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Chapter 1

Lotka-Volterra Dynamical Systems

Stephen Baigent

Department of Mathematics, UCL, Gower Street, London WC1E 6BT

steve.baigent@ucl.ac.uk

Lotka-Volterra systems are used to introduce in a simple setting a num-
ber of dynamical systems techniques. Concepts such as omega limit
sets, simple attractors, Lyapunov functions are explained in the context
of Lotka-Volterra systems. We discuss LaSalle’s Invariance principle.
Monotone systems theory is also introduced in the context of the Lotka-
Volterra systems.

1. Introduction and scope

The Lotka-Volterra equations are an important model that has been widely

used by theoretical ecologists to study the implications of various inter-

actions between members of a population in a fixed habitat containing a

number of distinct interacting species. They are by no means the most real-

istic of such ecological models, but they are arguably the simplest since the

highest order terms they involve are quadratic, and therefore they feature

the next level of complexity up from linear. As we shall see, even amongst

differential equations with quadratic terms, they have a very special form

which makes them amenable to well-known mathematical techniques from

standard linear algebra, convex analysis, and dynamical systems theory.

To set the scene, we write the Lotka-Volterra equations in the revealing

form:

ẋi
xi

= ri +

n∑
j=1

aijxj , (1)

where n is the number of distinct species, xi is the population density of

the ith species, and ri, aij are all real numbers, possibly zero, and here

assumed to be independent of time. Multiplying each equation through

1
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by xi shows that indeed the equations are quadratic, but when written as

above we see that the net population growth per individual per unit time

(ẋi/xi) is linear in the population densities x = (x1, . . . , xn).

A good starting point in the study of the dynamics of (1) is to first

locate steady states; that is, points x∗ where ẋi = 0 for each i = 1, . . . , n.

Of special interest, since they model one scenario where all species can

coexist, are the so-called interior steady states. These satisfy x∗i > 0 for

each i = 1, . . . , n and so are obtained by solving the linear system

ri +

n∑
j=1

aijxj , i = 1, . . . , n. (2)

Recall that the ri, aij may be of any sign or zero. As we shall see, deter-

mining when (2) has a unique solution x∗i > 0 for each i = 1, . . . , n relies

heavily on linear algebraic techniques. All other steady states involve at

least one density vanishing; that is at least one species is extinct. Such

steady states are determined by investigating the linear system (2) with all

possible subsets of {xi}ni=1 set to zero.

The main virtue of model (1) is that it enables us to study on paper

or on the computer the outcome of any set of interactions between the n

species, and they are the simplest model that enables us to do so. The

type of interactions we refer to are split into two categories: intraspecific

(the effect of one member of a species on another member of the same

species), and interspecific (the effect of a member of one species on a mem-

ber of another species). The strength of the interactions are encoded in

the parameters aij , which are usually assembled into the n× n interaction

matrix A = ((aij)). The parameters ri determines the intrinsic growth

rate per individual of species i which would be observed if intraspecific and

interspecific interactions were absent. Here we will not be concerned with

the precise details of the ecological or environmental mechanisms that con-

tribute to the value of each of the parameters, as we are more interested in

the effects of the signs and magnitudes of each parameter on the qualitative

behaviour of (1).

We shall however, link the signs of parameters to types of interactions.

For example, ri > 0 says that the environment intrinsically favours the

growth of species i, whereas ri < 0 signals a risk of extinction for that

species unless the presence of another species promotes its growth. An

example of the latter case is where a predator will go extinct in the absence

of its prey and a suitable substitute food source.

Much of the material will apply to the most general form of the Lotka-
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Volterra model (1). Existence of interior steady states will be investigated

and their local stability studied.

2. Lyapunov methods for Lotka-Volterra Systems

2.1. Some basic dynamical systems results

Sime notation first: R≥0 = {x ≥ 0}, R>0 = {x > 0}. We will always

assume that parameters are such that the differential equations (1) generate

a semiflow ϕt : Rn
≥0 → Rn

≥0: ∀x ∈ Rn
≥0 and s, t ≥ 0,

(1) ϕ0(x) = x;

(2) ϕt(ϕs(x)) = ϕt+s(x);

Let U ⊂ Rn be open.

Definition 1 (Orbit). The (forward) orbit of x ∈ U is the set O+(x) =

{ϕt(x) : t ≥ 0}.

Definition 2 (Steady state). A steady state of ẋ = f(x) is a point x ∈ U
for which f(x) = 0.

Definition 3 (Forward invariant set). A set S ⊆ U is a forward invari-

ant set for ϕt if whenever x ∈ S we have ϕt(x) ∈ S for all t ≥ 0.

Definition 4 (Invariant set). When ϕt is a flow (i.e. also defined for

t ≤ 0), the set S ⊆ U is an invariant set for ϕt if whenever x ∈ S we have

ϕt(x) ∈ S for all t ∈ R.

One important use of invariant sets is captured by the following result:2

Theorem 1. Let S ⊂ Rn be homeomorphic to the closed unit ball and

forward invariant for the flow of ẋ = f(x). Then the flow has a steady

state x∗ ∈ S.

Hence one way of showing the existence of at least one steady state in a

compact simply-connected subset of Rn is to show that all orbits enter that

set (so that it is forward invariant).

The Heine-Borel theorem states that a subset of Rn is compact if and

only if it is closed and bounded. The key tool for studying the convergence

of orbits is the Omega limit set. This is the totality of all limit points of the

forward orbit through a given point. To prove that an orbit is convergent

to a steady state, one needs to show that its omega limit set consists of
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a single point, namely that steady state. Other interesting limit sets are

attracting limit cycles, periodic orbits, attractors, etc.

Definition 5 (Omega limit point). A point p ∈ U is an omega limit

point of x ∈ U if there are points ϕt1(x), ϕt2(x), . . . on the orbit of x such

that tk →∞ and ϕtk(x)→ p as k →∞.

Definition 6 (Omega limit set). The omega limit set ω(x) of a point

x ∈ U under the flow ϕt is the set of all omega limit points of x.

There is a similar construct for when ϕt is defined backwards in time, such

as when it is a flow:

Definition 7 (Alpha limit point). A point p is an α limit point for the

point x ∈ U if there are points ϕt1(x), ϕt2(x), . . . on the orbit of x such that

tk → −∞ and ϕtk(x)→ p as k →∞.

Definition 8 (Alpha limit set). The alpha limit set α(x) of a point x ∈
U under the flow ϕt is the set of all alpha limit points of x.

Lemma 1 (Properties of Omega limit sets).

(1) ω(x) is a closed set (but it might be empty);

(2) If O+(x) is compact, then ω(x) is non-empty and connected;

(3) ω(x) is an invariant set for ϕt;

(4) If y ∈ O+(x) then ω(y) = ω(x);

(5) ω(x) can be written as

ω(x) =
⋂
t≥0

{ϕs(x) : s ≥ t} =
⋂
t≥0

O+(ϕt(x)),

where A is the closure of A.

For a proof see, for example, reference 4.

Example 1. ẋ = 1 has the flow ϕt(x) = x + t. Given any x ∈ R and any

sequence tk → ∞, ϕtk(x) → ∞ and hence ω(x) is empty. On the other

hand, for ẋ = ax the flow is ϕt(x) = eatx, so that ϕtk(x) = eatkx → 0 as

tk →∞ if a < 0 giving ω(x) = {0} and clearly ϕt(0) = 0 so ω(x) is indeed

invariant. But if a > 0 the set ω(x) is empty.

As another example, take
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Example 2.

ẋ = x− y − x(x2 + y2)

ẏ = x+ y − y(x2 + y2).
(3)

By multiplying the first equation by x and the second by y and adding we

obtain, after setting r =
√
x2 + y2 and simplifying, ṙ = r − r3. The set

r = 1 i.e. S = {(x, y) : x2 + y2 = 1} is an invariant set and (x, y) = (0, 0)

is the unique steady state. It is not difficult to see that any orbit is either

the unique steady state (0, 0), the unit circle, or a spiral that tends towards

the unit circle. If (x, y) 6= (0, 0), ω((x, y)) = S, and otherwise ω((0, 0)) =

{(0, 0)}.

Problem 1. Find the omega limit sets for the predator-prey system on R2
≥0

ẋ = x(1− x+ y)

ẏ = y(−1− y + x).

The many practical uses of the omega limit set is typified by the fol-

lowing result. Note that ẋ = 1/x with x(0) > 0 satisfies ẋ → 0 as t → ∞,

but the unique forward orbit x(t) =
√

2t+ x(0)2 →∞ as t→∞ does not

converge to a steady state. However, we do have:

Lemma 2. Suppose that f : Rn → Rn is continuously differentiable with

isolated zeros. If x : R≥0 → Rn is a bounded forward orbit of ẋ = f(x)

such that ẋ(t) → 0 as t → ∞, then x(t) → p for some p as t → ∞ where

f(p) = 0, i.e. x converges to a steady state.

Proof. Let the orbit pass through x0. O+(x0) is bounded and hence com-

pact, so ω(x0) is compact, connected and nonempty. For p ∈ ω(x0) there

exists a sequence tk → ∞ as k → ∞ such that x(tk) → p as k → ∞.

By continuity 0 = limk→∞ ẋ(tk) = limk→∞ f(x(tk)) = f(p), so that p is a

steady state. Thus ω(x0) consists entirely of steady states. Since ω(x0) is

connected, and the steady states are isolated, ω(x0) = {p}.

2.2. Stability

Definition 9 (Lyapunov stability). A steady state x∗ is said to be Lya-

punov stable if for any ε > 0 (arbitrarily small) ∃ δ > 0 such that ∀x0 with

|x∗ − x0| < δ we have |ϕ(x0, t)− x∗| < ε for all t ≥ 0.

A steady state is said to be unstable if it is not (Lyapunov) stable.
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Definition 10 (Asymptotic stability). A steady state x∗ is said to be

asymptotically stable if it is Lyapunov stable and ∃ ρ > 0 such that ∀x0
with |x∗ − x0| < ρ we have |ϕ(x0, t)− x∗| → 0 as t→∞.

For example, in the system ẋ = −x−y+x(x2 +y2), ẏ = x−y+y(x2 +y2),

the origin is locally asymptotically stable (we get ṙ = −r+r3 by using polar

coordinates). For a simple harmonic oscillator in the form of a pendulum,

the pendulum resting vertically downwards is Lyapunov stable but not

asymptotically stable unless there is damping such as air resistance. The

upward vertical state of the pendulum is an example of an unstable steady

state.

Definition 11 (Basin of attraction). The basin of attraction B(x∗) of

a steady state x∗ ∈ U is the set of points y ∈ U such that ϕt(y) → x∗ as

t→∞.

Definition 12 (Global stability). If B(x∗) = U then x∗ is said to be

globally asymptotically stable on U .

Problem 2. Consider the logistic equation ẋ = x(1− x). Find all forward

invariant and invariant subsets of R≥0 and obtain the basin of attraction

of the positive steady state.

3. Ecological Systems

Consider the model

ẋi = xifi(x), i = 1, . . . , n. (4)

where each fi : Rn → Rn is C1. Suppose that x(0) = (x01, . . . , x0n) has

x0k = 0 for k ∈ J ⊂ {1, . . . , n}, so that some species are initially absent.

Then these species are absent for all time for which the solutions exist:

Theorem 2. For the model (4) the coordinate axes and the subspaces

spanned by them, and Rn
>0, are all forward invariant.

In other words populations that start nonnegative remain nonnegative.

Populations starting positive cannot go to zero in finite time.

4. LaSalle’s Invariance Principle

We start with a basic result for Lyapunov functions (e.g. page 127 in

reference 13):
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Theorem 3. Let U ⊆ Rn be open and f : U → R be continuously differ-

entiable and such that f(x0) = 0 for some x0 ∈ U . Suppose further that

there is a real-valued function V : U → R that satisfies (i) V (x0) = 0, (ii)

V (x) > 0 for x ∈ U \ {x0}. Then if (a) V̇ (x) := ∇V (x) · f(x) ≤ 0 for all

x ∈ U then x0 is Lyapunov stable; if V̇ (x) < 0 for all U \ {x0} then x0
is asymptotically stable on U ; (c) if V̇ (x) > 0 for all x ∈ U \ {x0}, x0 is

unstable.

This is a powerful theorem, but there is a useful generalisation of it which

caters for when V̇ −1(0) is not an isolated point.

Theorem 4 (LaSalle’s Invariance Principle). Let ẋ = f(x) define a

flow on a set U ⊆ Rn, where f is continuously differentiable. Suppose

V : U → R is a continuously differentiable function. Let Q be the largest

invariant subset of U . If for some bounded solution x(t, x0) with ini-

tial condition x(0, x0) = x0 ∈ U the time derivative V̇ = DV f satisfies

V̇ (x(t, x0)) ≤ 0, then ω(x0) ⊆ Q ∩ V̇ −1(0).

Proof. By boundedness of the orbit, ω(x) is nonempty and for p ∈ ω(x)

there exists a tk → ∞ such that x(tk) → p. Since V̇ (x(tk)) ≤ 0 the

sequence {V (tk)} is nonincreasing. Since x(tk, x0) is bounded, V (x(tk, x0))

is bounded, so that there exists a c ∈ R such that V (tk) → c. Hence

ω(x) ⊂ V −1(c). Since ω(x0) is invariant, ω(x0) ⊂ Q, and for any y ∈ ω(x0)

we have V (x(t, y)) = c and differentiating gives V̇ (x(t, y)) = 0 for all t, and

hence V̇ (y) = 0 for all y ∈ ω(x). Hence ω(x) ⊂ Q ∩ V̇ −1(0).

Example 3.

ẋ = x− y − x(x2 + y2)

ẏ = x+ y − y(x2 + y2).

Taking U = R2, V (x, y) =
√
x2 + y2 we get

dV

dt
= V (1− V 2)

{
≤ 0 for |(x, y)| ≥ 1

> 0 |(x, y)| < 1.

Thus V̇ −1(0) = {(0, 0)} ∪ S (S is the unit circle). Q = R2 and applying

LaSalle’s invariance principle we get ω((x, y)) ⊂ {(0, 0)} ∪ S. But the

omega limit set is also connected, so that it must be either {(0, 0)} or

(by invariance) all of S. Since (0, 0) is unstable, we must have ω(x0) = S
when x0 6= 0 and ω((0, 0)) = {(0, 0)}.



April 28, 2016 12:43 ws-rv9x6 Book Title LTCCIntegratedBaigent
page 8

8 Stephen Baigent

Example 4.
ẋ = x(−α+ γy) (5)

ẏ = αx− (γx+ δ)y (α, β, δ > 0) (6)

This system has a unique steady state (0, 0), and one can show that U =

R2
≥0 is forward invariant. Adding (5) and (6) we obtain

d

dt
(x+ y) = −δy ≤ 0 on R2

≥0.

Take V (x, y) = x + y. Then V̇ −1(0) = {(s, 0) : s ∈ R}. By LaSalle’s

invariance principle,

ω((x, y)) ⊆ {(s, 0) : s ∈ R≥0}, (x, y) ∈ R2
≥0.

But ω((x, y)) must be connected and invariant, and the only invariant sub-

sets of T = {(s, 0) : s ∈ R>0} for the flow of (5) and (6) are the origin and

T itself. But, by (5), for s ≥ 0, ϕtk(s, 0)→ (0, 0) for any sequence tk →∞,

so ω((x, y)) = {(0, 0)} ∀(x, y) ∈ R2
≥0.

Theorem 5 (Goh7). Suppose that the Lotka-Volterra system ẋi =

xifi(x) = xi(ri +
∑n

j=1 aijxj), i = 1, . . . , n has a unique interior steady

state x∗ = −A−1r ∈ Rn
>0. Then this steady state is globally attracting on

Rn
>0 if there exists a diagonal matrix D > 0 such that AD+DAT is negative

definite.

Proof. Let V : Rn
≥0 → R≥0 be defined by

V (x) =

n∑
i=1

αi (xi − x∗i − x∗i log(xi/x
∗
i )) ,

where αi ∈ R>0 are to be found. Then we compute

V̇ = ∇V · f =

n∑
i=1

αi(xi − x∗i )fi(x) =

n∑
i=1

αi(xi − x∗i )


n∑

j=1

aij(xj − x∗j )

 .

This can be rewritten as

V̇ = (x− x∗)TATD(x− x∗) =
1

2
(x− x∗)T (DA+ATD)(x− x∗),

where D = diag(α1, . . . , αn). When DA+ATD is negative definite, V̇ ≤ 0

and V̇ −1(0) = {x∗}. V is convex (as the sum of convex functions) and

has a unique minimum at x = x∗. Hence by Theorem 3 x∗ is globally

asymptotically stable on Rn
>0.
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(See reference 16 for an improvement of this result to cater for boundary

steady states.)

Example 5. Consider the two species Lotka-Volterra system

ẋ = x(a+ bx+ cy)

ẏ = y(d+ ex+ fy).
(7)

Suppose that (7) has a unique interior steady state, say (x∗, y∗) ∈ R2
>0.

Thus bf − ce 6= 0. We use Theorem 5. Let λ > 0 and

D =

(
1 0

0 λ

)
, M = DA+ATD =

(
2b c+ λe

c+ λe 2λf

)
.

Then for diagonal stability we need M to negative definite, which it is if

and only if its trace is negative and its determinant is positive:

(i) λf + b < 0, (ii) 4bfλ > (c+ λe)2.

Since we seek λ > 0, to satisfy (ii) we require fb > 0, which then implies

f, b < 0 by (i). Next for (ii) we need

4bfλ− (c+ λe)2 = (4bf − 2ce)λ− c2 − e2λ2 > 0

for some λ > 0. The quadratic φ(λ) = (4bf − 2ce)λ− c2 − e2λ2 is negative

for λ = 0 and large |λ|, and so is positive for some λ > 0 only if 4bf−2ec =

2 detA+ 2bf > 0 and (4bf − 2ce)2 > 4e2c2 which simplifies to detA > 0.

To conclude, we have shown

Theorem 6 (Goh6). Suppose the system

ẋ = x(a+ bx+ cy)

ẏ = y(d+ ex+ fy).
(8)

has a unique interior steady state (x∗, y∗) ∈ R2
>0. Then (x∗, y∗) globally

attracts all points in R2
>0 if f < 0, b < 0 and detA > 0.

Problem 3. Is the converse of Theorem 6 true?

5. Conservative Lotka-Volterra Systems

Definition 13 (Conservative Lotka-Volterra). We will say that (1) is

conservative if there exists a diagonal matrix D > 0 such that AD is skew-

symmetric.
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Notice that if B is skew-symmetric then bij = −bji for all i, j. In particular

bii = −bii so that bii = 0, i.e. the diagonal elements of a skew-symmetric

matrix are all zero.

Problem 4. Consider the two-species Lotka-Volterra system

1

N

dN

dt
= a− bP

1

P

dP

dt
= cN − d

Change to new coordinates x = logN, y = logP and show that H(x, y) =

dx+ ay− ex − ey is constant along a trajectory (x(t), y(t)). Show also that

ẋ = ∂H
∂y , ẏ = −∂H

∂x .

A change of coordinates yi = xi/di (di ≤ 0) transforms (1) into

ẏi = yi(ri +

n∑
j=1

djaijyj),

so that we obtain another Lotka-Volterra system with interaction matrix

AD. The Lotka-Volterra systems with interaction matrices AD for D > 0

diagonal have topologically equivalent dynamics.

Lemma 3. If A is an n × n skew-symmetric matrix then detA =

(−1)n detA. Hence when n is odd, A is singular.

Proof. detA = detAT = det(−A) = (−1)n detA.

Now suppose that A is skew-symmetric. We will show that certain

Lotka-Volterra systems can be written in Hamiltonian form. But before

doing so, we recall the definition of a Hamiltonian system on Rn (see, for

example, reference 12). Let C∞ denote the space of smooth functions

Rn → R.

Definition 14 (Hamiltonian system on Rn). A Hamiltonian system

(on Rn) is a pair (H, {·, ·}) where H : Rn → R is a smooth function,

called the Hamiltonian, and {·, ·} : C∞ × C∞ → C∞ is a Poisson bracket;

that is a bilinear skew-symmetric map {·, ·} : C∞×C∞ → C∞ that satisfies

the following relations for all f, g, h ∈ C∞

(1) {f, gh} = {f, g}h+ g{f, h} [Leibnitz rule] ;

(2) {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 [Jacobi Identity] .
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For example, when n = 2 the bracket {·, ·} : C∞ × C∞ → R given by

{f, g} =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q

defines a Poisson bracket.

For each g ∈ C∞, the bracket defines a Hamiltonian vector field Xg

on Rn via {f, g} = Xg(f). In the previous example Xg = ∂g
∂q

∂
∂p −

∂g
∂p

∂
∂q .

Hamilton’s equations are then given by ẋi = XH(xi) for i = 1, . . . , n.

In particular, Ḣ = {H,H} = 0 gives the constancy of the Hamiltonian

function along an orbit. In addition to conserved functions conserved on

orbits, there may also be functions C such that {C, f} = 0 for all functions

f ∈ C∞. That is: C is constant along all flows generated by the Hamilto-

nian vector fields Xf as f ranges through C∞. Such functions C are known

as Casimirs.

To establish that a Lotka-Volterra system is Hamiltonian, we thus have

to identify both a Poisson bracket and a Hamiltonian function.

Before turning to a Hamiltonian description of (1) we note that there’s

a graphical way to test whether a Lotka-Volterra system is conservative:

Proposition 1 (Volterra18). The Lotka-Volterra system ẋi = xi(ri +

(Ax)i) is conservative if and only if aii = 0 and aij 6= 0 ⇒ aijaji <

0, and for every sequence i1, i2, . . . , is we have ai1i2ai2i3 · · · aisi1 =

(−1)saisis−1
· · · ai2i1ai1is .

That is we have a graphical condition that there exists a diagonal matrix

D > 0 such that AD is skew-symmetric (AD + DAT = 0; compare with

Theorem 5). One creates a signed digraph with nodes labelled 1 to n where

n is the number of species and puts on each directed edge linking nodes i

to j the number aij . The condition to check is then that for each cycle in

the digraph of length s, the product of the edge numbers in one direction

is (−1)s times the product in the opposite direction.

6. Volterra’s construction5,18

We start with the skew-symmetric system

ẋi = xi(ri +

n∑
j=1

aijxj), aij = −aji. (9)

Volterra introduced new coordinates which he called quantity of life:

Qi =

∫ t

0

xi(s) ds (i = 1, . . . , n).
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Thus Q̇i = xi and (9) becomes the second order system

Q̈i = Q̇i(ri +

n∑
j=1

aijQ̇j). (10)

Then he introduces H(Q, Q̇) =
∑n

i=1(riQi − Q̇i) so that

dH

dt
=

n∑
i=1

(riQ̇i−Q̈i) =

n∑
i=1

(riQ̇i−Q̇i(ri+

n∑
j=1

aijQ̇j)) = −
n∑

i,j=1

aijQ̇iQ̇j = 0

using skew-symmetry of A = ((aij)). Dual variables Pi are then defined via

Pi = log Q̇i −
1

2

n∑
j=1

aijQj (i = 1, . . . , n).

In terms of these new coordinates, we get the transformed h(Q,P ) =

H(Q, Q̇) where

h(Q,P ) =

n∑
i=1

riQi − exp(Pi +
1

2

n∑
j=1

aijQj)

 .

Now we can check that

dQi

dt
= exp(Pi +

1

2

n∑
j=1

aijQj) = − ∂h

∂Pi
,

and

dPi

dt
=

d

dt

log Q̇i −
1

2

n∑
j=1

aijQj


=
Q̈i

Q̇i

− 1

2

n∑
j=1

aijQ̇j = ri +

n∑
j=1

aijQ̇j −
1

2

n∑
j=1

aijQ̇j

= ri +
1

2

n∑
j=1

aij exp(Pj +
1

2

n∑
k=1

ajkQk).

On the other hand

∂h

∂Qi
= ri−

n∑
k=1

aki
2

exp

Pk +
1

2

n∑
j=1

akjQj

 = ri+

n∑
k=1

aik
2

exp

Pk +
1

2

n∑
j=1

akjQj

 ,

using aik = −aki. This gives Ṗi = ∂h
∂Qi

as required.
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Hence we have shown that the system (9) is canonically Hamiltonian in

the new coordinates P,Q with Hamiltonian function

h(P,Q) =

n∑
i=1

riQi − exp(Pi +
1

2

n∑
j=1

aijQj)

 ,

and the standard Poisson bracket

{f, g} =

n∑
i=1

∂f

∂Pi

∂g

∂Qi
− ∂g

∂Qi

∂f

∂Pi
.

7. An alternative Hamiltonian formulation

In the previous formulation, we doubled the number of variables in order to

find a Hamiltonian structure. Here we keep the same number of variables

as the original Lotka-Volterra system.

Suppose that Ax + r = 0 has a solution x∗ ∈ Rn (here A is skew-

symmetric). Introduce new variables yi = log xi:

ẏi = (ri +

n∑
j=1

aij exp yj) =

n∑
j=1

aij(exp yj − x∗j ).

Now define

H(y) =

n∑
i=1

(exp yi − x∗i yi),

so that

ẏi =

n∑
j=1

aij(e
yj − x∗j ) =

n∑
j=1

aij
∂H

∂yj
, (11)

dH

dt
=

n∑
j=1

∂H

∂yj
ẏj

=

n∑
i=1

n∑
j=1

aij
∂H

∂yi

∂H

∂yj

=
1

2

n∑
i=1

n∑
j=1

(aij + aji)
∂H

∂yi

∂H

∂yj

= 0,

using skew-symmetry of A = ((aij)). To complete the Hamiltonian formu-

lation we check that

{f, g} = ∇f ·A∇g (12)
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provides a suitable Poisson bracket.

Problem 5. Show that (12) defines a Poisson bracket.

Notice that the x∗ need not lie in the first quadrant. In an odd dimensional

Lotka-Volterra system with skew-symmetric interaction matrix A, we have

detA = 0 and it is possible that Ax + r = 0 has no solutions. Indeed, if

A is singular, then there is a v 6= 0 in kerA such that vTA = (AT v)T =

−(Av)T = 0. Thus for a solution to exist we must have vT r = 0 for all

v ∈ kerA, i.e. r ∈ (kerA)⊥.

Example 6. Consider the Lotka-Volterra system for 3 interacting species:

ẋ1 = x1(r1 + ω1x2 − ω2x3)

ẋ2 = x2(r2 − ω1x1 + ω3x3)

ẋ3 = x3(r3 + ω2x1 − ω3x2)

(13)

where ω1, ω2, ω3 > 0 and each ri > 0. Here species 3 is prey to species

2. Species 2 consumes species 3, but is consumed by species 1. Species 1

consumes species 2 but it is consumed by species 3. (So we have a cycle of

interactions.) It is easy to see that the interaction matrix

A =

 0 ω1 −ω2

−ω1 0 ω3

ω2 −ω3 0


is skew-symmetric. Since A is 3 × 3 we already know that A is singular.

Thus if q is a solution to Aq+r = 0 then so too is q+k for any k ∈ kerA =

{α(ω3, ω2, ω1) : α ∈ R}. One finds that Aq+ r = 0 has no solutions (in R3)

unless

vT r = ω3r1 + ω1r3 + ω2r2 = 0 (14)

(v = (ω3, ω2, ω1)) and in this case q = ( r2
ω1
,− r1

ω1
, 0) + αv for α ∈ R.

Thus let us now assume that (14) holds. For the Hamiltonian we may

take

H(x) = x1 + x2 + x3 −
r2
ω1

log x1 +
r1
ω1

log x2.

We find that

Ḣ =

(
r3 +

r2ω2

ω1
+
r1ω3

ω1

)
x3 = 0

by virtue of (14). A suitable Poisson bracket is thus

{f, g} = ω1x1x2

(
∂f

∂x1

∂g

∂x2
− ∂g

∂x1

∂f

∂x2

)
−ω2x1x3

(
∂f

∂x1

∂g

∂x3
− ∂g

∂x1

∂f

∂x3

)
+ ω3x2x3

(
∂f

∂x2

∂g

∂x3
− ∂g

∂x2

∂f

∂x3

)
.
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Since A is singular, there are Casimir functions C; that is C satisfying

{C, g} = 0 for all g, proportional to

C(x) = ω3 log x1 + ω2 log x2 + ω1 log x3.

(or we could take C(x) = xω3
1 xω2

2 xω1
3 ). We find that

Ċ = r3ω1 + r2ω2 + r1ω3 = 0,

again using (14). The dynamics lies on the intersection of the surfaces

H(x) = H(x(0)) and C(x) = C(x(0)) in the first quadrant.

Let us change coordinates, setting X = log x1, Y = log x2 and Z =

log x3. Then we have on a solution

eX + eY + eZ − r2
ω1
X +

r1
ω1
Y = A

ω3X + ω2Y + ω1Z = B,

where A,B are constants. Hence we may plot

Z = log

(
A− eX − eY +

r2
ω1
X − r1

ω1
Y

)
(15)

Z =
B − ω3X − ω2Y

ω1
. (16)

The first surface is concave where the logarithm is defined. Searching for

periodic orbits then becomes the study of how the surface (15) intersects

the plane (16). An example a periodic orbit is shown in Figure 1.

8. Cooperative Lotka-Volterra Systems

We will consider the general Lotka-Volterra system

ẋi = Fi(x) := xi(ri +

n∑
j=1

aijxj), (i = 1, . . . , n). (17)

except that we will constrain ourselves to the case that aij ≥ 0 when i 6= j,

i.e. the off-diagonal elements of the interaction matrix are nonnegative.

Notice that in this case

∂Fi

∂xj
= aijxi ≥ 0, i 6= j,

since for i 6= j we have aij ≥ 0 and we have x ∈ Rn
≥0. Since the first

quadrant is invariant the Jacobian has nonnegative off-diagonal elements.

Definition 15 (Cooperative matrix). We will say that any real n × n
matrix with nonnegative off-diagonal elements is cooperative.
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Fig. 1. A periodic solution to the three species model (13). There exists a continuum

of periodic orbits around the interior steady state.

Some notation

In what follows we will use the following notation for ordering vectors x ∈
Rn: For each x, y ∈ Rn

• x ≤ y ⇔ xi ≤ yi for all i = 1, . . . , n;

• x < y ⇔ xi ≤ yi for all i = 1, . . . , n, but xk 6= yk for some k.

• x� y ⇔ xi < yi for all i = 1, . . . , n.

(Similarly for ≥, >,�.) We say that (Rn,≤) is an ordered vector space.

The following Perron-Frobenius theorem is fundamental in the study of

coorperative or competitive systems (see, for example, reference 3). We

recall that the spectral radius of A, written ρ(A), is the modulus of an

eigenvalue of A of largest modulus, and a matrix A is irreducible if it is

not similar via a permutation to a block upper triangular matrix (that has

more than one block of positive size).
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Theorem 7 (Perron-Frobenius). If A is a n× n real matrix with non-

negative entries. Then

• ρ(A) is an eigenvalue of A.

• A has left and right eigenvectors u > 0 and v > 0 associated with ρ(A)

(i.e. uA = ρ(A)u and Av = ρ(A)v).

If A is also irreducible then we have ρ(A) > |µ| for any eigenvalue µ 6= ρ(A),

and ρ(A) is simple and v � 0 and u� 0 in the above statements.

(Note: the inequalities in Theorem 7 use the vector ordering defined above).

Definition 16. A matrix A is negatively (row) diagonally dominant if there

exists a d� 0 such that aiidi +
∑

j 6=i |aij |dj < 0 for all i = 1, . . . , n.

When A is a cooperative matrix this becomes Ad� 0.

Lemma 4. Let A be a cooperative matrix. Then A is stable if and only if

it is negatively diagonally dominant.

Proof. First suppose that A is negatively diagonally dominant: There

exists a d � 0 such that Ad � 0. Note that we must have all aii < 0

since the off-diagonal elements are nonnegative and d � 0. Let λ be an

eigenvalue of A with right eigenvector x. Let yi = xi/di for i = 1, . . . , n

and |ym| = maxi |yi| > 0. Then λdiyi =
∑n

j=1 aijdjyj and

λdm = dmamm +

n∑
j 6=m

djamj
yj
ym

.

Therefore

|λdm − dmamm| ≤
n∑

j 6=m

djamj

∣∣∣∣ yjym
∣∣∣∣ ≤ n∑

j 6=m

djamj < −dmamm

by hypothesis. Hence |λ − amm| < −amm and λ must lie in the open disc

in the Argand plane whose boundary passes through zero and whose centre

is at the negative number amm. Thus all eigenvalues λ have negative real

part, so A is stable.

Conversely, suppose that A is stable and has nonnegative off-diagonal

elements. For c > 0 sufficiently large B = A + cI is a nonnegative matrix

and so by the Perron-Frobenius theorem there is a λ = ρ(B) ≥ 0 and a

v > 0 such that Bv = λv = ρ(B)v. But then Av = (ρ(B) − c)v so that,

since A is stable, ρ(B) < c. Since ρ(B) < c the following series converges

A−1 = −1

c

(
I +

1

c
B +

1

c2
B2 + · · ·

)
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and thus all elements of A−1 are non-positive. Now set d =

−A−1(1, . . . , 1)T . Then d� 0 (no row of A can be zero, since it is nonsin-

gular) and Ad = −(1, . . . , 1)T � 0.

As a corollary we have:

Corollary 1. If A is cooperative and r � 0 then Ax+ r = 0 has a unique

interior solution x ∈ Rn
>0 if and only if A is stable.

Problem 6. For the system (8) when c > 0, e > 0 and detA > 0, find the

condition for a unique interior steady state.

We also have the following (see, for example, Theorem 15.1.1 in reference

10):

Theorem 8 (Global convergence for cooperative Lotka-Volterra).

When A cooperative and stable the system (17) has a unique interior steady

state that attracts Rn
>0.

Proof. By corollary 1 A is negatively diagonally dominant by lemma 4, i.e

there exists a d� 0 such that aiidi +
∑n

j=1 aijdj < 0. Define

V (x) = max
k

|xk − x∗k|
dk

.

Then V (x) ≥ 0 with equality if and only if x = x∗. Now, consider a time

interval during which maxk
|xk−x∗k|

dk
=
|xi−x∗i |

di
. Then

V̇ =
1

di
ẋisgn(xi − x∗i )

=
xi
di

aii(xi − x∗i ) +
∑
j 6=i

aij(xj − x∗j )

 sgn(xi − x∗i )

≤ xi
di

aii|xi − x∗i |+∑
j 6=i

aij |xj − x∗j |


≤ xi
di
V (x)

aiidi +
∑
j 6=i

aijdj


≤ 0 for all x ∈ Rn

>0, with equality if and only if x = x∗.

Hence by Theorem 3, x(t)→ x∗ as t→∞.
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9. Competitive Lotka-Volterra Systems

Now we consider the Lotka-Volterra system

ẋi = xi(ri −
n∑

j=1

aijxj) = Fi(x), i = 1, . . . , n, (18)

under the special conditions that aij > 0 for all 1 ≤ i, j ≤ n (caution:

notice the change of sign in (18)). This means that each species competes

with all other species including itself. If some ri ≤ 0 then it is clear that

xi(t)→ 0 as t→∞ since Rn
≥0 is invariant and

ẋi = xi(ri −
n∑

j=1

aijxj) ≤ −aiix2i ≤ 0,

with equality if and only if xi = 0. We will therefore also assume ri > 0 for

each i = 1, . . . , n. This means that in the absence of any competitors the

species i will evolve according to ẋi = xi(ri − aiixi) and hence will either

remain at zero or stabilise at its carrying capacity Ki = ri/aii > 0. It also

means that the origin is an unstable node.

Lemma 5. Since aij > 0 and ri > 0, all orbits of (18) are bounded.

Proof. Rn
≥0 is invariant and

ẋi = rixi − xi
n∑

j=1

aijxj ≤ rixi − aiix2i = xi(ri − aiixi) < 0 if xi >
ri
aii
,

so that the ith species is bounded for each i = 1, . . . , n.

10. Smale’s Construction

In the 1970’s many thought that for a finite habitat that is home to a

number of species that compete with each other and the other species, the

long term outcome is “simple” dynamics, e.g. convergence to a steady state

or a periodic orbit. But this is not the case, as Stephen Smale showed in

1976.14 Consider a more general model of total competition:

ẋi = xiMi(x) = Fi(x), (i = 1, . . . , n), (19)

where Mi is smooth and we will suppose that

S1 For all pairs i, j we have ∂Mi

∂xj
< 0 when xi > 0 (totally competitive).

S2 There is a constant K such that for each i, Mi(x) < 0 if |x| > K.
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Condition S1 means that

∂ẋi
∂xj

= xi
∂Mi

∂xj
< 0 all i, j if xi > 0. (20)

Thus the Jacobian has negative elements in Rn
>0. In other words competi-

tion for resources. The second condition says that there are finite resources

and that the populations can not grow indefinitely.

Smale showed that examples of systems satisfying (19) and the condi-

tions S1, S2 whose long term dynamics lie on a simplex and obey ẋ = h(x)

on the simplex, where h is any smooth vector field of our choice! Thus the

simplex is an attractor upon which arbitrary dynamics can be specified,

even chaos.

We follow the presentation of reference 9. Let ∆1 = {x ∈ Rn
≥0 : ‖x‖1 =

1} be the standard probability simplex with tangent space ∆0 = {x ∈ Rn :∑n
i=1 xi = 0}. Let h0 : ∆1 → ∆0 be a smooth vector field on ∆1 whose

components can be written as h0i(x) = xigi(x) and h : Rn
≥0 → ∆0 any

smooth map which agrees with h0 on ∆1.

Now let β : R → R be any smooth function which is 1 in a neighbour-

hood of 1 and β(t) = 0 if t ≤ 1
2 or t ≥ 3

2 . For ε > 0 define Mi on Rn
≥0

by

Mi(x) = 1− ‖x‖1 + εβ(‖x‖1)gi(x), 1 ≤ i ≤ n.

We may check: for each i, j,

∂Mi

∂xj
= −1 + εβ′(‖x‖1)gi + εβ(‖x‖1)

∂gi
∂xj

< 0,

for small enough ε since β has compact support.

Now as before, Rn
≥0 is invariant, and d

dt‖x‖1 =
∑n

i=1 ẋ = ‖x‖1(1−‖x‖1)

(the logistic equation!). Thus ∆1 is forward invariant and any point in

Rn
≥0 \ {0} is attracted to ∆1. On ∆1 we have

Mi(x) = 1− ‖x‖1 + εβ(‖x‖1)gi(x) = εgi(x),

so that the dynamics on the attractor is ẋi = xiεgi(x) = εhi(x) for i =

1, . . . , n, with h arbitrary.

Hence we should be warned that the long term dynamics of bounded

competitive systems in dimensions higher than two can be very complex

(although one can show [see the next section on the carrying simplex] that

when n = 3 the long-term dynamics must lie on a set of dimension at

most 2, and this severely restricts the possibilities. However, much more is

possible when n ≥ 4.)
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11. Carrying Simplices

A bounded totally competitive system with the origin unstable has a unique

invariant manifold that attracts the first orthant minus the origin. We will

give an examplea of such a system where the invariant manifold can be

explicitly found - it is the probability simplex in Rn
≥0 - and all orbits save

the origin are attracted to it. Moreover, (for that example) the dynamics

on the simplex is canonically Hamiltonian and all orbits are periodic.

We consider again the system

ẋi = xiMi(x), (i = 1, . . . , n),

where Mi is smooth and we will suppose that

S1 For all pairs i, j we have ∂Mi

∂xj
< 0.

S2 There is a constant K such that for each i, Mi(x) < 0 if |x| > K.

S3 Mi(0) > 0.

Condition S3 makes the origin 0 a repelling steady state. Since orbits are

bounded, the basin of repulsion of 0 in Rn
≥0 is bounded. The boundary of

the basin of repulsion is called the Carrying Simplex and is denoted by Σ.

One can think of Σ as being the boundary of the set of points whose α limit

is the origin.

All steady states and all ω limit sets lie in Σ and we have from Hirsch8

Theorem 9 (The Carrying Simplex). Given (19) every trajectory in

Rn
≥0 \ {0} is asymptotic to one in Σ, and Σ is a Lipschitz submanifold,

everywhere transverse to all strictly positive directions, and homeomorphic

to the probability simplex.

Thus totally competitive n−dimensional Lotka-Volterra systems (as above)

eventually evolve like n− 1 dimensional systems. Thus nothing very exotic

can happen for n < 4. In Figure 3 we display 3 examples of the carrying

simplex for totally competitive Lotka-Volterra systems.1

The following example has the advantage that the carrying simplex can

be found explicitly, and it is easy to see that all points save the origin are

attracted to it.

Example 7. We consider the illustrative example of an eventually periodic

aA second example, since in Smale’s example the unit simplex is also a carrying simplex.
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Fig. 2. The Carrying Simplex attracts all orbits except the origin and contains any ω

limit set and in particular all steady states except the origin.

competitive system11

ẋ = x(1− x− αy − βz)
ẏ = y(1− βx− y − αz)
ż = z(1− αx− βy − z)

where α, β > 0 and α+ β = 2. Let

V (x, y, z) = xyz.

Then
d

dt
V = xyz

(
ẋ

x
+
ẏ

y
+
ż

z

)
= V ((1− x− αy − βz) + (1− βx− y − αz) + (1− αx− βy − z))
= V (3− (x+ y + z)− (α+ β)(x+ y + z))

= 3V (1− (x+ y + z)) since α+ β = 2.

Moreover
d

dt
(x+ y + z) = (x+ y + z)− x2 − y2 − z2 − (α+ β)(xy + xz + yz)

= (x+ y + z)(1− (x+ y + z)).
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Fig. 3. Examples of the carrying simplex for competitive the 3 dimensional Lotka-

Volterra equations. From left to right the carrying simplex is (i) convex, (ii) concave

and (iii) saddle-like.1

Thus if (x0, y0, z0) ∈ R3 \ (0, 0, 0) we have x(t) + y(t) + z(t)→ 1 as t→∞.

That is, all orbits eventually end up on the simplex ∆1. Thus the carrying

simplex Σ in this example is just the simplex ∆1. On ∆1 we have

dV

dt
= 3V (1− (x+ y + z)) = 0,

that is V = const on ∆1. What is the dynamics actually on the carrying

simplex? We may eliminate z since z = 1− x− y on the carrying simplex.

This gives

ẋ = x(1− x− αy − β(1− x− y)) =
(α− β)

2
x(1− x− 2y)

ẏ = y(1− βx− y − α(1− x− y)) =
−(α− β)

2
y(1− 2x− y)

where α + β = 2. Notice that div (ẋ, ẏ) = 0 and that we have a canonical

Hamiltonian system with Hamiltonian function

H(x, y) =
(α− β)

2
(1− x− y)xy.

On the open triangle T = {(x, y) ∈ R2
≥0 : 0 < x + y < 1} we obtain

closed contours, i.e. the solutions are periodic. (This is the projection of

the dynamics on Σ onto the xy−plane.) Figure 7 shows the periodic orbits

on the invariant plane Σ = {x ∈ R3
≥0 : x1 + x2 + x3 = 1} as part of the

3-dimnesional phase portrait.
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Fig. 4. Periodic orbits in a model of May and Leonard.11 Note the carrying simplex is

the usual simplex in R3
≥0 and it clearly attracts all orbits apart from the origin.

Problem 7. Consider the planar competitive system20

ẋ = x(1− x− y

2
)

ẏ = y(1− 3x− y).

Show that this system has a carrying simplex Σ which is the graph of a

quadratic function q that satisfies q(0) = 1 and q(1) = 0. Sketch the phase

plane.

12. Further reading

The book by Takeuchi (reference 16) provides a comprehensive study of

Lotka-Volterra equations. Hofbauer and Sigmund10 contains much on

Lotka-Volterra systems, plus also their close cousins the Replicator equa-

tions from evolutionary game theory. The cooperative and competitive

Lotka-Volterra models discussed here are a small subset of monotone dy-

namical systems which are covered in reference 9 by Hirsch and Smith. See

also the monograph on monotone dynamical systems by Smith.15 In 2003

a new geometrical approach to the study of Lotka-Volterra systems was

initiated by M. L. Zeeman and E. C. Zeeman.19 The carrying simplex of
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competition models originated in a 1988 paper by Hirsch.8 The geome-

try of carrying simplices has been studied by Tineo17 and more recently

by Baigent,1 where in the latter paper links are made to the geometrical

approach of Zeeman and Zeeman.19

13. Sketch solutions to problems

Problem 1:

ẋ = x(1− x− y) (21)

ẏ = y(−1− y + x). (22)

From (21) we see that for any initial condition, since y(t) ≥ 0, for t large

enough 0 ≤ x(t) ≤ 1. But then, from (22) eventually ẏ < 0 and so we

must have y(t) → 0 as t → ∞. It is thus clear that all orbits are bounded

and each ω((x0, y0)) is nonempty. If (p1, p2) ∈ ω((x0, y0)), then for some

tk → ∞, p2 = limk→∞ y(tk) = 0. Thus ω((x0, y0)) ⊂ {(s, 0) : s ∈ [0, 1]}.
If (P1(t), 0) is the forward orbit with (P1(0), 0) = (p1, 0) ∈ ω((x0, y0))

and p1 > 0 then by invariance (P1(t), 0) ∈ ω((x0, y0)) for all t ∈ R.

But P1(t) satisfies Ṗ1 = P1(1 − P1) and so p1 = limk→∞ P1(tk) = 1.

Hence for any (x0, y0) ∈ R2
≥0 \ {(0, 0)} we have ω((x0, y0)) = {(1, 0)},

and ω((0, 0)) = {(0, 0)}.
Problem 2

The system ẋ = x(1 − x) has invariant sets {0}, {1}, [0, 1], {0, 1}, R≥0,

R≥0 \ {1}. The forward invariant sets are [s1, s2] for any 0 ≤ s1 ≤ 1 ≤ s2.

B(1) = R>0.

Problem 3

No, the converse does not hold. Take the system ẋ = x(1 − x
2 −

y
2 ) and

ẏ = y(−1 + x + y
8 ). Then there is a steady state ( 6

7 ,
8
7 ) which globally

attracts R2
>0, with detA = 7

16 > 0 and b = − 1
2 < 0 but f = 1

8 > 0.

Problem 4

Set x = logN, y = logP . Then ẋ = a − bey, ẏ = cex − d. Set H(x, y) =

ay+dx− cex− bey. Then ∂H
∂x = d− cex = −ẏ and ∂H

∂y = a− bey = ẋ. Then

Ḣ = ∂H
∂x ẋ+ ∂H

∂y ẏ = 0, so that H is constant along orbits.

Problem 5

{f, g} = ∇f · A∇g, where AT = −A. Then using the summation con-

vention {g, h} = aij
∂g
∂xi

∂h
∂xj

. Thus {f, {g, h}} = aij
∂f
∂xi

∂
∂xj

(
alk

∂g
∂xl

∂h
∂xk

)
=

aijalk
∂f
∂xi

(
∂2g

∂xl∂xj

∂h
∂xk

+ ∂g
∂xl

∂2h
∂xk∂xj

)
= aijalk

(
∂f
∂xi

∂h
∂xk

∂2g
∂xl∂xj

+ ∂f
∂xi

∂g
∂xl

∂2h
∂xk∂xj

)
.

By cycling terms {g, {h, f}} = aijalk

(
∂g
∂xi

∂f
∂xk

∂2h
∂xl∂xj

+ ∂g
∂xi

∂h
∂xl

∂2f
∂xk∂xj

)
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and {h, {f, g}} = aijalk

(
∂h
∂xi

∂g
∂xk

∂2f
∂xl∂xj

+ ∂h
∂xi

∂f
∂xl

∂2g
∂xk∂xj

)
. Consider sec-

ond derivatives of h the sum {f, {g, h}} + {g, {h, f}} + {h, {f, g}}; this

gives aijalk
∂f
∂xi

∂g
∂xl

∂2h
∂xk∂xj

+ aijalk
∂g
∂xi

∂f
∂xk

∂2h
∂xl∂xj

= aijalk
∂f
∂xi

∂g
∂xl

∂2h
∂xk∂xj

−

aijalk
∂g
∂xi

∂f
∂xl

∂2h
∂xk∂xj

= aijalk
∂2h

∂xk∂xj

(
∂g
∂xi

∂f
∂xl
− ∂f

∂xi

∂g
∂xl

)
. This value of this

last expression is not changed by interchanging labels i, l, whereas the

bracketed term changes sign, and so the expression must be zero.

Problem 6

The conditions are detA = bf − ec > 0 and dc > fa, ea > db. Since ec > 0

we must have bf > 0, and hence either (i) b, f > 0 or (ii) b, f,< 0. If

b, f > 0 then c
f d > a and e

ba > d. From these it is clear that both cannot

be satisfied unless a, d > 0. If b, f > 0 and a, d > 0 then the condition is
b
e <

a
d <

c
f . (Of course, even if an interior steady state exists, the cooper-

ative system (e, c > 0) may have unbounded orbits).

Problem 7

An invariant curve connecting (1, 0) and (0, 1) is a solution y : [0, 1]→ R≥0
of y′(x) = y(1−3x−y)

x(1−x− y
2 )

that satisfies the boundary conditions y(0) = 1 and

y(1) = 0. Let the quadratic be y(x) = 1 + ax + bx2. Then this sat-

isfies the boundary condition y(0) = 1. To satisfy y(1) = 0 we need

0 = 1 + a + b so that we need a = −1 − b, and y takes the form y(x) =

1− (1 + b)x+ bx2 = (1−x)(1− bx). For this function y′(x) = −1− b+ 2bx,

so that y′(0) = −1 − b. On the other hand y′(x) = y(1−3x−y)
x(1−x− y

2 )
, so by

L’Hôpital’s rule y′(0) =
y(0)(−y′(0)−3)+(1−y(0))y′(0)

1− y(0)
2

. Now set y(0) = 1

to obtain y′(0) = −2, which implies b = 1, and thus that the curve is

y(x) = (1 − x)2. It is now simple to check that y(x) = (1 − x)2 satisfies

y′(x) = y(1−3x−y)
x(1−x− y

2 )
and so the graph of y is an invariant manifold. See Figure

5 for the phase portrait.
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