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ABSTRACT
Explicit expressions in terms of Gaussian Hypergeometric functions
are found for a ‘balance’ manifold that connects the non-zero steady
states of a 2-species, non-competitive, scaled Lotka–Volterra system
by the unique heteroclinic orbits. In this model, the parameters are
the interspecific interaction coefficients which affects the form of
the solution used. Similar to the carrying simplex of the competitive
model, this balance simplex is the common boundary of the basin of
repulsion of the origin and infinity, and is smooth except possibly at
steady states.
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1. Background

For a Lotka–Volterra system with 2-species, the phase portraits are well known [7,16,19].
However, explicit solutions are rare, whether for actual solutions [20,28], or for invariant
manifolds [6,31]. Herewe obtain an explicit and analytic solution for the heteroclinic orbits
that connect non-zero steady states in a scaled Lotka–Volterra system (see (1) below). This
solution, which we call a balance simplex !, attracts all non-zero solutions and is invariant
under the flow of the system. It also divides the phase plane into two distinct regions. The
lower region (containing the origin) has solutions which are repelled by the origin. The
unbounded region above ! has solutions in the phase plane which are declining from
infinity.

In the case where both species compete against one another, for ourmodel! is precisely
the carrying simplex introduced by Hirsch [14]. The carrying simplex is a Lipschitz mani-
fold that attracts all non-trivial solutions and has been studied in more general and higher
dimensional systems (for continuous time see, for example, [2,14,26] and for discrete-time
[17,18]). Our solution ! provides an explicit example of an analogue of the carrying sim-
plex which also applies to predator-prey type or a co-operative interactions. Figure 1 shows
schematic views of the carrying simplex and the balance simplex.

2. Introduction

Consider what we call the 2-species scaled Lotka–Volterra system, where all intrinsic
growth rates are equal to 1 and the intraspecific interaction coefficients for both species
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Figure 1. A general diagram of a carrying simplex (left) and balance simplex (right) in red. The diagonal
blue line is the unit simplex and the orange points are steady states of the system. The grey curves are
solution trajectories of the system.

Figure 2. Phase plots of two species scaled Lotka–Volterra systems in the x1x2-plane. These four plots
cover the generic qualitative dynamics of the system with different interspecific interaction coefficients
(α and β). The orange points are the steady states of the system and the arrows show how solution
trajectories evolve over time. ∗Note (a) does not apply to the strongly co-operative case (α,β < 0 and
αβ ≥ 1) where all positive solutions are unbounded.

are 1. The former condition means that the origin is always an unstable node, and the lat-
ter condition ensures there are no periodic orbits in (0,∞)2 [16]. Taken together these
conditions also mean that each species has a normalised carrying capacity of 1, i.e. we have
two axial steady states: (0, 1) and (1, 0). The resulting system is:

dx1
dt

= x1(1 − x1 − αx2),

dx2
dt

= x2(1 − βx1 − x2).
(1)

We make the following

Standing assumption: The interspecific interaction coefficients α and β can be of any sign or
zero, but α,β ̸= 1.

(The case where one of α,β is equal to 1 is covered in the appendix.) Note that all solu-
tions are repelled from infinity apart from in the strongly co-operative case (where both
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α,β < 0 andαβ ≥ 1)whichwe donot consider as all positive solutionswill be unbounded,
in which case the concept of the balance simplex is not applicable.

Whilst (1) may seem like quite a restricted system (since we have set four of our original
parameters to the value 1), any general 2-species system with equal, non-zero intrinsic
growth rates ri = r and non-zero intraspecific interaction coefficients αii can be written
as a scaled Lotka-Volterra system with the change of variables x̃i(t) = αiixi(t/r)/r for i =
1, 2. This follows from the remark before equation (1.1) in Tineo [26] (after correcting the
expression in their argument of xi).

The system (1) has at most one interior steady state, x∗ = ((α − 1)/(αβ − 1), (β − 1)/
(αβ − 1)), whichwe say existswhen x∗ ∈ [0,∞)2, i.e. whenbothα,β > 1 or bothα,β < 1
and αβ < 1.

Definition 2.1: For the system (1), we define the balance simplex! to be a manifold with
the following properties:

(1) ! is invariant, compact and projects radially 1-1 and onto the unit probability simplex;
(2) ! globally attracts all non-zero points in [0,∞)2.

Thus ! is compact, connected and contains all non-zero steady states, and ! separates
solutions which are repelled by the origin from those which decline from infinity. ! is the
boundary of the basin of repulsion of the origin and of infinity. In this paper, we focus on
constructing ! explicitly, as an analytic solution to the system (1).

Although it is possible to argue that ! exists for our model (1) using topological
arguments, it is convenient to use Bomze’s classification of the phase portrait for planar
Lotka–Volterra systems [7,8]. Using Bomze’s link between Lotka-Volterra and 3-species
replicator dynamics on the 2−dimensional simplex, we conclude that (1) when trans-
formed to a replicator system should have a repelling simplex vertex connected to two
simplex edges, each of which contains an interior steady state (the third edge corresponds
to points at infinity). The only such portraits in [7] are labelled 1, 5, 7, 8, 9, 10, 34, 35, 37,
38. Inspection shows that all these portraits have a manifold that connects the two edge
steady states, and that attracts all points except the repelling vertex and points on the edge
opposite to the repelling vertex, so we may establish by way of Bomze’s classification:

Lemma 2.2: When (α,β) ∈ R2\{(a, b) : a < 0, b < 0, ab ≥ 1} the planar system (1) has a
compact and connected 1-dimensional invariant manifold ! that globally attracts all non-
zero solutions, and contains all non-zero steady states and the heteroclinic orbits connecting
them (Figure 2).

3. Explicit expressions for the balance simplex

In this section we explicitly construct the balance simplex of Lemma 2.2 for all (α,β) ∈
R2 \ {(a, b) : a < 0, b < 0, ab ≥ 1}.

We begin by transforming (1) into polar co-ordinates:

θ̇ = R cos θ sin θ[cos θ (1 − β) + sin θ (α − 1)],
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Ṙ = R[1 − R cos2 θ (cos θ + α sin θ) − R sin2 θ (sin θ + β cos θ)].

With some simplification, we can write:

dR
dθ

− R
B
A

= − 4
A
,

where A = (1 − α)(cos θ − cos 3θ) − (1 − β)(sin θ + sin 3θ) and B = (3 + β) cos θ +
(1 − β) cos 3θ + (3 + α) sin θ − (1 − α) sin 3θ .

To work with rational functions, we use the substitution T = tan θ . Note that we are
only interested in the first quadrant, θ ∈ [0,π/2] (i.e. T ∈ [0,∞)) and T = x2/x1. Using
the chain rule, we can now write

dR
dT

+ R
1 + αT + βT2 + T3

T(1 + T2)[(1 − β) + T(α − 1)]
=

√
1 + T2

T[(1 − β) + T(α − 1)]
. (2)

The differential Equation (2) can be solved using the following integrating factor:

ν(T) = T
1

1−β '(T)ξ+1
√
1 + T2

, (3)

where '(T) = 1 − β − T(1 − α) and ξ + 1 = (−1 + αβ)/((α − 1)(β − 1)), i.e. ξ =
(−2 + α + β)/((α − 1)(β − 1)). Multiplying by this integrating factor, then integrating
we obtain formally

R(T) =
∫ T
0 s

β
1−β '(s)ξ ds + C

ν(T)
, (4)

where C is a constant. If (T,R(T)) is a local solution of (2) passing through the point
(T0,R(T0)) = (T0,R0) where T0 ∈ [0,∞), then (x1(t), x2(t)) := (R(t)/

√
1 + t2, tR(t)/√

1 + t2) is a local solution of (1) passing through the point (x0, y0) where x0 =
R0/

√
1 + T2

0 and y0 = T0R0/
√
1 + T2

0 . Different choices of T0,R0 determine the constant
C in (4).

We define

µ(T) =
∫ T

0
s

β
1−β '(s)ξ ds

= T
1

1−β (1 − β)ξ
∫ 1

0
s

β
1−β

(
1 − sT

T∗

)ξ

ds, (5)

where T∗ = (β − 1)/(α − 1) (which may be positive or negative – recall that we restrict
α ̸= 1,β ̸= 1). Depending on α,β , and the value of T, the integral µ(T) may not always
converge, and this determines the range of values of T for which the local solution to (2)
can be extended. Formally, our solution would then be:

R(T) =
(1 − β)ξ

√
1 + T2

∫ 1
0 s

β
1−β

(
1 − sT

T∗
)ξ ds

'(T)ξ+1 + C
√
1 + T2

T
1

1−β '(T)ξ+1
, (6)

for which the balance manifold is given parametrically in (x1, x2) co-ordinates by
{(R(T)/

√
1 + T2,TR(T)/

√
1 + T2)| T ∈ I}, where I ⊆ [0,∞) is the interval where (6)

converges.
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To provide an alternative solution form when the solution above fails to converge, it
is useful to note a symmetry in this problem. If αandβ are swapped, this is equivalent to
swapping the index of the two species without changing the dynamics. In the phase plane,
this is equivalent to a reflection on x1 = x2, i.e. the axes are swapped. We can return to
our original dynamics by re-indexing the two species, which we can do in the form of the
transformation T → 1/T =: T. With this in mind, we define

µ2
(
T
)

=
∫ T

0
s

α
1−α '2(s)ξ ds

= T
1

1−α (1 − α)ξ
∫ 1

0
s

α
1−α

(
1 − sTT∗)ξ ds, (7)

ν2
(
T
)

= T
1

1−α '2(T)ξ+1
√
1 + T2

, (8)

where '2(T) := 1 − α − T(1 − β). Using (7) and (8) we obtain a second solution to (2):

R2 (T) =
µ2

(
T
)
+ C2

ν2
(
T
) =

µ2
( 1
T
)
+ C2

ν2
( 1
T
) , (9)

where C2 is a constant of integration. For clarity, we will add the subscript ‘1’ to our first
solution (and '(T)):

R1(T) = µ1(T) + C1
ν1(T)

. (10)

Figure 3. The parameter space (α,β) with the different cases shown, each extending to infinity. Note
that in the region of unbounded dynamics (both α,β < 0 and αβ ≥ 1), the balance simplex does not
exist.
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Table 1. The valid ranges in T for which we can use the solutions R1(T) and R2(1/T) in different param-
eter cases α and β . The remaining case (case 6) where both α, β > 1 uses a slightly different solution
and will be discussed later. A region plot of these cases can be found in Figure 3.

R1(T) R2(T)

Case 1: β < 1, 1 < α < 2 − β [0,∞) –
Case 2: α < 1, 1 < β < 2 − α – [0,∞)
Case 3: α, β < 1 and αβ < 1 [0, T∗] [T∗ ,∞)
Case 4: β < 1, 1 < 2 − β < α [0,∞) –
Case 5: α < 1, 1 < 2 − α < β – [0,∞)

We will explore solutions to (2) made from R1 and R2 for different parameters α and β in
order to find an explicit expression for the balance simplex.

Remark 1: We note that solutions R1,R2 with appropriate constants C1 or C2 can be used
to describe all orbits of (1), but this is not the focus of our study. Rather we are con-
cerned with the balance simplex which is constructed from special orbits of (2), namely
heteroclinic orbits.

The forthcoming analysis derives valid ranges we can use the solutions in different
parameter cases (see Figure 3) and a summary is given in Table 1.

4. Construction of the heteroclinic orbits

Now we will determine which constants C1 and C2 correspond to the solution connecting
all the non-zero steady states by explicitly examining the limits of the solutions R1(T) and
R2(T).Wewillmake use of two important results on the convergence of integrals (p-integral
test):

I1 :
∫ 1

0

1
xp

dx =
∫ 1

0
x−p dx < ∞ if and only if p < 1 (i.e. − p > −1).

I2 :
∫ ∞

1

1
xp

dx =
∫ ∞

1
x−p dx < ∞ if and only if p > 1 (i.e. − p < −1).

Inwhat followsweuse thatwhen the interior steady state x∗ = ((α − 1)/(αβ − 1), (β − 1)/
(αβ − 1)) exists, its position with respect to the variable T is given by T∗ =
(β − 1)/(α − 1) > 0. For (α,β) ∈ R2 \ {(a, b) : a < 0, b < 0, ab ≥ 1}, x∗ exists if and
only if T∗ > 0. We write T∗ = 1/T∗.

4.1. Case 1:−∞ < β < 1 and 1 < α < 2 − β.

Here ξ > 0, 1/(1 − β) > 0 and T∗ < 0, so that there is no interior steady state. In this case
we expect the balance simplex to consist of a single heteroclinic orbit connecting (1, 0) and
(0, 1). We use the first solution R1(T) since'1(T) > 0 for T ∈ [0,∞). Next we determine
the constant C in (6) so that the balance simplex passes through (1, 0) at T=0 and (0, 1)
at T = ∞.

(a) T → 0
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For the limit of R1(T) as T → 0, we have a potential problem with the T1/(1−β) in the
denominator of the term with the constant C1 := C in equation (6). However, if we set
C1 = 0, then we can calculate the limit

lim
T→0

R1(T) = (1 − β)ξ ·
√
1 · (1 − β)

(1 − β + 0)ξ+1 = 1,

which in our original co-ordinates means (x1(0), x2(0)) = (1, 0), the axial steady state on
the x1 axis.

(b) T → ∞
The leading order of ν(T) as T → ∞ is 1/(1 − β) + ξ > 0, thus ν(T) is unbounded

T → ∞. Note that β/(1 − β) > −1, so from I2 and equation (5),µ(T) is also unbounded
as T → ∞. We consider the limit of R1(T) using L’Hôpital’s rule:

lim
T→∞

R1(T) = lim
T→∞

µ1(T) + C1
ν1(T)

= lim
T→∞

µ′
1(T)

ν′
1(T)

where

µ′
1(T) = T

β
1−β '(T)ξ ,

ν′
1(T) = 1√

1 + T2
T

β
1−β

1 − β
'1(T)ξ+1 + 1√

1 + T2
T

1
1−β (ξ + 1)(α − 1)'1(T)ξ

− T
1

1−β '1(T)ξ+1 T

(1 + T2)
3
2
.

With some simplifications, we can show:

lim
T→∞

R1(T) = lim
T→∞

µ′
1(T)

ν′
1(T)

= 1(
1

1−β

)
(α − 1) + (ξ + 1)(α − 1) − (α − 1)

= 1.

It is worth noting that the limit has this value regardless of the constant of integration C1.
This is expected as the axial state (0, 1) is locally attracting with these parameters.

We can conclude that with the choice ofC1 = 0, the solutionR(T) = R1(T), T ∈ [0,∞)

corresponds to the balance simplex in (T,R) co-ordinates, joining both axial steady states.

4.2. Case 2: β > 1 and−∞ < α < 2 − β < 1

For our domainT ∈ [0,∞),'1(T) < 0whichwill be complex when raised to the power ξ ,
however '2(T) > 0 here so we consider the second solution, R2(T), instead. This param-
eter space is equivalent to the case where −∞ < α < 1 and 1 < β < 2 − α; this is Case
1 with α and β exchanged. The solution is thus obtained analogously from Case 1 by
exchanging α and β , and the variable T with T everywhere in the calculations since we
are now using the second solution. The balance simplex ! is thus given by R = R2(T)

with C2 = 0 which joins the two axial steady states.
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4.3. Case 3:−∞ < α,β < 1 and αβ < 1.

The inequality αβ < 1 is required for boundedness of all solutions; without it, the balance
simplex does not always exist. Here ξ < −1, 1/(1 − β) > 0 and T∗ > 0, so that there is an
interior steady state. To construct the balance simplex will need to join together the two
solutions R1 and R2 at the interior steady state T = T∗.

(a) T → 0
Near T=0, '1(T) > 0 and we can calculate the limit of R1(T) as done previously,

making the choice of C1 = 0 for boundedness: limT→0 R1(T) = 1.
(b) T → ∞, i.e. T → 0
For large T, we consider the solution R2(T) since'2(T) > 0 when T > T∗. We can use

the analogous calculations in case 3a if we consider T small. With the choice of C2 = 0:
limT→∞ R2(T) = limT→0(µ2(T)/ν2(T)) = 1.

(c) T → T∗

We first consider this limit from below,T → T∗−, where only the first solution R1(T) is
real. Since ξ < −1, µ1(T) behaves like I1; we know that µ1(T) is unbounded as T → T∗.
The function ν1(T) is also unbounded as T → T∗, again using ξ < −1. This means we
can examine this limit of R1(T) using L’Hôpital’s rule. We have:

lim
T→T∗−

R1(T) = lim
T→T∗−

µ′
1(T)

ν′
1(T)

=
√

(α − 1)2 + (β − 1)2

1 − αβ
, (11)

which matches the value R(T∗) =
√

(x∗
1)

2 + (x∗
2)

2 obtained from polar co-ordinates
at the interior steady state x∗. This is a valid conclusion for any constant of inte-
gration C1, consistent with x∗ being attracting. We could also do an analogous cal-
culation for the limit T → T∗+. Here the second solution R2(T) is real and we
would consider the limit T → T∗− which gives exactly the same limit value as
R2(T∗) = R1(T∗).

We conclude that by choosing C1 = C2 = 0, we have a solution which connects each
axial steady state to the interior steady state, thus giving the balance simplex.

4.4. Case 4:−∞ < β < 1 and 1 < 2 − β < α.

Here ξ < 0, 1/(1 − β) > 0 and T∗ < 0, so that there is no interior steady state. We use the
first solution R1(T).

(a) T → 0
Once again, if we set C1 = 0, then we find limT→0 R1(T) = 1, corresponding to (1, 0).
(b) T → ∞
It is clear from I2 and equation (5) thatµ1(T) is unbounded asT → ∞ since the leading

order of its integrand isβ/(1 − β) + ξ = 1/(α − 1) − 1 > −1. The leading order of ν1(T)

is β/(1 − β) + 1 + ξ = 1/(α − 1) > 0 and so ν1(T) is also unbounded asT → ∞ andwe
can again apply L’Hôpital’s rule on R1(T) to conclude limT→∞ R1(T) = 1 for any constant
C1, consistent with (0, 1) being attracting.

Hence with C1 = 0, the solution R = R1(T) corresponds to the balance simplex joining
both axial steady states.
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4.5. Case 5: β > 1 and 2 − β < α < 1.

Here, we use the second solution, R2(T), since '2(T) > 0. Equivalently, this case is where
α < 1 and 1 < 2 − α < β which has been covered analogously in Case 4 with the first
solution R1(T). The balance simplex ! is thus given by R = R2(T) with C2 = 0.

4.6. Case 6: α,β > 1.

Here ξ > 0, β/(1 − β) < −1 and T∗ > 0, so that there is an interior steady state. As in
Case 4 we will join R1 and R2 at T = T∗.

(a) T → ∞
In this case '1(T) > 0 if and only if T > T∗. Thus for large T we now consider the

modification:

R∗
1(T) =

µ∗
1(T) + C1
ν1(T)

(12)

where

µ∗
1(T) =

∫ T

T∗
s

β
1−β '1(s)ξ ds. (13)

The integrand has leading order β/(1 − β) + ξ = −1 + 1/(α − 1) > −1 since α > 1.
This means µ∗

1(T) is unbounded as T → ∞ using I2. The leading order of ν1(T) is
β/(1 − β) + 1 + ξ = 1/(α − 1) > 0 and so ν1(T) is also unbounded as T → ∞ and we
can apply L’Hôpital’s rule,

lim
T→∞

R∗
1(T) = lim

T→∞

µ∗
1(T) + C1
ν1(T)

= lim
T→∞

µ′
1(T)

ν′
1(T)

. (14)

This follows exactly the same calculation as in case 1b, thus we can conclude
limT→∞ R∗

1(T) = 1, regardless of the constant of integration C1, consistent with (0, 1)
being attracting.

(b) T → 0, i.e. T → ∞
For small T (i.e. large T), since '2(T) > 0 when T < T∗ we consider the modification:

R∗
2 (T) =

µ∗
2
(
T
)
+ C2

ν2
(
T
) =

µ∗
2
( 1
T
)
+ C2

ν2
( 1
T
) (15)

where

µ∗
2
(
T
)

=
∫ T

T∗
s

α
1−α '2 (s)ξ ds. (16)

Using the analogous calculations from case 6a, µ∗
2(T) is unbounded as T → ∞, and the

same is true for ν2(T). Thus we can apply L’Hôpital’s rule to conclude that R∗
2(T) converges

to 1 as T → 0, i.e. as T → ∞, regardless of the constant C2, consistent with (1, 0) being
attracting.

(c) T → T∗

Another point we must examine is T∗ > 0 since'1(T∗) = 0 and ξ > 0. We first exam-
ine the limit from above (T → T∗+) where R∗

1(T) remains real. It is clear that ν1(T∗) = 0
and limT→T∗+ µ∗

1(T) = 0.
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SinceR∗
1(T) = (µ∗

1(T) + C1)/ν1(T), ifC1 ̸= 0, thenR∗
1(T) is unbounded asT → T∗+.

SettingC1 = 0, we can use L’Hôpital’s rule to examine the limit ofR∗
1(T) asT → T∗+. This

follows the calculation from case 3c, but we must be careful with the sign of α − 1 when
simplifying and bringing terms into the square root:

lim
T→T∗+

R∗
1(T) = lim

T→T∗+

µ′
1(T)

ν′
1(T)

=
√

(α − 1)2 + (β − 1)2

αβ − 1
, (17)

which matches the value of R(T∗) =
√

(x∗
1)

2 + (x∗
2)

2 at the interior steady state x∗. Since
we expect x∗ to lie on the balance simplex, C1 = 0 is indeed the correct constant for the
balance simplex.

We can also do an analogous calculation for the limit of R∗
2(T) as T → T∗− (i.e. as

T → T∗+), which gives exactly the same limit value with the choice of C2 = 0.
Thus, for the case where both α,β > 1 we use the modified solution R∗

1(T)with C1 = 0
in the range T ∈ [T∗,∞) and R∗

2(T) with C2 = 0 in T ∈ [0,T∗] for the balance simplex.

5. # is a balance simplex

Recall that the general solution R to (2) was found by transforming the scaled
Lotka–Volterra system into polar co-ordinates, then using the substitution T = tan θ . The
constants C1 and/or C2 were set to 0 to find the balance simplex. This gives a simple
parametric form of our solution, for example, for R1(T):

x1 = 1√
1 + T2

R1(T),

x2 = T√
1 + T2

R1(T). (18)

Let R(T), T ∈ [0,∞), be our complete solution to (2), equal to R1(T) or R2(T) in the
appropriate ranges of T, with the constants of integration C1 and/or C2 set to 0. We have
seen that parametrically (x1, x2) = (R(T)/

√
1 + T2,TR(T)/

√
1 + T2) and the function

R(T) is injective. We can therefore map our solution to the unit simplex using (x1, x2) +→
(u, 1 − u)where u = x1/(x1 + x2) = 1/(1 + T) is the relative frequency of species 1. Thus
our two dimensional balance simplex is homeomorphic to the unit 1-simplex by radial
projection.

Lemma 2.2 confirms that the invariant manifold ! attracts all points except the origin
and hence ! is a balance simplex.

6. Simplifications that use the Gaussian hypergeometric function

The Gaussian hypergeometric function (GHF) [4,5,29] is defined for a, b, c, z ∈ C by

2F1(a, b; c; z) =
∞∑

k=0

(a)k(b)k
(c)kk!

zk, (19)

where the Pochhammer symbol means (x)0 = 1 and (x)k = x(x + 1) · · · (x + k − 1) for a
positive integer k. This power series in z is defined when c is not equal to a non-positive
integer and converges if |z| < 1.
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The GHF also has the following integral representation which converges if |z| < 1 and
ℜ(c) > ℜ(b) > 0 [4]:

2F1(a, b; c; z) = )(c)
)(b))(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt (20)

where ) is the Gamma function:

)(z) =
∫ ∞

0
xz−1e−x dx, (21)

which converges absolutely when ℜ(z) > 0. We now show that we can actually write our
solutions R1, R2, R∗

1 and R∗
2 in terms of GHFs.

We will also make use of Euler’s transformation of the hypergeometric function [4,
pp. 64], derived from the substitution t → (1 − t)/(1 − tz) in the integral representa-
tion (20):

2F1(a, b; c; z) = (1 − z)c−a−b
2F1(c − a, c − b; c; z). (22)

We can now write the integral µ1 (5) for β < 1 in the following way, using a =
−ξ , b = 1/(1 − β) > 0, c = (2 − β)/(1 − β) > 0, and also that )[c]/()[b])[c − b]) =
)[b + 1]/()[b])[1]) = b = 1/(1 − β),

µ1(T) = T
1

1−β (1 − β)ξ
∫ 1

0
s

β
1−β

(
1 − sT

T∗

)ξ

ds

= T
1

1−β (1 − β)ξ+1
2F1

[
−ξ ,

−1
β − 1

;
β − 2
β − 1

;
T
T∗

]

= T
1

1−β '1(T)ξ+1
2F1

[
α

α − 1
, 1;

β − 2
β − 1

;
T
T∗

]
, (23)

giving the general solution for β < 1:

R1(T) =
√
1 + T2 2F1

[
α

α − 1
, 1;

β − 2
β − 1

;
T
T∗

]
+ C1

√
1 + T2

T
1

1−β '1(T)ξ+1
. (24)

Similarly, recalling that we use T to denote 1/T,

µ2
(
T
)

= T
1

1−α '2(T)ξ+1
2F1

[
β

β − 1
, 1;

α − 2
α − 1

;TT∗
]
, (25)

giving the general solution for α < 1:

R2 (T) =
√
1 + T2

2F1
[

β

β − 1
, 1;

α − 2
α − 1

;TT∗
]

+
C2

√
1 + T2

T
1

1−α '2
(
T
)ξ+1

. (26)

Remark: The third argument of 2F1 in µ1 (respectively µ2) is a non-positive integer when
β (respectively α) belongs to the set:

K =
{
k − 2
k − 1

| k is a non-positive integer
}

=
{
k − 1
k

| k is a negative integer
}
. (27)
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note thatK ⊂ (1, 2]. From Table 1 we can see that we only useµ1 in the case where β < 1,
thus β /∈ K and the GHF in equation (24) is well defined. Similarly,µ2 is only used in cases
where α < 1.

The integralsµ∗
1 (13) andµ∗

2 (16) (from case 6 where both α,β > 1) can also be written
in terms of GHFs:

µ∗
1(T) =

∫ T

T∗
s

β
1−β '1(s)ξ ds

= (α − 1)ξ
∫ 1

0

[
s(T − T∗) + T∗] β

1−β
[
s(T − T∗)

]ξ
(T − T∗) ds

= (α − 1)ξ (T − T∗)ξ+1T∗ β
1−β

∫ 1

0
sξ

(
1 − s

(
T∗ − T
T∗

)) β
1−β

ds

= (α − 1)ξ (T − T∗)ξ+1T∗ β
1−β

ξ + 1 2F1
[

β

β − 1
, ξ + 1; ξ + 2;

T∗ − T
T∗

]
.

Applying Euler’s transformation, we have

2F1
[

β

β − 1
, ξ + 1; ξ + 2;

T∗ − T
T∗

]
= 2F1

[
ξ + 1,

β

β − 1
; ξ + 2;

T∗ − T
T∗

]

=
(

T
T∗

) 1
1−β

2F1
[

α

α − 1
, 1; ξ + 2;

T∗ − T
T∗

]
.

Hence the general solution for T > T∗ when α,β > 1 is

R∗
1(T) =

µ∗
1(T) + C1
ν1(T)

= α − 1
αβ − 1

√
1 + T2 2F1

[
α

α − 1
, 1; ξ + 2;

T∗ − T
T∗

]
+ C1

√
1 + T2

T
1

1−β '1(T)ξ+1
.

Similarly,

µ∗
2
(
T
)

=
∫ T

T∗
s

α
1−α '2 (s)ξ ds

= (β − 1)ξ (T − T∗
)ξ+1T∗ α

1−α

ξ + 1 2F1

[
α

α − 1
, ξ + 1; ξ + 2;

T∗ − T
T∗

]

.

and so after applying the Euler transformation, the general solution for T < T∗ is

R∗
2(T) =

µ∗
2(T) + C2

ν2(T)

= β − 1
αβ − 1

√
1 + T2

2F1

[
β

β − 1
, 1; ξ + 2;

T∗ − T
T∗

]

+
C2

√
1 + T2

T
1

1−α '2(T)ξ+1
.
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Remark 2: For bothµ∗
1 andµ∗

2 the third argument of their GHFs is a non-positive integer
k when

α = k(1 − β) + β

k(1 − β) − 1 + 2β
. (28)

Note that the numerator and denominator are both positive since β > 1 and k is a non-
positive integer. Using β − 1 > 0 we can also see that k(1 − β) + β < k(1 − β) − 1 + 2β
implying α < 1 in (28). Thus when using µ∗

1 and µ∗
2, their GHFs are always defined since

we only use them in the case where both α,β > 1.

7. Summary of explicit solutions

Recall thatT∗ = (β − 1)/(α − 1) andnote that ξ + 2 = (2αβ − α − β)/((α − 1)(β − 1)).
When we write 2F1, it means the Gaussian hypergeometric function defined as the series
in the previous section, along with its analytic continuaton.

(1) −∞ < β < 1, α > 1.

(x1(T), x2(T)) = 2F1
[

α

α − 1
, 1;

β − 2
β − 1

;
T
T∗

]
× (1,T), T ∈ [0,∞).

(2) −∞ < α < 1, β > 1.

(x1(T), x2(T)) = 2F1
[

β

β − 1
, 1;

α − 2
α − 1

;
T∗

T

]
×

(
1
T
, 1

)
, T ∈ [0,∞).

(3) −∞ < α,β < 1 and αβ < 1.

(x1(T), x2(T)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2F1
[

α

α − 1
, 1;

β − 2
β − 1

;
T
T∗

]
× (1,T), T ∈ [0,T∗]

2F1
[

β

β − 1
, 1;

α − 2
α − 1

;
T∗

T

]
×

(
1
T
, 1

)
, T ∈ [T∗,∞].

(4) α > 1, β > 1.

(x1(T), x2(T)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β − 1
αβ − 1 2F1

[
β

β − 1
, 1; ξ + 2; 1 − T∗

T

]
×

(
1
T
, 1

)
, T ∈ [0,T∗]

α − 1
αβ − 1 2F1

[
α

α − 1
, 1; ξ + 2; 1 − T

T∗

]
× (1,T), T ∈ [T∗,∞).

8. Example plots for different species-species interactions

Some phase plots with example parameters for α and β showing the balance simplex can
be found in Figures 4 and 5.

(1) Competition (α,β > 0) is shown in Figures 4(a and b) and 5(b). Here ! coincides
with the carrying simplex which is known to be C1-continuous in this case [23]. From
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Figure 4. Phase plots of two species scaled Lotka–Volterra systems with different interspecific interac-
tion coefficients (α and β). Here (a) and (b) are competitive systems, (c) is a co-operative system and (d)
is an example of predation. In these plots, the solutions R1(T) (dashed, orange) and R2(T) (solid, green)
only meet at the interior steady state x∗.

[1,26] it is known that ! is convex when α + β < 2, concave when α + β > 1 and a
straight line if α + β = 1.

(2) Predation (αβ < 0) is shown in Figures 4(d) and 5(a). Note that this model is not the
same as the classic predator-prey model, since the origin is repelling. We are taking
all intrinsic growth rates to be positive – suggesting that the predator has a secondary
food source which it switches to when it primary food source is scarce (known as
‘prey-switching’, see for example [27] and references within).

(3) Cooperation (α,β < 0) is shown in Figure 4(c). As is well-known, the effect of coop-
eration is to enhance the population densities of both species beyond that of their
respective carrying capacities, as seen here. The most notable feature in the balance
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Figure 5. Phase plots of two species scaled Lotka–Volterra systems with different interspecific interac-
tion coefficients (α and β). Here, (a) is an example of predation where we only need to use one solution,
R1(T) (dashed, orange). (b) is a competitive system, using the solutions R∗

1(T) (solid, black) and R∗
2(T)

(dashed and dotted, red).

simplex is that there is now a cusp at the interior steady state, thus showing by exam-
ple that, although the individual heteroclinic orbits forming ! are as smooth as the
vector field, they may not join smoothly at an interior steady state. Therefore, we can
conclude that the balance simplex for this model is at least continuous and piecewise
analytic. In Figure 5(a), we provide an example of a non-competitive systemwhere the
balance simplex is analytic (not just piecewise).

9. Discussion

We have introduced the concept of a balance simplex to describe a manifold where growth
from small population densities and decay from large densities balance, and derived
explicit formulae for the balance simplex ! for a special case of the planar Lotka-Volterra
equations (1).

Our results provide formulae for the carrying simplexwhen the parametersα,β are both
positive, so that the system is competitive, but also for more general species-species inter-
actions where these parameters may not be positive. In terms of existence of the balance
simplex, if we work with the general planar Lotka-Volterra equations (i.e. allow unequal
intrinsic growth rates) Bomze’s classification [7] tells us that a balance simplex will still
exist. However, it is not clear how then to carry out the integration that we achieved in
Section 3 to obtain explicit formulae for ! in the current work.

The balance simplex separates the phase plane into two distinct regions: solutions which
grow from arbitrarily close to the origin (growth when rare), and solutions which decline
from infinity (limiting resources). All non-zero solutions tend to the balance simplexwhich
therefore contains all limit sets. In our planar system, as is well-known in the competi-
tive case (e.g. [16]) this immediately implies that every orbit is convergent (since we have
discounted unbounded orbits).

Our explicit solutions confirm that ! maps radially 1–1 and onto the probability sim-
plex and the same is found inmore general competitivemodels [14]. Formodels withmore
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general functional forms for the per-capita growth rate, injectivity of the radial projection
may fail, and in that case we call the manifold the balance manifold [3]. In particular, this
lack of injectivity can occur in predator-prey systems when there is an interior stable spiral
[3]. Practically, injectivity of the radial projection means that if a sample of the popula-
tion is taken and an approximation of the balance simplex is known, the actual population
densities and total population size can be estimated if the system is close to balance.

It would also be interesting to seek heteroclinic orbits in planar models with nonlinear
functional responses, particularly those for which the phase plane is separated into differ-
ent basins of attraction due to these heteroclinic orbits. We would be able to predict which
steady state the system will (theoretically) converge towards in the future, and how these
basins of attractions would be affected by ecological regime shifts, affecting the parameters
and state variables [13].

Carrying simplices of planar competitive Lotka–Volterra systems have a curvature that
is single-signed. In planar and higher dimensional Lotka–Volterra systems, the sign of this
Gaussian curvature can be indicative of global stability of interior fixed points [1,33]. In
fact, for the planar case this curvature depends solely on the sign of a simple expression of
the parameters [1,26,32]. For our scaled Lotka–Volterra system in the competitive case, this
expression is α + β − 2. This difference in convexity properties can be seen in Figures 4(b)
and 5(b) whereα + β − 2 = −1.2 and 2.1 respectively. Our numerical examples here leads
us to speculate

Conjecture 1: Each heteroclinic orbit that forms the balance simplex of a planar
Lotka–Volterra system with hyperbolic steady states has curvature of constant sign.

On this point it is worth recalling that limit cycles of quadratic systems are known
to have convex interiors (see, for example [11]). However, not all heteroclinic orbits of
quadratic systems have curvature of constant sign. For example, the system ẋ = x(1 − x),
ẏ = 1 − y2 has a heteroclinic orbit that connects the steady states (0,−1) and (1, 1) where
there is a point of inflection at (1/2, 0), as well as other heteroclinic orbits that connects the
same steady states that are convex or concave. The conjecture above is restricted to planar
Lotka–Volterra systems which excludes these cases just mentioned. The heteroclinic orbit
in Figure 1(a) of the appendix does not have a constant sign of curvature, however for this
example, (0, 1) is non-hyperbolic.

We expect balance simplices (as the common boundary of repulsion of the origin and
infinity) to appear in higher dimensional populationmodels. In a 3-species Lotka–Volterra
system where the origin and infinity are repellers, the presence of a balance simplex would
also have strong implications for the long-term dynamics. If the resulting balance simplex
is sufficiently smooth, then the flow on the balance simplex is two-dimensional and hence
amenable to treatment by the Poincaré-Bendixson theorem and similar tools. In particu-
lar chaos would not be possible in a 3-species system with a sufficiently regular balance
simplex.

Disclosure statement
No potential conflict of interest was reported by the authors.



144 A. CHING AND S. BAIGENT

Funding
This work was supported by the Engineering and Physical Sciences Research Council [grant number
EP/M507970/1].

ORCID
Atheeta Ching http://orcid.org/0000-0003-4078-8851
Stephen Baigent http://orcid.org/0000-0003-4858-137X

References
[1] S. Baigent,Convexity-preserving flows of totally competitive planar Lotka–Volterra equations and

the geometry of the carrying simplex, Proc. Edinburgh Math. Soc. 55 (2012), pp. 53–63.
[2] S. Baigent, Geometry of carrying simplices of 3-species competitive Lotka–Volterra systems,

Nonlinearity 26 (2013), pp. 1001.
[3] S. Baigent and A. Ching,Manifolds of balance in planar ecological systems, Preprint (2018).
[4] W. Bailey,GeneralizedHypergeometric Series, Cambridge tracts inmathematics andmathemat-

ical physics, Stechert-Hafner service agency, 1964, https://books.google.co.uk/books?id=QV
M5XwAACAAJ.

[5] H. Bateman, Higher Transcendental Functions [Volumes I–III], McGraw-Hill Book Company,
New York, 1953

[6] G. Blé, V. Castellanos, J. Llibre, and I. Quilantán, Integrability and global dynamics of the
May–Leonard model, Nonlinear Anal.: Real World Appl. 14 (2013), pp. 280–293.

[7] I.M. Bomze, Lotka-Volterra equation and replicator dynamics: a two-dimensional classification,
Biolo. Cybern. 48 (1983), pp. 201–211.

[8] I.M. Bomze, Lotka-Volterra equation and replicator dynamics: new issues in classification, Biol.
Cybern. 72 (1995), pp. 447–453.

[9] X. Chen, J. Jiang, and L. Niu, On Lotka–Volterra equations with identical minimal intrinsic
growth rate, SIAM J. Appl. Dyn. Syst. 14 (2015), pp. 1558–1599.

[10] C.W. Chi, L.I. Wu, and S.B. Hsu, On the asymmetric May–Leonard model of three competing
species, SIAM J. Appl. Math. 58 (1998), pp. 211–226.

[11] W.A. Coppel, A survey of quadratic systems, J. Diff. Equ. 2 (1996), pp. 293–304.
[12] P. de Mottoni and A. Schiaffino, Competition systems with periodic coefficients: A geometric

approach, J. Math. Biol. 11 (1981), pp. 319–335. https://doi.org/10.1007/BF00276900.
[13] E. Francomano, F.M. Hilker, M. Paliaga, and E. Venturino, Separatrix reconstruction to identify

tipping points in an eco-epidemiological model, Appl. Math. Comput. 318 (2018), pp. 80–91.
[14] M.W. Hirsch, Systems of differential equations which are competitive or cooperative: III. Compet-

ing species, Nonlinearity 1 (1988), pp. 51.
[15] M.W. Hirsch, On existence and uniqueness of the carrying simplex for competitive dynamical

systems, J. Biol. Dyn. 2 (2008), pp. 169–179.
[16] J. Hofbauer, K. Sigmund, Evolutionary games and population dynamics, Cambridge University

Press, Cambridge, 1998
[17] J. Jiang, J. Mierczyński, and Y. Wang, Smoothness of the carrying simplex for discrete-time com-

petitive dynamical systems: A characterization of neat embedding, J. Diff. Equ. 246 (2009),
pp. 1623–1672.

[18] J. Jiang and L.Niu,On the equivalent classification of three-dimensional competitive Leslie-Gower
models via the boundary dynamics on the carrying simplex, J. Math. Biol. 74 (2016), pp. 1–39.

[19] M. Kot, Elements of Mathematical Ecology, Cambridge University Press, Cambridge, 2001
[20] R.S. Maier, The integration of three-dimensional Lotka-Volterra systems, Proceedings of

the Royal Society A: Mathematical, Physical and Engineering Sciences 469 (2013),
pp. 20120693–20120693.

[21] R.May andW. Leonard,Nonlinear Aspects of Competition Between Three Species, SIAM J. Appl.
Math. 29 (1975), pp. 1–12.



JOURNAL OF BIOLOGICAL DYNAMICS 145

[22] R.M. May and W.J. Leonard, Nonlinear aspects of competition between three species, SIAM J.
Appl. Math. 29 (1975), pp. 243–253.

[23] J. Mierczyński, Smoothness of unordered curves in two-dimensional strongly competitive systems,
Appl. Math. 25 (1999), pp. 449–455.

[24] L. Perko, Differential equations and dynamical systems, Vol. 7, Springer Science & Business
Media, 2013.

[25] W. Shen and Y. Wang, Carrying simplices in nonautonomous and random competitive Kol-
mogorov systems, J. Diff. Equ. 245 (2008), pp. 1–29.

[26] A. Tineo,On the convexity of the carrying simplex of planar Lotka–Volterra competitive systems,
Appl. Math. Comput. 123 (2001), pp. 93–108.

[27] M. van Baalen, V. Krivan, P.C. van Rijn, andM.W. Sabelis,Alternative food, switching predators,
and the persistence of predator-prey systems, Am. Nat. 157 (2001), pp. 512–524.

[28] V.S. Varma, Exact solutions for a special prey-predator or competing species system, J. Math.
Biol.39 (1977), pp. 619–622.

[29] N.J. Vilenkin and A.U. Klimyk, Representation of Lie Groups and Special Functions: Volume 1.,
Mathematics and its Applications, Kluwer Academic Publishers, 1991, https://www.springer.
com/gb/book/9780792314660.

[30] E.C. Zeeman and M.L. Zeeman, An n-dimensional competitive Lotka–Volterra system is gener-
ically determined by the edges of its carrying simplex, Nonlinearity 15 (2002), pp. 2019.

[31] E.C. Zeeman,Classification of quadratic carrying simplices in two-dimensional competitive Lotka
Volterra systems, Nonlinearity 15 (2002), pp. 1993–2018.

[32] E.C. Zeeman and M.L. Zeeman, On the convexity of carrying simplices in competitive Lotka-
Volterra systems, Lecture Notes in Pure and Appl. Math, 1993.

[33] E.C. Zeeman and M.L. Zeeman, From local to global behavior in competitive Lotka-Volterra
systems, Trans. Amer. Math. Soc. 355 (2003), pp. 713–734.

[34] M.L. Zeeman,Hopf bifurcations in competitive three-dimensional Lotka–Volterra systems, Dyn.
Stab. Syst. 8 (1993), pp. 189–216.

Appendix. Special cases

A.1 Rational function as the integrand
For any non-zero integers n1, n2 (of any sign), let α = (n2 − 1)/n2 and β = (n1 − 1)/n1. From our
original integral µ(T) (5), we find that:

µ(T) =
∫

Tn1−1
(
1 − n1 − 1

n1
− T

(
1 − n2 − 1

n2

))−n1−n2
dT. (A1)

Note that n1 − 1 and −n1 − n2 are integers meaning the integrand is a rational function which we
can integrate in the standard way and use the same original integrating factor ν(T) (3) to plot our
solution R(T).

A.2 Case α = 1 and β /∈ K ∪ {1}
If either α = 1 or β = 1 we have a different integral to start with and the interior steady state x∗ does
not exist. Note the case where both are equal to 1 has a line of interior steady states.

Suppose, without loss of generality, that α = 1 and β /∈ K ∪ {1}. In the other case, we can swap
them, as well as x1 and x2. Here, we now have:

dR
dT

+ R
1 + T + βT2 + T3

T(1 + T2)(1 − β)
=

√
1 + T2

T(1 − β)
.

The integrating factor is:

ν3(T) = T
1

1−β

√
1 + T2

e
T

1−β . (A2)
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Now:

µ3(T) = 1
1 − β

∫
e

−T
β−1 T

−β
β−1 dT

= C − 1
1 − β

∫ ∞

T
e

−t
β−1 t

−β
β−1 dt

= C + (β − 1)
−β
β−1

∫ ∞

T
β−1

e−τ τ
−β
β−1 dτ

= C + (β − 1)
−β
β−1 )

[
1

1 − β
,

T
β − 1

]
(A3)

where we have kept the constant of integration C in the definition of µ3 and ) here is the incom-
plete gamma function: )[s, x] =

∫ ∞
x ts−1e−t dt. By analytic continuity, ) can be defined for any x

(even negative) except when s is a non-positive integer [5, vol II]. For our case, this is when β ∈ K
(see (27)). Note that the case 1/(1 − β) = 0 is not possible. Thus when α = 1 and β /∈ K ∪ {1}, we
have the general solution:

R(T) = µ3(T)

ν3(T)
. (A4)

An example of this case is plotted in Figure 1(a). Note that when α = 1, the steady state (0, 1) is
non-hyperbolic.

A.3 Case α = 1 and β ∈ K
If α = 1 and β ∈ K suppose β = (k1 − 1)/k1, where k1 is a negative integer. Recall thatK ⊂ (1, 2].
Our integral is:

µ4(T) = k1
∫

ek1T Tk1−1 dT = C − k1
∫ ∞

T
ek1t tk1−1 dt. (A5)

By repeated integration by parts we have

µ4(T) = C − k1ek1t
tk1
k1

∣∣∣∣
∞

T
+ k1

∫ ∞

T
ek1t tk1 dt

= C − k1ek1t
tk1
k1

∣∣∣∣
∞

T
+ k1ek1t

tk1+1

k1 + 1

∣∣∣∣
∞

T
−

k21
k1 + 1

∫ ∞

T
ek1t tk1+1 dt

= C − k1ek1t
tk1
k1

∣∣∣∣
∞

T
+ k1ek1t

tk1+1

k1 + 1

∣∣∣∣
∞

T
−

k21
k1 + 1

ek1t
tk1+2

k1 + 2

∣∣∣∣
∞

T

+
k31

(k1 + 1)(k1 + 2)

∫ ∞

T
ek1t tk1+2 dt.

Note that when we evaluate the terms at ∞ and T, the ∞ part is equal to zero (since k1 < 0), and
the T part will have a minus sign. We use the following notation:

Ki =
ki1

(k1 + 1) · · · (k1 + i)

and let n = −1 − k1 so that k1 + n = −1.

µ4(T) = C + ek1T Tk1 − K1 ek1T Tk1+1 + · · · + (−1)iKi ek1T Tk1+i

+ · · · + (−1)nKn ek1T Tk1+n + (−1)n
∫ ∞

T
Kn k1 ek1t

tk1+n

k1 + n
dt
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Figure A1. Phase plots of two species scaled Lotka–Volterra systems where one of the interspecific
interaction coefficients, α (without loss of generality), is equal to 1. The solid green curve is the balance
simplex, connecting both axial steady states.

where

(−1)n
∫ ∞

T
Kn k1 ek1t

tk1+n

k1 + n
dt = (−1)n+1

∫ ∞

T
Kn k1 ek1t

1
t
dt

= (−1)n+1
∫ ∞

−k1T
Kn k1 e−τ 1

τ
dτ

= (−1)nKn k1 Ei(k1T).

(Here Ei(z) = −
∫ ∞
−z e

−tt−1dt is the exponential integral). Note that we have the same integrating
factor, ν3 (A2), as our previous case, thus when α = 1 and β ∈ K, we have the general solution

R(T) = µ4(T)

ν3(T)
. (A6)

For example with α = 1 and β = 5/4 (so that k1 = −4).

µ4(T) = e−4T

T4 − 4e−4T

3T3 + 16e−4T

6T2 − 64e−4T

6T
− 256Ei(−4T)

6
(A7)

which is plotted in Figure A1(b).


