plane) is either convex or concave. Specifically he showed21

that if (1 + α(r − 1))(1 + β(r − 1)) < r2 (> r2) the planar carrying simplex is22

convex (concave). Since the intersection of z = 0 with Σ, say Σz=0 is a planar23

carrying simplex, we see that a necessary condition for a Σ to be a convex (concave)24

carrying simplex is that (1 + α(r − 1))(1 + β(r − 1)) < r2 (> r2). Notice also that25

max{α, β} < 1 (min{α, β} > 1) is a necessary condition for Σ to be a convex26

(concave) carrying simplex. In the sequel our study of convex and concave carrying27

simplices for the 3-species May-Leonard map will be exclusively for these two cases:28

max{α, β} < 1 and min{α, β} > 1.29

The May-Leonard map TML (8) is a diffeomorphism from C+ to ΩML :=30

TML(C+)0 and T−1
ML : ΩML → C+ is given by31

T−1
ML(x) =

1

R(x)

(
x(r2 + r(α− 1)y + (β − 1)z + (1− α− β − αβ + α2 + β2)yz),

y(r2 + r(α− 1)z + (β − 1)x+ (1− α− β − αβ + α2 + β2)xz),

z(r2 + r(α− 1)x+ (β − 1)y + (1− α− β − αβ + α2 + β2)xy)
)
, x ∈ ΩML.
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Here R(x) = r3− r2(x+ y+ z) + r(1−αβ)(xy+ yz+ zx) + (3αβ−α3−β3− 1)xyz.1

Equation (2) becomes, with a = (a, b, c) ∈ C0
+,2

Lφa(x) =
1

R(x)

{
− r3 + r2(a+ 1)x+ r2(b+ 1)y + r2(c+ 1)z

+rxy(a(α− 1) + b(β − 1) + (αβ − 1))

+ryz(b(α− 1) + c(β − 1) + (αβ − 1))

+rxz(c(α− 1) + a(β − 1) + (αβ − 1))

+xyz((1 + α+ β + a+ b+ c)(1 + α2 + β2 − αβ − α− β)
}
, x ∈ ΩML. (10)

Here the expressions 1 + α3 + β3 − 3αβ > 0 and α2 + β2 − αβ − α− β + 1 > 0 for3

all α, β > 0. For the May-Leonard map (8) we are led to the study of the zero level4

sets of functions ψ : ΩML → R of the form5

ψ(x) = b0xyz + b1xy + b2yz + b3zx+ c1x+ c2y + c3z − d, (11)

where, setting α = A+ 1 and β = B + 1,6

b0 = (A2 −AB +B2)(3 +A+B + (a+ b+ c)) (12)

b1 = r(aA+ bB +A+B +AB) (13)

b2 = r(bA+ cB +A+B +AB) (14)

b3 = r(cA+ aB +A+B +AB) (15)

c1 = r2(a+ 1) (16)

c2 = r2(b+ 1) (17)

c3 = r2(c+ 1) (18)

d = r3. (19)

On ΩML it is straightforward to calculate the gradient7

Dψ = (b0yz + b1y + b3z + c1, b0xz + b1x+ b2z + c2, b0xy + b2y + b3x+ c3), (20)

and8

(D2ψ)# =

 −(b2 + b0x)2 (b2 + b0x)(b3 + b0y) (b2 + b0x)(b1 + b0z)
(b2 + b0x)(b3 + b0y) −(b3 + b0y)2 (b3 + b0y)(b1 + b0z)
(b2 + b0x)(b1 + b0z) (b3 + b0y)(b1 + b0z) −(b1 + b0z)

2

 .

Setting9

X(x) = b2 + b0x, Y (x) = b3 + b0y, Z(x) = b1 + b0z (21)

(defined for x ∈ ΩML), we obtain10

b20ψ = XY Z + θ1X + θ2Y + θ3Z + 2b1b2b3 − b0b2c1 − b0b3c2 − b0b1c3 − b20d (22)

where θ1 = b0c1 − b1b3, θ2 = b0c2 − b1b2, θ3 = b0c3 − b2b3. Explicitly, the θi11

conveniently factor into two expressions that are affine in the a = (a, b, c):12

θ1 = r2
(
(A−B)a+Ab+A2 + 2A−B

) (
(A−B)a−Bc− (B2 + 2B −A)

)
θ2 = r2

(
(A−B)b+Ac+A2 + 2A−B

) (
(A−B)b−Ba− (B2 + 2B −A)

)
θ3 = r2

(
(A−B)c+Aa+A2 + 2A−B

) (
(A−B)c−Bb− (B2 + 2B −A)

)
.

(23)
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We also have for the cofactor matrix:1

(D2ψ)# =

 −X2 XY XZ
XY −Y 2 Y Z
XZ Y Z −Z2

 .

The positive factor of b20 is immaterial for the zero set of ψ, so we may drop it from2

the lefthand side in equation (22), and simply work with3

ψ = XY Z + θ1X + θ2Y + θ3Z − γ, (24)

where4

γ = b0b2c1 + b0b3c2 + b0b1c3 + b20d− 2b1b2b3

= b1b2b3 + b2θ1 + b3θ2 + b1θ3 + b20d (25)

and so5

Dψ = (Y Z + θ1, XZ + θ2, XY + θ3).

From (4) we find that6

κ0 = 3X2Y 2Z2 + 2XY Z(θ1X + θ2Y + θ3Z)

+2(θ1θ2XY + θ2θ3Y Z + θ1θ3XZ)− θ2
1X

2 − θ2
2Y

2 − θ2
3Z

2

= (θ1X +XY Z)2 + (θ2Y +XY Z)2 + (θ3Z +XY Z)2

−(θ1X − θ2Y )2 − (θ1X − θ3Z)2 − (θ2Y − θ3Z)2. (26)

Restricted to ψ(X,Y, Z) = 0 we have, using XY Z = γ − θ1X − θ2Y − θ3Z,7

κ0 = (γ − θ2Y − θ3Z)2 + (γ − θ1X − θ3Z)2 + (γ − θ1X − θ2Y )2

−(θ1X − θ2Y )2 − (θ1X − θ3Z)2 − (θ2Y − θ3Z)2

= (γ − 2θ1X)(γ − 2θ2Y ) + (γ − 2θ2Y )(γ − 2θ3Z) + (γ − 2θ1X)(γ − 2θ3Z).

From the foregoing calculations we obtain the basic result that says how the curva-8

ture of a plane ∆(a) changes under the map TML. Note that TML(∆(a)) ⊂ ΩML9

for each a ∈ C0
+.10

Lemma 9.1. Let a ∈ C0
+ be fixed and consider the surface TML(∆(a)). At a point11

x ∈ TML(∆(a)) the Gaussian curvature is (positively) proportional to12

κ0(x) = (γ−2θ1X)(γ−2θ2Y )+(γ−2θ2Y )(γ−2θ3Z)+(γ−2θ1X)(γ−2θ3Z), (27)

where X,Y, Z are defined in terms of x ∈ ΩML and a by (21), γ is defined in terms13

of a via (25) using (12) - (19) and θi in terms of a via (23) using (12) - (19).14

10. The geometry of the May-Leonard carrying simplex. We will study the15

geometry of the carrying simplex of the May-Leonard map for convex and concave16

cases separately. The concave carrying simplex is somewhat simpler to investigate17

because the tangent planes to Σk = T kML(Σ0) all lie below Σ0 = ∆(r−1, r−1, r−1).18

In the convex case, as discussed in section 8, we need to obtain bounds on the19

tangent planes to Σk = T kML(Σ0) which will all lie above Σ0 = ∆(r−1, r−1, r−1),20

and so the intersection of these tangent planes with the axes is more difficult to21

bound. This is where the methods of section 8 become useful.22



CARRYING SIMPLEX FOR THE MAY-LEONARD MAP 13

10.1. Choosing the cone K. Owing to the cyclic symmetry of TML in α, β we1

are lead to consider the following possibility for K.2

Take p1(s) = (s, s2, 1), p2(s) = (1, s, s2) and p3(s) = (s2, 1, s), s > 0. Then3

α1(s) = p2(s)×p3(s) = (1−s3)(0,−s, 1), α2(s) = p3(s)×p1(s) = (1−s3)(1, 0,−s)4

and α3(s) = (1 − s3)(−s, 1, 0). Moreover α1(s) · α2(s) × α3(s) = (s3 − 1)4 > 0 if5

s 6= 1. We set6

KML(s) = R+p1(s) + R+p2(s) + R+p3(s). (28)

Then KML(s) is a closed and solid convex cone when s 6= 1. KML(0) is the first7

orthant C+ and KML(1) is the ray R+(1, 1, 1). When s > 1,8

KML(s) = {(a, b, c) ∈ C+ : a ≤ sc, b ≤ sa, c ≤ sb}. (29)

whereas when s < 1 the inequalities in (29) are reversed.9

In order to obtain some sufficient conditions for κ0 ≥ 0 in (27), our strategy will10

be to establish that each bracketed term is either nonnegative or nonpositive. An11

integral part of this strategy is to determine the signs of γ and θ1, θ2, θ3 in terms of12

the parameters A,B. For this we will need:13

Lemma 10.1.14

1. Suppose that A,B > 0 and a ∈ KML

(
B

A−B

)
. Then γ(a) > 0.15

2. Suppose that −1 < B < A < 0 and a ∈ KML

(
B−A
A

)
. Then γ(a) < 0.16

The proof is given in appendix B.17

10.2. Concave Carrying Simplices: The case min{α, β} > 1. It is known [2]18

that when min{α, β} > 1 (and r > 1) the planar carrying simplices Σx=0,Σy=0,Σz=019

are all concave, so in this case we are seeking further conditions for Σ to be concave.20

Since we have the standing assumption α > β, in the case min{α, β} > 1 we21

have A > B > 0, b0, b1, b2, b3 > 0 and also 0 � (X,Y, Z) since x ∈ ΩML ⊂ C+.22

Thus κ0 in (27) will be positive when a = (a, b, c) is such that simultaneously γ > 023

and θ1 < 0, θ2 < 0 and θ3 < 0 (all these depend on a). To establish that positive24

curvature leads to a concave (rather than convex) surface T (∆(a)) we will look at25

{z = 0} ∩ T (∆(a)), which is a planar curve for which the convexity or concavity26

can easily be established (see (33)).27

From (23), for θ1 < 0, θ2 < 0 and θ3 < 0 we require a ∈ C0
+ to satisfy28

(A−B)a−Bc < B2 + 2B −A (30)

(A−B)b−Ba < B2 + 2B −A (31)

(A−B)c−Bb < B2 + 2B −A. (32)

We denote the set of a ∈ C0
+ satisfying (30), (31) and (32) by P>. (The subscript >29

is meant to distinguish this case where A,B < 0 which is considered later in section30

10.3).31

Lemma 10.2 (Characterisation of P>).32

L1 If 2B ≥ A > B then P> is a nonempty and unbounded convex set;33

L2 If A > 2B and B2 + 2B < A, P> is empty;34

L3 If A > 2B and B2 + 2B > A, P> is a nonempty and bounded convex set.35

Proof. If P> is nonempty, then as the intersection of 3 open half-spaces with C+ it36

is a nonempty convex set. Consider the ray t(1, 1, 1) for t ≥ 0. From (30), (31) and37

(32) t(1, 1, 1) ∈ P> if (A− 2B)t < B2 + 2B − A. If 2B ≥ A then P> contains any38

t(1, 1, 1) with t > 0. This shows L1. On the other hand, for L2, summing (30) -39
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(32) we obtain (A− 2B)(a+ b+ c) < 3(B2 + 2B−A), and hence P> is empty when1

A > 2B and B2 +2B−A < 0. Finally consider L3. If A > 2B and B2 +2B−A > 0,2

and a ∈ P> then (A − 2B)(a + b + c) < 3(B2 + 2B − A). Since a ∈ C0
+, P> is a3

bounded nonempty set (and in particular not a cone).4

Now consider {z = 0} ∩ T (∆(a)) for a ∈ C0
+. This planar curve is given para-5

metrically by6 {( rs/a1

1 + s/a1 + α(1− s)/a2
,

r(1− s)/a2

1 + (1− s)/a2 + βs/a1
, 0
)

: s ∈ [0, 1]
}

and its curvature is positively proportional to7

2a3
1a

3
2 (α+ a2) (a1 + β) ((α− 1)a1 + a2(β − 1) + αβ − 1)

(αa1(1− s) + a2 (a1 + s)) 3 (a1(1− s) + a2 (a1 + βs)) 3
(33)

which is positive for s ∈ [0, 1] when min{α, β} > 1. Hence {z = 0} ∩ T (∆(a)) is a8

strictly convex curve.9

From (27), lemma 10.2, and the fact that {z = 0} ∩T (∆(a)) is a strictly convex10

curve when min{α, β} > 1 we obtain:11

Lemma 10.3. Suppose that 2B > A > B > 0, a ∈ P> and γ(a) > 0. Then12

TML(∆(a)) is a strictly convex surface.13

The next lemma concerns when the cone KML is also subset of P>, the set that14

controls the convexity of mapped planes.15

Lemma 10.4. KML

(
B

A−B

)
⊆ P> when 2B > A > B > 0.16

Proof. When 2B > A we have B2 + 2B − A > 0 and we need only show that17

(A − B)a − Bc ≤ 0, (A − B)b − Ba ≤ 0 and (A − B)c − Bb ≤ 0 whenever a ∈18

KML

(
B

A−B

)
. In this instance s > 1 and KML

(
B

A−B

)
is given by (29), so that if19

a ∈ KML

(
B

A−B

)
then a ≤ cs, b ≤ as, c ≤ bs. Then (A−B)a−Bc ≤ (A−B)sc−20

Bc = c((A−B)s−B) = c(A−(s+1)B < c(A−2B) < 0. The two other inequalities21

are established in the same manner.22

Lemma 10.5. Suppose that 1
2 (B− 1) + 1

2

√
1 + 6B − 3B2 > A > B > 0. Then for23

a ∈ KML

(
B

A−B

)
the normal bundle of TML(∆(a)) is contained in KML

(
B

A−B

)
.24

Proof. Under the conditions on A,B it is easily shown that 2B > A: We have that25 √
1 + 6B − 3B2 > 2A−B+1 > 0 (since A > B). Thus 1+6B−3B2 > (2A−B+1)2

26

which tidies to 4(A2 + B2 − AB) + 4(A − 2B) < 0. Since A2 + B2 − AB > 0 we27

must have 2B > A. Suppose that a ∈ KML

(
B

A−B

)
. Then by lemma 10.4 a ∈ P>28

and by lemma 10.1, γ(a) > 0. Thus by lemma 10.3 TML(∆(a)) is a strictly convex29

surface. To show that the normal bundle of TML(∆(a)) is a subset of KML

(
B

A−B

)
30

we need only consider points on the boundary of TML(∆(a)), i.e. the intersection31

of TML(∆(a)) with the boundary of C+. Hence we are concerned with Dψ on the32

boundary where ψ is given by (24).33

Consider, for example, {z = 0}∩TML(∆(a)) from (24) where we have ψ(x, y, 0) =34

b1xy + c1x + c2y − d, so that {z = 0} ∩ TML(∆(a)) is the graph of the func-35

tion x 7→ y(x) = d−c1x
b1x+c2

with x in the range x ∈ [0, r
a+1 ]. Then using that36
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Dψ(x, y, 0) = (b1y + c1, b1x+ c2, b0xy + b2y + b3x+ c3) we find1

u1(x) := (ψx − sψz)(x, y(x), 0)

= b1y(x) + c1 − s (b0xy(x) + b3x+ b2y(x) + c3)

= (b1 − sb2)y(x) + c1 − sc3 − sx(b0y(x) + b3)

≤ (b1 − sb2)y(x) + c1 − sc3.

Our aim is to show that u1(x) < 0 for x ∈ [0, r
a+1 ]. Writing2

(a, b, c) = λ1(s, s2, 1) + λ2(1, s, s2) + λ3(s2, 1, s), λ ∈ C+ (34)

we find that3

b1 − sb2 =
r(A− 2B)

((
A2 −AB +B2

)
(Aλ2 +Bλ1) + (AB +A+B)(A−B)2

)
(A−B)3

,

and c1−sc3 = r2(a+1−s(c+1)) = r2(a−sc)+(1−s) < 0 when a ≤ sc and s > 1.4

When 2B > A > B on inspection we see that all coefficients in the multinomial η15

are negative and hence ψx − sψz < 0 on {z = 0} ∩ TML(∆(a)).6

Similarly on y = 0 we have u2(x) := (ψx− sψz)(x, 0, z(x)) = b3(z(x)− sx) + c1−7

sc3. Then u2(x) = Q2(x)
b3x+c3

where Q2(x) = −sb23x2−2sb3c3x+db3 + c3(c1− sc3). Q28

is a concave function that takes its minimum at x = 0 or x = r
a+1 (or both). We9

find that Q2(0) = r2

c+1

(
(a+ 1 +B)(c+ 1 +A)− s(c+ 1)2

)
. Then with (34) and10

η2 = Q2(0)/r4, we compute11

η2 =
λ1

(
A2 −AB +A+ (B − 2)B

)
A−B

+
Bλ3

(
A2 −AB +A+ (B − 2)B

)
(A−B)2

+ λ1λ2

(
B3

(B −A)3
+ 1

)
+
Bλ3λ2

(
(A−B)3 −B3

)
(A−B)4

+
B2λ2

2

(
(A−B)3 −B3

)
(A−B)5

+ λ2

(
2B3

(B −A)3
+

(A+ 1)B2

(A−B)2
+B + 1

)
+AB − B

A−B
+A+B + 1.

As shown in lemma A.1 the coefficients in this multinomial in λ are all negative12

when13

0 < B < A < 1 and A <
1

2
(B − 1) +

1

2

√
1 + 6B − 3B2. (35)

Similarly, Q2

(
r
a+1

)
=

r4(a+A+1)(B+c+1)((a+1)2−s(a+A+1)(B+c+1))
(a+1)2 . Set ζ2 = (a +14

1)2 − s(a+A+ 1)(B + c+ 1). Then15

ζ2 = −
B2λ3

(
A2 −A(B + 1) +B(B + 2)

)
(A−B)3

+
B2λ2λ3(A− 2B)

(
A2 −AB +B2

)
(A−B)5

+
Bλ1λ2(A− 2B)

(
A2 −AB +B2

)
(A−B)4

−
Bλ1

(
A2 −A(B + 1) +B(B + 2)

)
(A−B)2

+
λ2

(
2A3 −A2B(B + 7) +AB2(B + 8)−B3(B + 4)

)
(A−B)3

+ λ2
2

(
B3

(B −A)3
+ 1

)
−
A
(
B2 +B − 1

)
+B(B + 2)

A−B
.

In lemma A.2 in the appendix we show that ζ2 is negative when (35) holds.16

We conclude that when (35) holds and s = B
A−B , ψx − sψz < 0 on all of17

the boundary of TML(∆(a)), and since TML(∆(a)) is a strictly convex surface18
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holds also in the interior of TML(∆(a)). By the permutational symmetry of TML1

in x, (35) is also sufficient for ψy < sψx and ψz < sψy on TML(∆(a)). Thus2

Dψ(TML(∆(a))) ⊆ KML

(
B

A−B

)
as required.3

Hence we have established:4

Theorem 10.6. Suppose that 1
2 (B − 1) + 1

2

√
1 + 6B − 3B2 > A > B > 0. Then5

the carrying simplex of (8) is concave.6

Proof. By lemma 10.3 TML(∆(a)) is a strictly convex surface when a ∈ KML

(
B

A−B

)
.7

Now take K = KML

(
B

A−B

)
in Theorem 6.1.8

We give some examples in section 11.9

10.3. Convex Carrying Simplices: The case 0 < max{α, β} < 1. It is known10

[2] that when 0 < max{α, β} < 1 the planar carrying simplices Σx=0,Σy=0,Σz=011

are all convex, so in this case we will be seeking a convex carrying simplex.12

When 0 < max{α, β} < 1, b1, b2, b3 < 0, but b0 remains positive. Continuing to13

assume that A > B we also seek θi < 0 for i = 1, 2, 3. Since now −1 < B < A < 0,14

then A > 2B +B2 and θ1 < 0, θ2 < 0 and θ3 < 0 if15

(A−B)a+Ab < B − 2A−A2 (36)

(A−B)b+Ac < B − 2A−A2 (37)

(A−B)c+Aa < B − 2A−A2. (38)

We let this solution set in C0
+ be P<.16

Lemma 10.7 (Characterisation of P<). Suppose −1 < B < A < 0.17

M1 If B ≥ A2 + 2A then P< is a nonempty and unbounded convex set;18

M2 If 2A < B < 2A+A2, P< is a nonempty and unbounded convex set;19

M3 If 2A ≥ B and B < 2A+A2, P< is empty.20

Proof. If P< is nonempty, then as the intersection of 3 open half-spaces with C+ it21

is a convex set. From (36), (37) and (38) t(1, 1, 1) ∈ P< if (2A−B)t < B−2A−A2.22

When B ≥ A2 + 2A, B > 2A (since A 6= 0) and P< contains any t(1, 1, 1) with23

t > 0. This shows M1. On the other hand, for M2, (2A− B)t < B − 2A− A2 < 024

for t > 0 large enough. Finally consider M3. If 2A ≥ B then if a ∈ P< we have25

(A−B)c+Aa < 0, (A−B)b+Ac < 0, (A−B)c+Aa < 0 and so (2A−B)(a+b+c) < 026

which is not possible for a ∈ C0
+ when 2A ≥ B.27

We take the coneKML(s) = R+(s, s2, 1)+R+(1, s, s2)+R+(s2, 1, s), but now with28

s = B−A
A with 0 > B > 2A so that s < 1. If a ∈ KML(s) then a ≥ sc, b ≥ sa, c ≥ sb29

and there exists λ ∈ C+ such that a = λ1s+ λ2 + λ3s
2, b = λ1s

2 + λ2s+ λ2s+ λ330

and c = λ1 + λ2s
2 + λ3s.31

By lemma 10.1, γ(a) < 0 whenever −1 < B < A < 0 and a ∈ KML

(
B−A
A

)
.32

In order to use the same strategy as for the case 0 < B < A < 1 we first need to33

establish that the coordinates X,Y, Z < 0. First we note:34

Lemma 10.8. If 0 > 2A > 2B > 1 +A−
√

1− 6A− 3A2 then B > 2A+A2.35

Proof. We have
√

1− 6A− 3A2 > 1+A−2B > 0, so that squaring and rearranging36

B > 2A+A2 +B(B −A) > 2A+A2 since 0 > A > B.37
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Lemma 10.9. When −1 < B < A < 0 and B > 2A + A2, −(X,Y, Z) = −(b0x +1

b2, b0y + b3, b0z + b1) ∈ C+ for x ∈ [0, q].2

Proof. Consider X = b0x + b2. Here b0 > 0, and since A,B < 0, b2 < 0, so by3

section 8 we find that 0 ≤ x ≤ xmax. We wish to find conditions that X < 0 for4

all 0 ≤ x ≤ xmax. Since we are seeking convex carrying simplices, we are only5

interested in a < q−1, i.e. max{a, b, c} < 1
r−1 . We have6

X = (A2 +B2 −AB)(3 + a+ b+ c+A+B)x+ r(AB +A(b+ 1) +B(c+ 1))

≤(A2 +B2 −AB)(3 + a+ b+ c+A+B)xmax + r(AB +A(b+ 1) +B(c+ 1))

=(A2 +B2 −AB)(3 + a+ b+ c+A+B)

(
B −A
A

)
(r − 1)

+ r(AB +A(b+ 1) +B(c+ 1)).

Set σ =
(
B−A
A

)
(A2 +B2 −AB) > 0 so that7

X ≤ (3 +A+B + a+ b+ c)(r − 1)σ + r(AB +A(b+ 1) +B(c+ 1))

= σ(r − 1)a+ ((r − 1)σ + rA)b+ ((r − 1)σ + rB)c

+ (r − 1)σ(3 +A+B) + r(A+B +AB).

(39)

The righthand side of (39) is linear in a and r and so is maximised at a vertex of8

[0, q−1]. In particular, since σ > 0,9

X < ((r−1)σ+ rA)b+ ((r−1)σ+ rB)c+ (r−1)σ(3 +A+B) + r(A+B+AB) +σ.

Let Y (b, c) = ((r−1)σ+rA)b+((r−1)σ+rB)c+(r−1)σ(3+A+B)+r(A+B+AB)+σ10

and Y1 = Y (0, 0), Y2 = Y ( 1
r−1 , 0), Y3 = (0, 1

r−1 ) and Y4 = Y ( 1
r−1 ,

1
r−1 ). First11

we show that when B > A2 + 2A, Y1 < 0. We have Y1 = (r − 1)σ(3 + A +12

B) + r(A + B + AB) + σ = (A2 + B2 − AB)((r − 1)(3 + A + B) + 1)(A − B) −13

rA(AB+A+B) = (1−r)(A−B)2(B−A2−2A)+B(B−A)
(
A2 +A+B2 +B

)
+14

r
(
A3(B + 1)−A2(B + 1)2 +AB(B(B + 2)− 1)−B3(B + 2)

)
. Now use that−1 <15

B < A < 0, B > A2 + 2A and r > 1 to obtain that (A2 +B2−AB)((r− 1)(3 +A+16

B)+1)(A−B)−rA(AB+A+B) < 0. Then Y2−Y1 = B−A
A (A2 +B2−AB)+ rA

r−1 <17

B−A
A (A2+B2−AB)+A = (B−A)(A2+B2−AB)+A2

A and A2+(B−A)(A2+B2−AB) =18

(B− 2A−A2)(2A2 + 2A3 +A4 +A2B+B2) +A2((A+ 1)4−A). Now (A+ 1)4−A19

is convex and minimised at A = 1
22/3 − 1 at the value 1 − 3

4×22/3 > 0 and so20

is everywhere positive. On the other hand, 2A2 + 2A3 + A4 + A2B + B2 =21

(B + A2/2)2 + A2(2 + 2A + 3
4A

2) > 0. Hence Y2 < Y1 when B > 2A + A2.22

Y3 − Y1 = B−A
A (A2 + B2 − AB) + rB

r−1 < 0 when B > 2A + A2 since B < A.23

Finally, Y4 − Y1 = 2B−AA (A2 + B2 − AB) + r(A+B)
r−1 = Y2 − Y1 + Y3 − Y1 < 0 when24

B > 2A+A2.25

Lemma 10.10. KML

(
B−A
A

)
⊆ P< when −1 < B < A < 0, B > 2A+A2.26

Proof. Similar to the proof of lemma 10.4 and omitted.27

Referring back to (33), we see that when 0 < max{α, β} < 1 the curve {z =28

0} ∩ T (∆(a)) is a strictly concave surface and we obtain:29

Lemma 10.11. Suppose that −1 < B < A < 0 and A > B > 2A + A2, a ∈ P<30

and γ(a) < 0. Then TML(∆(a)) is a strictly concave surface.31

Using lemmas 10.10 and 10.1 together we can show32
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Lemma 10.12. Suppose 0 > A > B > 1+A−
√

1−6A−3A2

2 . Then for a ∈ KML

(
B−A
A

)
1

the normal bundle of TML(∆(a)) is contained in KML

(
B−A
A

)
.2

Proof. Suppose that a ∈ KML(s) with s = B−A
A . Then by lemma 10.10 a ∈ P<3

and by lemma 10.1, γ(a) < 0 and a ≥ sc, b ≥ sa, c ≥ sb. Thus ψ is strictly concave4

and the boundary of Dψ(TML(∆(a))) is attained at points on the boundary of5

TML(∆(a)). Hence to show that Dψ(TML(∆(a))) ⊆ KML

(
B−A
A

)
we need only6

consider points on the boundary of TML(∆(a)). Note that now −1 < B < A < 07

so that b1, b2, b3 < 0.8

On {z = 0} ∩ TML(∆(a)) we have u1(x) = (ψx − sψz)(x, y(x), 0) as in lemma9

10.510

u1(x) = (b1 − sb2)y(x) + c1 − sc3 − sx(b0y(x) + b3).

But now A > 2B and so from lemma 10.5 we have b1 > sb2 and c1 > sc3. Moreover11

we have established that b0y(x) + b3 = Y < 0. Hence u1(x) > 0 on {z = 0} ∩12

TML(∆(a)).13

Similarly on y = 0 we have u2(x) := (ψx− sψz)(x, 0, z(x)) = b3(z(x)− sx) + c1−14

sc3. Then u2(x) = Q2(x)
b3x+c3

where Q2(x) = −sb23x2−2sb3c3x+db3 + c3(c1− sc3). Q215

is a concave function that takes its minimum at x = 0 or x = r
a+1 (or both). We16

find that Q2(0) = r2

c+1

(
(a+ 1 +B)(c+ 1 +A)− s(c+ 1)2

)
. Then with (34) and17

η2 = Q2(0)/r4, but now s = B−A
A , we compute18

η2 = −
λ3(A−B)

(
−(A+ 1)B +A(A+ 2) +B2

)
A2

+
λ1λ2(2A−B)

(
A2 −AB +B2

)
A3

+
λ2

2(A−B)2(2A−B)
(
A2 −AB +B2

)
A5

+ λ1

(
(B − 1)B

A
+A−B + 2

)
+ λ2

(
−2B3

A3
+

(A+ 7)B2

A2
− (A+ 8)B

A
+A+ 4

)
−
λ3λ2(A−B)(2A−B)

(
A2 −AB +B2

)
A4

+AB − B

A
+A+B + 2.

We show in lemma A.3 in the appendix that this expression is positive for all λ ∈ C+19

when20

0 > A > B >
1 +A−

√
1− 6A− 3A2

2
. (40)

At x = r
a+1 , we find that21

ζ2 =

λ1

(
A2 −A(B + 2) +B2 +B

)
(A−B)

A2
+
λ2λ3(2A−B)

(
A2 −AB +B2

)
(A−B)2

A5

−
λ1λ2(2A−B)

(
A2 −AB +B2

)
(A−B)

A4
+
λ2

2(2A−B)
(
A2 −AB +B2

)
A3

−
λ3

(
A2 −A(B + 2) +B2 +B

)
(A−B)2

A3
+A(B + 1)− B(B + 1)

A
−B2 + 2

+ λ2

(
4− (A+ 1)B3

A3
+

(2A+ 3)B2

A2
− 2(A+ 2)B

A
+A

)
.

We show in lemma A.4 in the appendix that this expression is positive for all λ ∈ C+22

when (40) holds.23
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Hence we have established:1

Theorem 10.13. Suppose that 0 > A > B > 1+A−
√

1−6A−3A2

2 . Then the carrying2

simplex of (8) is convex.3

Proof. Essentially the same as Theorem 10.6 and omitted.4

11. Examples of convex or concave carrying simplices. We now provide5

some specific examples of convex or concave carrying simplices.6

11.1. Concave carrying simplex, r = 2, α = 5/4, β = 7/6. A = 1
4 , B = 1

6 and7

1
2 (B−1)+ 1

2

√
1 + 6B − 3B2 = 1

12 (
√

69−5) ≈ 0.276 > A = 0.25. Hence by Theorem8

10.6, the carrying simplex is concave.9

Concave carrying simplex, r = 2, α = 7/5, β = 4/3. A = 2
5 , B = 1

3 and10

1
2 (B − 1) + 1

2

√
1 + 6B − 3B2 = 1

3

(√
6− 1

)
≈ 0.483 > A = 0.4. Hence by Theorem11

10.6, the carrying simplex is concave.12

Concave carrying simplex, r = 2, α = 3/2, β = 7/5. A = 1
2 , B = 2

5 and13

1
2 (B−1)+ 1

2

√
1 + 6B − 3B2 = 1

10

(√
73− 3

)
≈ 0.554 > A = 0.5. Hence by Theorem14

10.6, the carrying simplex is concave.15

11.2. Convex carrying simplex, r = 2, α = 3/4, β = 2/3. We take A = − 1
4 , B =16

− 1
3 Note that A > B, 0 > A > B > 1+A−

√
1−6A−3A2

2 = 3−
√

37
8 ≈ −0.385. Hence by17

Theorem 10.13 the carrying simplex is convex.18

Convex carrying simplex, r = 2, α = 4/5, β = 3/4. Here A = −1/5, B = −1/419

and A > B, −0 > A > B > 1+A−
√

1−6A−3A2

2 = 2−
√

13
5 ≈ −0.321. Hence by20

Theorem 10.13 the carrying simplex is convex.21

Convex carrying simplex, r = 2, α = 2/3, β = 7/12. Here A = −1/3, B =22

−5/12 and A > B, −0 > A > B > 1+A−
√

1−6A−3A2

2 = 1−
√

6
3 ≈ −0.483. Applying23

Theorem 10.13 shows that the carrying simplex is convex.24

The carrying simplices for these 6 examples are shown in Figures 1 and 4.25

12. Conclusions and discussion. Here we have introduced a new approach to26

study the convex or concave geometry of carrying simplices of competitive Kol-27

mogorov diffeomorphisms T . We have shown how the study of their convexity28

or concavity can be reduced to the study of the action of T on planes. Our ap-29

proach has been demonstrated using the May-Leonard map as an example. The30

May-Leonard map has significant symmetry which has aided calculations, but the31

method (i.e. Theorem 6.1) can be applied to any competitive Kolmogorov diffeo-32

morphism T of C+ onto T (C+) with a carrying simplex.33

In the study of which maps transform planes into convex or concave surfaces we34

have elected to use a level-set approach which we have found convenient since it35

simplifies the formulae for gradients and Gaussian curvature, and does not assume36

a preferred coordinate direction as is necessary in representation of a surface as a37

graph of a function. It would be interesting to explore what new insights into the38

existence and smoothness of carrying simplices can be gained through a zero-set39

approach.40

As mentioned in the introduction, but not explored in the main text, the con-41

tainment all normal bundles of the sequence (1) in a closed and solid convex cone42

K can be established by showing that T is K−competitive on C+. When T is a43
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Figure 4. Carrying simplices for the May-Leonard model (8) with
r = 2. Top left: α = 4/5, β = 3/4. Top right: α = 2/3, β = 7/12,
Bottom left: α = 7/5, β = 4/3. Bottom right: α = 3/2, β = 7/5

K−competitive and orientation-preserving diffeomorphism from C+ onto T (C+),1

T−1 is K−monotone on T (C+) and so D(T−1)(y)K ⊆ K for all y ∈ T (C+) (see,2

for example, [18]). Hence (DT (x))−1K ⊆ K for x ∈ C+, which implies that3

DT#K ⊆ K. By lemma 7.1, all the normal bundles in the sequence defined by (1)4

are contained in K. Moreover, it is likely that theorem 6.1 can also be improved by5

using K−competitiveness to prove the existence of the carrying simplex directly.6

Here our results do not collectively show that TML is K−competitive, but exten-7

sive computations (not shown here) suggest that TML is actually K−competitive8

on C+ when the real parameters A,B lie in the ranges B < A < 1
2 (B − 1) +9

1
2

√
1 + 6B − 3B2 with K = KML

(
B

A−B

)
, and also A > B > 1+A−

√
1−6A−3A2

2 with10

K = KML

(
B−A
A

)
.11

Acknowledgments. The author would like to express his thanks for the very12

helpful comments of the referees.13

Appendix A. Proof of lemmas.14
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Lemma A.1. When 0 < B < A < 1 and A < 1
2 (B − 1) + 1

2

√
1 + 6B − 3B2 the1

function2

=
λ1

(
A2 −AB +A+ (B − 2)B

)
A−B

+
Bλ3

(
A2 −AB +A+ (B − 2)B

)
(A−B)2

+ λ1λ2

(
B3

(B −A)3
+ 1

)
+
Bλ3λ2

(
(A−B)3 −B3

)
(A−B)4

+
B2λ2

2

(
(A−B)3 −B3

)
(A−B)5

+ λ2

(
2B3

(B −A)3
+

(A+ 1)B2

(A−B)2
+B + 1

)
+AB − B

A−B
+A+B + 1.

is negative for all λ ∈ C+.3

Proof. First, 0 < B < A < 1 and B < A < 1
2 (B − 1) + 1

2

√
1 + 6B − 3B2, we have4

B − 1 +
√

1 + 6B − 3B2 < 4B (which can be checked by rearranging and squaring5

both sides). Hence we have 2B > A > B. It is clear that when 2B > A > B > 0 we6

have (A − B)3 < B3. Which shows that the coefficients of λ2λ3, λ2
2 and λ1λ2 are7

negative. The coefficients of λ1 and λ3 are negative when A2+B2−AB+A−2B < 08

which simplifies to B < A < 1
2 (B − 1) + 1

2

√
1 + 6B − 3B2.9

Next, the coefficient of λ2 is10

− 2B3

(A−B)3
+

(A+ 1)B2

(A−B)2
+B + 1 =

B2

(A−B)3
(A2 −AB +A−B − 2B) +B + 1

=
B2

(A−B)3
((A2 +B2 −AB +A− 2B)−B2 −B) +B + 1

< − B2

(A−B)3
(B2 +B) +B + 1 = (B + 1)

(
1−

(
B

A−B

)3 )
< 0

since 2B > A. Finally, the constant term is11

AB − B

A−B
+A+B + 1 =

A2B −AB2 +A2 −B2 +A− 2B

A−B

=
1

A−B

(
(B + 1)(A2 +B2 −AB +A− 2B)−B3) < 0

since A2 +B2 −AB +A− 2B < 0.12

Lemma A.2. When 0 < B < A < 1 and A < 2B the function13

−
B2λ3

(
A2 −A(B + 1) +B(B + 2)

)
(A−B)3

+
B2λ2λ3(A− 2B)

(
A2 −AB +B2

)
(A−B)5

+
Bλ1λ2(A− 2B)

(
A2 −AB +B2

)
(A−B)4

−
Bλ1

(
A2 −A(B + 1) +B(B + 2)

)
(A−B)2

+
λ2

(
2A3 −A2B(B + 7) +AB2(B + 8)−B3(B + 4)

)
(A−B)3

+ λ2
2

(
B3

(B −A)3
+ 1

)
−
A
(
B2 +B − 1

)
+B(B + 2)

A−B
is negative for all λ ∈ C+. In particular, the function is positive under the condi-14

tions of lemma A.1.15

Proof. Since 2B > A > B it is immediate that the coefficients of λ2λ3, λ1λ2, λ2
216

are negative. The constant term is negative when AB2 + AB − A + B2 + 2B > 017

which holds since B > 2A > 0. Next consider the coefficients of λ3 and λ1. These18
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are negative when A2 − A(B + 1) + B(B + 2) = A2 − AB + B2 + 2B − A, which1

also holds since in addition to 2B > A we also have A2 + B2 − AB > 0 (for2

all A,B). Lastly we consider the coefficient of λ2 which is negative when τ =3

2A3−A2B(B+ 7) +AB2(B+ 8)−B3(B+ 4) < 0. Setting B = 2A+ ε where ε > 04

we have τ = −12A4−24A3ε−12A3−19A2ε2−23A2ε−7Aε3−16Aε2−ε4−4ε3 < 0.5

Lemma A.3. When 0 > A > B > 1+A−
√

1−6A−3A2

2 , the function6

−
λ3(A−B)

(
−(A+ 1)B +A(A+ 2) +B2

)
A2

+
λ1λ2(2A−B)

(
A2 −AB +B2

)
A3

+
λ2

2(A−B)2(2A−B)
(
A2 −AB +B2

)
A5

+ λ1

(
(B − 1)B

A
+A−B + 2

)
−
λ3λ2(A−B)(2A−B)

(
A2 −AB +B2

)
A4

+AB − B

A
+A+B + 2

+ λ2

(
−2B3

A3
+

(A+ 7)B2

A2
− (A+ 8)B

A
+A+ 4

)
is positive for λ ∈ C+.7

Proof. First we note that under the conditions in the lemma B > 2A, so that the8

coefficients of λ2
2, λ2λ3, λ1λ2 are all positive (note that A < 0). Moreover, when9

0 > A > B > 1+A−
√

1−6A−3A2

2 implies that (A + 1)B − A(A + 2) − B2 > 0 which10

gives that the coefficient of λ3 is positive. In turn, (A+ 1)B − A(A+ 2)− B2 > 011

implies that B − A(A + 2) > B2 − AB = B(B − A) > 0 since B < 0 and A > B.12

The constant coefficient AB − B
A +A+B + 2 is positive when when 0 > A > B >13

A(A+2)
1−A−A2 as can be seen by solving for B. Furthermore, since 1 − A − A2 > 1 for14

0 < A < −1 we conclude that B > A(A + 2) ⇒ B > A(A+2)
1−A−A2 and so the constant15

coefficient is positive. Lastly we need to show that the coefficient of λ2 is positive,16

i.e. 4 +A− ((A+ 8)B)/A+ ((A+ 7)B2)/A2 − (2B3)/A3 > 0. This is equivalent to17

showing that 4A3 +A4−8A2B−A3B+7AB2 +A2B2−2B3 < 0. By decomposition18

we find that19

4A3 +A4 − 8A2B −A3B + 7AB2 +A2B2 − 2B3

= (A−B)(B − 2A)(2B −A−A2)−A2(A2 +B − 2A− 2AB).

The first term in the last expression is negative since A − B + A2 − B > 0 when20

A > B and B < 0, and the final term is negative when A2 + B − 2A − 2AB > 0.21

But22

A2 +B − 2A− 2AB =
1− 2A

1−A−A2
(B(1−A−A2)−A2 − 2A)− A3(1 +A)

1−A−A2
> 0

since B(1−A−A2)−A2 − 2A > 0 and −1 < A < 0.23
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Lemma A.4. When 0 > A > B > −1 and B > 2A, the function1

λ1

(
A2 −A(B + 2) +B2 +B

)
(A−B)

A2
+
λ2λ3(2A−B)

(
A2 −AB +B2

)
(A−B)2

A5

−
λ1λ2(2A−B)

(
A2 −AB +B2

)
(A−B)

A4
+
λ2

2(2A−B)
(
A2 −AB +B2

)
A3

−
λ3

(
A2 −A(B + 2) +B2 +B

)
(A−B)2

A3
+A(B + 1)− B(B + 1)

A
−B2 + 2

+ λ2

(
− (A+ 1)B3

A3
+

(2A+ 3)B2

A2
− 2(A+ 2)B

A
+A+ 4

)
is positive for all λ ∈ C+. In particular, the function is positive under the conditions2

of lemma A.3.3

Proof. Since 0 > A > B > 2A, so that it is clear that the coefficients of λ2λ3, λ1λ2,4

λ2
2 are positive. The coefficients of λ1 and λ3 are also positive since A2 − AB +5

B2 + (B − 2A) > 0. Also the constant term is positive when B(B + 1) − A2B −6

A2 − 2A+ AB2 > 0. But B(B + 1)− A2B − A2 − 2A+ AB2 = 1
4 (B − 2A)(2(A+7

2)(B + 1)−B(B + 3)) + B3

4 + 3B2

4 > 0 when A > 2B and 0 > A,B > −1. Finally8

the coefficient of λ2 is positive when − (A+1)B3

A3 + (2A+3)B2

A2 − 2(A+2)B
A +A+ 4 > 0,9

or equivalently −A4 + 2A3B − 4A3 − 2A2B2 + 4A2B +AB3 − 3AB2 +B3 > 0. We10

have11

−A4 + 2A3B − 4A3 − 2A2B2 + 4A2B +AB3 − 3AB2 +B3

=
1

16
(B − 2A)

(
(A−B)(5A2 + 3B2 − 7AB − 16B) +A2(32 + 3A)

)
+

3

16
B4.

But 5A2 + 3B2 − 7AB − 16B = 5A2 + 3B2 − B(7A + 16) > 0 since B < 0 and12

A > −1.13

Appendix B. Proof of lemma 10.1.14

Proof. (i) First we prove that γ(a) > 0 when A > B > 0 and a ∈ KML

(
B

A−B

)
.15

Using (25) and (12) - (19) we find16

γ

r3
=

(A3 − 2A2B +B3)(a2b+ b2c+ c2a) + (A3 − 2AB2 +B3)(b2a+ c2b+ a2c)

+
(

3(A4 +B4 −A3B −AB3) + 5(A3 +B3) + 2A2B2

− 4AB(A+B)
)

(ab+ bc+ ca) + (A3 +B3)abc

+
(

2A5 −A4B + 8A4 − 8A3B + 7A3 + 4A2B2 − 6A2B −AB4

− 8AB3 − 6AB2 + 2B5 + 8B4 + 7B3
)

(a+ b+ c) +A6 + 6A5 − 3A4B

+ 12A4 − 12A3B + 7A3 + 6A2B2 − 6A2B − 3AB4 − 12AB3

− 6AB2 +B6 + 6B5 + 12B4 + 7B3.
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We constrain a ∈ KML by setting a = λ1(s, s2, 1) + λ2(1, s, s2) + λ3(s2, 1, s) where1

s = B
A−B and λ1, λ2, λ3 ≥ 0. The above expression becomes2

γ

r3
=

(A+B +A2 +B2)(A4 + 5A3 −A2B2 − 4A2B + 7A2

− 4AB2 − 13AB +B4 + 5B3 + 7B2) +
B
(
A2 −BA+B2

)3
(λ3

1 + λ3
2 + λ3

3)

(A−B)4

+

(
A2 −BA+B2

)2
(A+B)

(
A2 + 2A−B

)
(λ2

1 + λ2
2 + λ2

3)

(A−B)3

+

(
A2 −BA+B2

)4
(λ2

1λ3 + λ2
1λ2 + λ2

1λ2 + λ2
2λ1 + λ2λ

2
3 + λ2

3λ2)

(A−B)5

+
(A2 −AB +B2)

(A−B)2

(
2A5 −A4B + 8A4 − 8A3B + 7A3 + 4A2B2

− 6A2B −AB4 − 8AB3 − 6AB2 + 2B5 + 8B4 + 7B3
)

(λ1 + λ2 + λ3)

+

(
A2 −BA+B2

)2
(A−B)4

(
3A4 + (5− 4B)A3

+B(3B − 5)A2 − 4B2(B + 1)A+ 2B3(2B + 3)
)

(λ1λ2 + λ2λ3 + λ1λ3)

+

(
A2 −BA+B2

)3 (
A3 + 3BA2 − 12B2A+ 10B3

)
λ1λ2λ3

(A−B)6
.

(41)

By inspection all degree 3 terms except that of λ1λ2λ3 are obviously positive. The3

coefficient of λ2
1 +λ2

2 +λ2
3 is also positive since A > B. This leaves the requirements4

g1 = A4 + 5A3 −A2B2 − 4A2B + 7A2 − 4AB2 − 13AB +B4 + 5B3 + 7B2 > 0

g2 = 2B3(B + 1)2 +
(
16B2 + 24B + 7

)
ε3 +

(
14B3 + 28B2 + 15B

)
ε2

+
(
5B4 + 8B3 + 3B2

)
ε+ (9B + 8)ε4 + 2ε5

g3 = 3A4 + (5− 4B)A3 +B(3B − 5)A2 − 4B2(B + 1)A+ 2B3(2B + 3) > 0

g4 = A3 + 3BA2 − 12B2A+ 10B3 > 0.

Finally to show that each of these expressions is positive for A > B we simply5

substitute A = B + ε for ε > 0. We obtain6

g1 =B2(B + 1)2 + (4B + 5)ε3 + (5B2 + 11B + 7)ε2 +B(B + 1)(2B + 1)ε+ ε4

g2 =2B3(B + 1)2 +B2(B + 1)(5B + 3)ε+ (9B + 8)ε4

+ (8B(2B + 3) + 7)ε3 +B(14B(B + 2) + 15)ε2 + 2ε5

g3 =2B4 + 2B3 +
(
9B2 + 10B

)
ε2 +

(
2B3 +B2

)
ε+ (8B + 5)ε3 + 3ε4

g4 =2B3 − 3B2ε+ 6Bε2 + ε3,

the first 3 of which are clearly all positive. For g4, we simply note that showing7

g4 > 0 is equivalent to showing that 2x3 − 3x2 + 6x + 1 > 0 for x > 0. But8

2x3 − 3x2 + 6x + 1 = 1 + x(2x2 − 3x + 6) and 2x2 − 3x + 6 has no real zeros and9

hence g4 > 0.10
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(ii) Now consider the case where −1 < B < A < 0 and a ∈ KML

(
B−A
A

)
. The1

counterpart of (41) in this case is2

γ

r3
=
(
A2 +A+B2 +B

) (
A4 + 5A3 −A2B2 − 4A2B + 7A2 − 4AB2

− 13AB +B4 + 5B3 + 7B2
)

+
(A−B)2

(
A2 −AB +B2

)3
A5

(λ3
1 + λ3

2 + λ3
3)

+
(A2 −B2)

(
A2 −AB +B2

)2 (
A− 2B −B2

)
A4

(λ2
1 + λ2

2 + λ2
3)

−
(A−B)

(
A2 −AB +B2

)4
A6

(λ1λ
2
2 + λ1λ

2
3 + λ2λ

2
3 + λ2λ

2
1 + λ3λ

2
2 + λ3λ

2
1)

+
(A2 −AB +B2)

A2

(
2A5 −A4B + 8A4 − 8A3B + 7A3 + 4A2B2 − 6A2B

−AB4 − 8AB3 − 6AB2 + 2B5 + 8B4 + 7B3
)

(λ1 + λ2 + λ3)

+

(
A2 −AB +B2

)2
A4

(
4A4 − 4A3B + 6A3 + 3A2B2 − 4A2B

− 4AB3 − 5AB2 + 3B4 + 5B3
)

(λ1λ2 + λ2λ3 + λ3λ1)

+

(
A2 −AB +B2

)3 (
10A3 − 12A2B + 3AB2 +B3

)
A6

λ1λ2λ3.

Recalling that A < 0, the coefficients of λ3
1 + λ3

2 + λ3
3 and λ1λ

2
2 + λ1λ

2
3 + λ2λ

2
3 +3

λ2λ
2
1 + λ3λ

2
2 + λ3λ

2
1 are obviously negative. The coefficient of λ2

1 + λ2
2 + λ2

3 is4

(A2−AB+B2)
2
(A2−B2)(A−2B−B2)

A4 . Now note that for −1 < B < A < 0 we have5

A2 < B2 and A > 2B +B2 so that the coefficient of λ2
1 + λ2

2 + λ2
3 is negative. Next6

consider the coefficient of λ1 + λ2 + λ3, which is negative when7

w1(A,B) = 2(A5 +B5) + 7(A3 +B3)− 8AB(A2 +B2)

+ 8(A4 +B4) + 4A2B2 − 6AB(A+B)

is negative. We need to to show that the maximum of w1(A,B) over [−1, 0]2 is neg-8

ative. This is the same as showing that the maximum of w1(A+u,A−u) is negative9

for all u ∈ [0, A] and A ∈ [−1, 0]. But w1(A+u,A−u) = 2A
(
20A2 + 44A+ 27

)
u2+10

2A3
(
2A2 + 2A+ 1

)
+ 4(5A+ 9)u4. Note that w1(A,A) = 2A3

(
2A2 + 2A+ 1

)
< 011

for A ∈ [−1, 0] and 2A
(
20A2 + 44A+ 27

)
< 0, 4(5A + 9) > 0 for A ∈ [−1, 0] so12

w1(A+u,A−u) is a convex function of u2 and we need only show that w1(2A, 0) < 0.13

But w1(2A, 0) = 4(5A + 9)A4 + 2
(
2A2 + 2A+ 1

)
A3 + 2

(
20A2 + 44A+ 27

)
A3 =14

8A3(7 + 16A+ 8A2) ≤ 0 for A ∈ [−1, 0], and so w1(A,B) < 0 for −1 < B < A < 0.15

The coefficient of λ1λ2λ3 is negative since 10A3 − 12A2B + 3AB2 + B3 = −((A−16

B)2 + 9A2)(A − B) + 2B3 < 0. The coefficient of λ1λ2 + λ3λ2 + λ1λ3 is negative17

since when −1 < B < A < 0 we have18

4A4 − 4A3B + 6A3 + 3A2B2 − 4A2B − 4AB3 − 5AB2 + 3B4 + 5B3

= A3(B + 1) + (A+ 1)A2B + (A−B)2(2(A+ 1)B

+ 4(A+ 1)A+A+ 3B(B + 1)),

which is negative since −1 < B < A < 0. This leaves the constant term, which is19

negative since when −1 < B < A < 0 the factor A + A2 + B + B2 = A(1 + A) +20



26 STEPHEN BAIGENT

B(1 +B) < 0 and1

A4 + 5A3 −A2B2 − 4A2B + 7A2 − 4AB2 − 13AB +B4 + 5B3 + 7B2

= (A−B)2
(
A2 + 2(B + 1)(A+B + 2) + 3(A+ 1)

)
−B(1 +B)((A−B)2 −A(A+ 1)) > 0.

2
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[23] J. Mierczyński, Smoothness of carrying simplices for three-dimensional competitive systems: a51

counterexample, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 6 (1999), 147–154.52



CARRYING SIMPLEX FOR THE MAY-LEONARD MAP 27
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