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ABSTRACT
We investigate the existence of a two-dimensional invariant manifold that attracts
all nonzero orbits in 3 species Lotka-Volterra systems with identical linear growth
rates. This manifold, which we call the balance simplex is the common boundary
of the basin of repulsion of the origin and the basin of repulsion of infinity. The
balance simplex is linked to ecological models where there is ‘growth when rare’ and
competition for finite resources. By including alternative food sources for predators
we cater for predator-prey type models. In the case that the model is competitive, the
balance simplex coincides with the carrying simplex which is an unordered manifold
(no two points may be ordered componentwise), but for non-competitive models
the balance simplex need not be unordered. The balance simplex of our models
contains all limit sets and is the graph of a piecewise analytic function over the unit
probability simplex.
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1. Introduction

Recently in [8] we studied the dynamics of the planar system

ẋ1 = x1(1− x1 − αx2), ẋ2 = x2(1− x2 − βx1) (1)

on the first quadrant, where α, β ∈ R, not necessarily positive. Equation (1) differs
from the most general planar Lotka-Volterra model since the two species linear growth
rates are the same and scaled to unity. We showed that when α, β are chosen such that
orbits of (1) are bounded, there exists an invariant manifold Σ which attracts all points
in the first quadrant minus the origin and that projects one-to-one and onto the unit
probability simplex ∆2 = {(u, 1− u) : 0 ≤ u ≤ 1}. We named Σ the balance simplex,
as it is the analogue of the carrying simplex found in competitive systems, and consists
of points on the common boundary of the basin of repulsion of the origin and infinity,
but unlike the carrying simplex it is not typically an unordered manifold (a manifold
is unordered if no two points have coordinates that can be ordered componentwise) .
The relative simplicity of (1) meant that we were able to give explicit expressions for
the balance manifold in terms of Gauss hypergeometric functions.
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In a second paper [7] we put forward biologically reasonable conditions for the ex-
istence of a balance simplex in planar Kolmogorov systems with at most one interior
equilibrium which is then hyperbolic. The conditions include that the origin and in-
finity are repellers, there exist exactly one non-zero and hyperbolic equilibrium on
each axis and all nonzero orbits on an axis are attracted to this axial equilibrium, and
that there is intraspecific competition which prevents interior periodic orbits. We also
presented a series of examples of systems with a variety of competitive, cooperative
and predator-prey interactions to illustrate our results.

The ecological importance of these findings is that under biological reasonable con-
ditions, at least in the case where there is at most one coexistence equilibrium, there
is a curve on which the effects of growth when rare, intraspecific competition for finite
resources balance; hence the choice of the name ‘balance’ simplex. No community with
all species present can completely collapse - at least one species must remain extant
(and finite).

Here we show that a suitably defined and piecewise analytic balance simplex also
exists for the following natural 3−species extension of (1), known as the May-Leonard
system [17]:

ẋi = Fi(x) = xifi(x) = xi(1− (Ax)i), i = 1, 2, 3 (2)

where x = (x1, x2, x3), A is a real 3× 3 matrix with elements aij for i, j = 1, 2, 3 and
aii = 1 for i = 1, 2, 3. This model was studied by May and Leonard in the context of
its heteroclinic cycles. Since (2) is a model for population dynamics, we restrict to the
invariant positive cone K = R3

+, where R+ := [0,∞). We emphasise that we do not
assume that A has non-negative elements, so that we are not confining our analysis
to competitive systems. The restriction to 3 species in not essential for existence of a
balance simplex, and we state the corresponding existence result for d species later in
section 6, but we are not able to determine the smoothness properties of the balance
simplex for more than 3 species.

Here the balance simplex is defined via:

Definition 1.1. A balance simplex Σ of a semiflow on K is a subset of K with the
following properties:

(1) Σ is invariant, compact, and projects radially 1-1 and onto the unit probability
simplex;

(2) Σ globally attracts all non-zero points in K and is asymptotically complete (i.e.
given x ∈ K \ {0} there exists a y ∈ Σ such that ‖x(t)− y(t)‖ → 0 as t→∞).

(x(t) is the forward evolution of x under the semiflow, and similarly for y).
Definition 1.1 slightly differs from definition 2.1 in [8] as it includes asymptotic com-
pleteness of the manifold. This is a natural requirement since it ensures that the full
flow of (2) can be approximated by a flow on Σ, and this approximation is most useful
when orbits approach Σ rapidly, such as when Σ is also an inertial manifold.

When Σ is also unordered, so that no two distinct points x, y of Σ satisfy x − y ∈
K, such as when (1) is competitive, the balance simplex coincides with the carrying
simplex of Hirsch [11, 12]. In Figure 1 (a) we illustrate the idea of the balance simplex
as the common boundary of the basin of repulsion and infinity that projects radially
one-to-one onto the unit probability simplex. Figure 1 (b) shows a carrying simplex
and a sample of orbits for the competitive May-Leonard system (2).

The May-Leonard system was introduced in [17] and has been studied under various
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Figure 1. (a) The balance simplex. (b) A representative example of the carrying simplex and a sample of

orbits for a competitive case (i.e. aij ≥ 0 for i 6= j) of the May-Leonard system (2). In both (a) and (b) the
green manifold is the balance simplex and it attracts all nonzero orbits.

constraints on the matrix A to include competition, cooperation and predator-prey
interactions (e.g. [6], [22]). In [24] a similar system to (2) was considered on all of Rd
for d ≥ 1 integer (rather than K = R3

+), and for any fi(x) = 1 + hi(x) where h =

(h1, . . . , hd) is a homogeneous function (i.e. for each x ∈ Rd, λ ∈ R+, h(λx) = λ`h(x)
for some ` ∈ R). It is known, for example, that if all equilibria are isolated then the
possible alpha and omega limit sets are either equilibria, closed orbits, or unions of
equilibria connected by heteroclinic orbits [24]. In [6], explicit conditions are given
for periodic orbits, and in fact these periodic orbits fill the unit probability simplex
interior.

2. The Result

We recall that a 3 × 3 real matrix A is copositive when x · Ax ≥ 0 for x ∈ K and
strictly copositive when x ·Ax > 0 for x ∈ K \ {0}. Note that 2x ·Ax = x · (A+AT )x
so we need only check whether the symmetric matrix (A+AT ) is copositive or strictly
copositive.

Lemma 2.1. The real symmetric matrix B =

 1 α β
α 1 γ
β γ 1

 is strictly copositive if

and only if α, β, γ satisfy min{α, β, γ} > −1 and at least one of the following two
conditions hold:

α+ β + γ + 1 > 0 (3)

1 + 2αβγ − α2 − β2 − γ2 > 0. (4)

Proof. This follows easily from [10].

We recall that the Replicator system on the 2-dimensional unit probability simplex
∆ = {u ∈ K :

∑3
i=1 ui = 1} for matrix games with 3 strategies is the system of
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differential equations [21]

u̇i = ui((Au)i − u ·Au), i = 1, 2, 3, u(0) ∈ ∆. (5)

For a background on this system see, for example, [13].
We recall that given a flow, the basin of attraction of an equilibrium p is the set of

points that converge to p under the flow forwards in time, and the basin of repulsion
of an equilibrium p is the set of points that converge to p under the flow backwards in
time.

Here we will prove:

Theorem 2.2. If the 3 × 3 matrix A is strictly copositive, then the system (2) has
a balance simplex and there is a continuous function Ψ : ∆ → R+ such that Σ =
{Ψ(u)u : u ∈ ∆} ⊂ K and Σ is the common boundary relative to K of the basins of
repulsion of the origin and infinity.

If in addition (i) all equilibria of the planar Replicator system (5) with fitness matrix
A are isolated and hyperbolic, and (ii) every trajectory of (5) converges to an equilib-
rium, then Ψ is piecewise analytic on ∆, with discontinuous gradients only possible at
equilibria or across heteroclinic orbits that lie in the interior of ∆.

3. Existence of the balance simplex

As a first step we introduce new coordinates R and u = (u1, u2, u3) ∈ 4 with R =∑3
i=1 xi and ui = xi/R for i = 1, 2, 3. Thus we work with total population density

R and species frequencies u. We will assume that A is strictly copositive so that the
mean fitness u ·Au > 0 for u ∈ ∆.

In the new coodinates (2) transforms into the equivalent system

Ṙ = R(1− u ·AuR) (6)

u̇i = Rui(u ·Au− (Au)i), i = 1, 2, 3. (7)

We note that (6) is logistic growth of the total population with unit linear growth rate
and time-dependent carrying capacity (u · Au)−1 (which is defined since A is strictly
copositive). On the other hand (7) is the standard replicator system for matrix games,
but with time rescaled and run backwards. We will exploit this partial decoupling of
the dynamics in what follows by scaling time.

The reduction of (2) to (6), (7), which relies on identical linear growth rates is
crucial, has been previously exploited by a number of authors [5, 24].

If A is strictly copositive, by compactness of 4 there is a δ > 0 such that u ·Au ≥
δ > 0 for all u ∈ 4. From (6) we see that Ṙ < R(1 − δR) which tells us that the
total population R eventually falls below 1

δ . Thus the assumption that A is strictly
copositive implies that all orbits of (6), (7) and equivalently the original system (2)
remain bounded for all forward time.

Since

−u ·Au =
∂

∂R

(
Ṙ

R

)
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we may interpret copositivity of A as meaning that the per-capita growth rate averaged
over the whole population decreases as the total population size increases, regardless
of the frequency of each species (even if some are extinct).

For a given initial point (u0, R0) ∈ ∆× R+ we denote the unique trajectory of (6),
(7) by t 7→ (u(u0, R0, t), R(u0, R0, t)), t ∈ R+.

The origin O is a repeller of (2) and its basin of repulsion is the open set

R(O) = {R0u0 : u0 ∈ ∆, R0 > 0, lim
t→−∞

R(u0, R0, t) = 0}.

We are interested in the boundary of R(O) relative to K, which we denote by ∂R(O).
Indeed we will show that, under the assumptions of Theorem 2.2, (2) has ∂R(O) as a
balance simplex. Moreover, ∂R(∞) = ∂R(O).

For convenience, we will now run time backwards and study, in place of (6), (7), the
system

dS

ds
= S(u ·AuS − 1) (8)

dui
ds

= Sui((Au)i − u ·Au), i = 1, 2, 3. (9)

The orbits of the systems (6),(7) and (8),(9) are identical, but for the dynamics gen-
erated by (8), (9), O is now an attractor, and we are now interested in the finding the
basin of attraction of O:

B(O) = {S0u0 : u0 ∈ ∆, S0 > 0, lim
s→∞

S(u0, S0, s) = 0}.

The boundary of B(O) relative to K is denoted by ∂B(O).

Fix a u0 ∈ ∆ and S0 > 0 and let s 7→
(
u(u0, S0, s), S(u0, S0, s)

)
denote the

unique trajectory of (8), (9) through (u0, S0) defined for s ∈ [0, smax(u0, S0)), where
smax(u0, S0) is the maximal range of s for which the orbit of (8), (9) through (u0, S0)
is bounded. smax(u0, S0) may be finite, as it is possible for S(u0, S0, s) to go to infinity
in finite s−time.

For each u0, S0 introduce the invertible function τu0,S0
: R+ → R+ by τu0,S0

(s) =∫ s
0 S(u0, S0, σ) dσ. There are two possibilities:

(a) τu0,S0
(∞) <∞, (b) τu0,S0

(∞) =∞.

In the case (a), we must have limt→∞ S(u0, S0, t) = 0 since S(u0, S0, ·) is positive and
smooth for S0 > 0 and the origin is an attractor, and so S0u0 ∈ B(O).

This leaves case (b), where τu0,S0
(s)→∞ as s→∞.

Write S(u0, S0, τu0,S0
(s)) = S(u0, S0, s), u(u0, τu0,S0

(s)) = u(u0, S0, s) and

θ(u0, τ) = u(u0, τ) ·Au(u0, τ). Then for τ ∈ [0, τu0,S0
(∞)) = R+

dS

dτ
(u0, S0, τ) = θ(u0, τ)S(u0, S0, τ)− 1 (10)

dui
dτ

(u0, τ) = ui(u0, τ)((Au(u0, τ))i − θ(u0, τ)), i = 1, 2, 3. (11)
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By explicit integration, for τ ∈ R+,

S(u0, S0, τ) = e
∫ τ
0
θ(u0,β) dβ

(
S0 −

∫ τ

0
e−

∫ α
0
θ(u0,β) dβ dα

)
. (12)

Define ψ : ∆× R+ → R+ via

ψ(u0, τ) =

∫ τ

0
e−

∫ α
0
θ(u0,β) dβ dα, u0 ∈ ∆, τ ∈ R+.

Then for all u0 ∈ ∆, since A is strictly copositive with u ·Au ≥ δ > 0 for u ∈ ∆,

ψ(u0, τ) ≤
∫ τ

0
e−

∫ α
0
δ dβ dα =

1

δ
(1− e−δτ ) <

1

δ
.

For fixed u0, ψ(u0, τ) is an increasing function of τ bounded above by 1/δ and hence
we may pass to the limit

lim
τ→∞

∫ τ

0
e−

∫ α
0
θ(u0,β) dβ dα =

∫ ∞
0

e−
∫ α
0
θ(u0,β) dβ dα <

1

δ
.

Define Ψ : ∆→ R+ by the pointwise limits

Ψ(u0) := lim
τ→∞

ψ(u0, τ), u0 ∈ ∆. (13)

We have, with τ2 > τ1,

max
u0∈∆

|ψ(u0, τ2)− ψ(u0, τ1)| = max
u0∈∆

∫ τ2

τ1

e−
∫ α
0
θ̄(u0,β) dβ dα

≤ 1

δ
(e−δτ1 − e−δτ2).

Hence ψ(·, τ) is a uniform Cauchy sequence of continuous functions on ∆ that converges
to a continuous function on ∆ as τ →∞. Thus Ψ is continuous on ∆.

For this case (b), τ(s)→∞ as s→∞, and we can ask: What is limτ→∞ S(u0, S0, τ)?
Indeed, since we are assuming that A is strictly copositive, so that θ ≥ δ > 0,∫ τ

0 θ(u0, s) ds → ∞ as τ → ∞. If S0 > Ψ(u0) then S(u0, S0, τ) → ∞ by (12) as

τ → ∞, so that S0u0 ∈ B(∞). If S0 < Ψ(u0), then since S > 0, to avoid a contra-
diction in (12), we must have τu0,S0

=
∫∞

0 S(u0, S0, s) ds < ∞ so that S0u0 ∈ B(O).
Consequently S0u0 lies in ∂B(O) if and only if u0 and S0 are related by

S0 = Ψ(u0) =

∫ ∞
0

e−
∫ α
0
θ(u0,β) dβ dα, (14)

and ∂B(O) = ∂B(∞), B(O) = {uR : 0 ≤ R ≤ Ψ(u), u ∈ ∆}.
Finally we note that Σ is asymptotically complete by construction: For an orbit

x(t) ∈ K\{0}, the orbit y(t) = x(t)
‖x(t)‖1 Ψ

(
x(t)
‖x(t)‖1

)
∈ Σ satisfies (2) and ‖x(t)−y(t)‖ → 0

as t→∞.
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4. Smoothness properties of the balance manifold

In order to gain further information about the balance manifold we utilise Bomze’s
classification of 3-species dynamics given in [3, 4]. Bomze’s classification enables us
to classify all possible orbits of (11), and this enables us to construct the balance
manifold using (10). Actually, Bomze’s classification enables us to partition ∆ into
(planar) stability basins for (11) which then can be lifted into stability basins for the
full system (10), (11).

We first recall the conditions stated in Theorem 2.2 that we now assume: (i) the
3× 3 matrix A is strictly copositive, (ii) all equilibria of the planar Replicator system
(5) with fitness matrix A are isolated and hyperbolic, and (iii) every trajectory of (5)
converges to an equilibrium.

Let us first consider the stability regions for the dynamics of (11). Let E ⊂ ∆ ⊂ K
denote the set of equilibria of (11). Then since we are assuming that all orbits of
(11) converge to an equilibrium, ∆ =

⋃
pi∈EW

s(pi), where W s(pi) ⊂ ∆ is the stable

manifold associated with pi ∈ E under the replicator dynamics (11). Moreover, as
can be seen from the permissible replicator phase portraits (i.e. those that have all
orbits converge to equilibria and all equilibria are isolated and hyperbolic) in Figures

A1 and A2 of the Appendix, for the dynamics of (11), ∆ = ∪piB(pi) where the union
is over asymptotically stable equilibria. In fact, ∆ \ ∪piB(pi) consists of the union of
1-dimensional stable manifolds of equilibria, and equilibria of the system (11).

Now we consider the dynamics of the full system (10), (11). We recall that if u ∈ ∆,
then uΨ(u) is the point in Σ ⊂ R3

+ that projects radially onto u.
If pi ∈ E ⊂ ∆ is asymptotically stable under the planar dynamics (11), whenever

p ∈ B(pi) the initial point pΨ(p) ∈ Σ converges to piΨ(pi) under the full dynamics
(10), (11). In fact the basin of attraction of pi for (11) is the radial projection of the
basin of attraction of piΨ(pi) under the full dynamics (10), (11).

By the Stable manifold theorem [18], since (2) has an analytic righthand side, the
basin of attraction of piΨ(pi) under the full dynamics (10), (11) is an analytic manifold,
and so Ψ is actually analytic over each basin of attraction of pi ∈ E. Continuous
differentiability of Ψ may be lost across the common boundary of two or more basins
of attraction of asymptotically stable equilibria, but Ψ is nevertheless continuous on
∆. Reversing time and substituting B with R we obtain Theorem 2.2.

Although we have shown existence of the balance simplex for 3 species there is
nothing in our construction that does not generalise to d ≥ 1 species and we have for
existence (but not smoothness):

Theorem 4.1. If the d × d matrix A is strictly copositive, then the May-Leonard
system ẋi = xi(1− (Ax)i), i = 1, . . . , d has a balance simplex and there is a continuous
function Ψ : ∆ → R+ such that Σ = {Ψ(u)u : u ∈ ∆} ⊂ K and Σ is the common
boundary relative to K of the basins of repulsion of the origin and infinity.

We have not yet investigated the smoothness of Σ for more than 3 species. The
Poincaré-Bendixson properties of limit sets established in [24] might help in this re-
spect.
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5. Examples

We now compute a selection of balance simplices using the formula (14) and Bomze’s
classification of replicator dynamics outlined in the Appendix.

5.1. Example 1

Here A =

 1 −1/3 −1
1/2 1 −1/2
3/4 1/2 1

. This is an example of a two predator, one prey

community where species 1 predates on both species 2 and species 3, and species 2
predates on species 3. Unlike classic predator-prey models, in this example when the
prey is absent, predator per-capita growth rate is positive, which reflects a model
assumption that there is a secondary food source present for the predators. Note that

(A+AT )/2 =

 1 1/12 −1/8
1/12 1 0
−1/8 0 1

 so that by Lemma 2.1 A is strictly copositive.

Moreover, there is no interior equilibrium for (11) and all off-diagonal elements of A
differ from 1, so that all equilibria are hyperbolic. Hence by Theorem 2.2, there exists
a balance manifold Σ. Figure 2 (a) shows Σ for this case as computed from (14), and
we note that the plot agrees (formally) with that computed via finite difference of the
PDE (5) in [1] as shown in Figure 2 (c). The replicator dynamics (11) corresponds to
a rotated Type 35’ in Figure A2. Note that there are two interior heteroclinic orbits
γ1, γ2 in Figure 2 (b) that connect two boundary equilibria and separate basins of
attraction of equilibria. It is not clear whether Σ is differentiable across γ1 and γ2 as
the numerical resolution is insufficient to determine this. It would be interesting to
determine whether Σ is differentiable across the heteroclinic orbits γ1, γ2 but we will
not pursue this further here.

(a) (b)

�

� �

(c)

Figure 2. Example 1: balance simplices for the model (1). (a) 1 predator, 2 prey; A = 1 −1/3 −1

1/2 1 −1/2
3/4 1/2 1

 (b) The phase portrait for (11), (c) The plot agrees with that computed via finite

difference of the PDE (5) in [1]
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5.2. Example 2

A =

 1 2 −1/2
1/2 1 −1/2
1/2 1/2 1

. This is a 2 predator, 1 prey model where both species

1 and 2 predate species 3. Now A + AT =

 2 3 0
3 2 0
0 0 2

 so A is strictly copositive.

The replicator dynamics (11) corresponds to Type 37’ in Figure A2. Again there is no
interior equilibrium of (11) and all off-diagonal elements of A differ from 1. Hence by
Theorem 2.2, there exists a balance manifold Σ as depicted in Figure 3 (a) and (c).
There is an interior heteroclinic orbit γ in Figure 3 (b) that connects two boundary
equilibria and separates basins of attraction of two equilibria, and it is unclear whether
Σ is differentiable across γ.

(a) (b)

�

� �

(c)

Figure 3. Example 2: balance simplices for the model (1). (a) A =

 1 2 −1/2

1/2 1 −1/2

1/2 1/2 1

 (b) The phase

portrait for (11), (c) The plot agrees with that computed via finite difference of the PDE (5) in [1]

5.3. Example 3

As a final example, we consider purely cooperative interactions between 3 species.

We take A =

 1 −1/6 −1/6
−1/6 1 −1/6
−1/6 −1/6 1

. The replicator dynamics (11) corresponds

to Type 7’ in Figure A2. There is now an isolated interior equilibium which is auto-
matically hyperbolic and since all off-diagonal elements are −1/6, all equilibria are
hyperbolic. A is strictly copositive by Lemma 2.1 (and in fact is positive definite).
Hence by Theorem 2.2, there exists a balance manifold Σ as depicted in Figure 4 (a)
and (c). There are three interior heteroclinic orbits γi, i = 1, 2, 3 that connect the
boundary equilibria midpoint to each edge to the interior equilibrium and the numer-
ics strongly suggest that Σ fails to be continuously differentiable across each γi. In fact
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on the boundary where x2 = 0 we may use the explicit formulae in [8] to find

(x1, x3)(T ) =

{
2F1(1/7, 1, 13/7, T )(1, T ) T ∈ (0, 1)

2F1(1/7, 1, 13/7, 1
T )(1/T, 1) T ∈ (1,∞).

At the equilibrium (x1, 0, x3) = (6/5, 0, 6/5) the left gradient is 1 and is equal to the
right gradient. However, the signs of the curvatures of each curve are opposite (yielding
a cusp), so that on the boundary x2 = 0 the balance simplex is not differentiable at
(x1, 0, x3) = (6/5, 0, 6/5).

(a) (b)

�

� �

(c)

Figure 4. Example 3: balance simplices for the model (1). (a) A =

 1 −1/6 −1/6

−1/6 1 −1/6

−1/6 −1/6 1

 (b) The phase

portrait for (11), (c) (c) The plot agrees with that computed via finite difference of the PDE (5) in [1].

6. Conclusions

The presence of a balance simplex in the 3-species May-Leonard model (2) under the
conditions specified in Theorem 2.2 means that all nonzero orbits are attracted to
a two-dimensional manifold (topological, not necessarily differentiable). Hence, that
previous studies [6, 24] showed long term dynamics of the kind predicted by Poincaré-
Bendixson theory for 2-dimensional manifolds is perhaps no surprise. Indeed, for this
3-species case, it is easy to see from the reduction to (6), (7) that the dynamics is
essentially driven by a 2-dimensional replicator system whose dynamics are completely
classified [3, 4].

The virtue of working with the May-Leonard model (2) is that it has identical linear
growth rates which means that it can be reduced to (6),(7). The May-Leonard system
(2) provides a simple model where the balance simplex can be easily shown to exist,
and can be computed via (14). While the notion of a carrying simplex is traditionally
confined to models where species interactions are all of a competitive nature (so that
the invariant manifold identified with the carrying simplex is an unordered manifold),
the balance simplex of (2) allows us to study the effect of a mixture competitive,
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cooperative, predator-prey interactions and allows for invariant manifolds without
restrictive requirement that they are unordered. This was achieved at the expense
of assuming equal linear growth rates, which is non-generic, but our study of (2) gives
a starting point from which to understand the balance in models with distinct linear
growth rates, such those where the linear growth rates are nearly equal.

Key factors behind the existence of a balance simplex in (2) are that there is growth
when species densities are low and sufficiently strong intraspecific competition. Exam-
ples 1 and 2 featured predator-prey interactions, but we made the model assumptions
that predators had secondary food sources when their primary prey was absent. This
meant that the assumption of ‘growth when rare’ applied and in (2) the origin is
repelling. Sufficient intraspecific competition prevents population explosion.

The existence of a 2-dimensional balance simplex in 3-species Kolmogorov systems,
not just of the May-Leonard Lotka-Volterra systems discussed here, has strong impli-
cations for the long term dynamics of the community that it models. For example,
if the balance simplex has sufficient smoothness properties, the long term dynamics
can be understood via a study of the restriction of the dynamics on the 2-dimensional
balance simplex. Hence the Poincaré-Bendixson theory applies [18], and the limit sets
can only be equilibria, closed orbits, or unions of equilibria and heteroclinic orbits
connecting them. In particular, there can be no chaos. Indeed, for all the examples of
chaos that we are aware of (e.g. [9, 13, 20]), the origin is a saddle, and not a repeller,
thus violating the ‘growth when rare’ condition.

When there are d > 3 species, the dynamics of a d−species May-Leonard model can
be much more complicated, even chaotic, as is already known for competitive systems
[19]. We are not aware of a classification of replicator dynamics for more than 3 species,
so our approach to studying smoothness of the balance simplex cannot be applied.

It is known that the presence of a carrying simplex, and the fact that it is the
boundary of repulsion basins, can help to understand global stability or repulsion (in
the carrying simplex) in Kolmogorov systems through the Split Kolmogorov method
[2, 14, 23] or the index theorem approach of [16] (and [15] for discrete dynamics), so it
would be interesting to ask what the presence of a balance simplex says in the context
of global stability.

Appendix A. Using the classification of Bomze

On the boundary x3 = 0, ẋ1 = x1(1 − x1)(a12 − 1 + (2 − a12 − a21)x1), so that for
hyperbolicity at the points (1, 0), (0, 1) we need a12 6= 1, a21 6= 1. As noted by Bomze
[3], when both (1, 0) and (0, 1) are hyperbolic, any equilibrium of (11) on the edge
joining (1, 0) and (0, 1) is also hyperbolic. Hence the condition for all boundary points
to be hyperbolic is aij 6= 1 for i 6= j.

Bomze [3] uses that when A =

 0 0 0
a b c
d e f

 (and A can always be put in this

form by subtracting a suitable constant cj of A from column j of A without changing
the equations (5)) the dynamics of (5) are topologically equivalent to those of the
Lotka-Volterra system

ẏ1 = y1(a+ by1 + cy2), ẏ2 = y2(d+ ey1 + fy2). (A1)
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In particular, an interior equilibrium p∗ ∈ int(∆) of (11) exists if and only an interior
equilibrium y∗ ∈ int(R2

+) of (A1) exists if and only if ce− bf , fa− cd, bd− ea are all
nonzero and the same sign. Moreover, p∗ is hyperbolic if and only if y∗ is hyperbolic.

The equilibrium y∗ is hyperbolic if and only

(
y∗1b y∗1c
y∗2e y∗2f

)
has no eigenvalues with

zero real part which is when y∗1b+ y∗2f 6= 0 (since we already need that bf − ce 6= 0 for
an interior equilibrium). Hence we may conclude (as was done in [3]) that whenever
an interior equilibrium of (11) exists, it is hyperbolic.

Bomze [3, 4] classified all the possible phase portraits of the 3-species Replicator
system. Bomze showed that there are 47 distinct phase portraits up to rotation, re-
flection and time-reversal. If we leave out non-generic cases where equilibria are not
isolated, we reduce the number of possibilities. Moreover, if we ask that all trajectories
converge to an equilibrium we can reduce the number of possible portraits yet further
to 20, and we depict these possibilities in Figure A1. The cases in Figure A1 must also
be considered with their time reversed so that stable nodes become unstable nodes
and vice-versa. The numbers used for each phase portrait in Figure A1 match the
numbering used by Bomze in [3] and later [4].

In portraits 7,8,9,10,11,12,14,15,17 there is a unique interior equilibrium. Of these,
in portraits 7,9,15,17 the interior equiilbrium p has B(p) = int(∆). In 8,10,11,14 there
are two asymptotically stable equilibria, say p1, p2, and the green dashed arrows and
the equilibria that they connect make up a continuous curve γ that is the common
boundary of the basin of attraction of the two asymptotically stable equilibria. In
portrait 12 there are two asymptotically stable equilibria and a heteroclinic orbit
joining two boundary equilibria and that forms the common boundary of the basins
of attraction of the asymptotically stable equilibria.

For the remaining portraits 34-46 there is no interior equilibrium. In 34,35,
37,38,39,40,41,42,43,44 there is a unique asymptotically stable equilibrium p and
B(p) = ∆. In portrait 36 there are two asymptotically stable equilibria p1, p2 on the
boundary and the green dashed curve γ toegther with the equilibria that it connects
is the common boundary of the attraction basins of p1, p2.

To comment briefly on two phase portraits in [3] that are not permissible under
our assumptions, in both PP 45 and PP 46 of [3, 4] the bottom left vertex is not a
hyperbolic equilibrium and so do not satisfy condition (i) of Theorem 2.2.

In Figure A2 we indicate the phase portraits with time reversed with a prime, so
that portrait 7’ is portrait 7 with time reversed. In 7’ there are 3 asymptotically stable
equilibria.
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